Contents

Parallel Programming in Visual C++
Auto-Parallelization and Auto-Vectorization
Accelerated Multiprocessing (AMP)

C++ AMP (C++ Accelerated Massive Parallelism)

C++ AMP Overview

Using Tiles

Using C++ AMP in UWP Apps

Walkthrough: Matrix Multiplication

Walkthrough: Debugging a C++ AMP Application

Using Lambdas, Function Objects, and Restricted Functions

Graphics (C++ AMP)

Using accelerator and accelerator_view Objects

Reference

Reference (C++ AMP)

Concurrency Namespace (C++ AMP)
Concurrency namespace functions (AMP)
Concurrency namespace enums (AMP)
Concurrency namespace operators (AMP)
Concurrency namespace constants (AMP)
accelerator Class
accelerator_view Class
accelerator_view_removed Class
array Class
array_view Class
completion_future Class
extent Class (C++ AMP)
index Class
invalid_compute_domain Class

out_of_memory Class

runtime_exception Class

tile_barrier Class

tiled_extent Class

tiled_index Class

uninitialized_object Class

unsupported_feature Class
Concurrency::direct3d Namespace

Concurrency::direct3d namespace functions (AMP)

adopt_d3d_access_lock_t Structure

scoped_d3d_access_lock Class
Concurrency::fast. math Namespace

Concurrency::fast_ math namespace functions
Concurrency::graphics Namespace

Concurrency::graphics::direct3d Namespace

Concurrency::graphics::direct3d namespace functions

Concurrency::graphics namespace functions

Concurrency::graphics namespace enums

double_2 Class

double_3 Class

double_4 Class

float_2 Class

float_3 Class

float_4 Class

int_2 Class

int_3 Class

int_ 4 Class

norm Class

norm_2 Class

norm_3 Class

norm_4 Class

sampler Class

short_vector Structure

short_vector_traits Structure
texture Class
texture_view Class
writeonly_texture_view Class
uint_2 Class
uint_3 Class
uint_4 Class
unorm Class
unorm_2 Class
unorm_3 Class
unorm_4 Class
Concurrency::precise_math Namespace
Concurrency::precise_math namespace functions
Concurrency Runtime (ConCRT)
Concurrency Runtime
Overview of the Concurrency Runtime
Exception Handling in the Concurrency Runtime
Parallel Diagnostic Tools (Concurrency Runtime)
Creating Asynchronous Operations in C++ for UWP Apps
Comparing the Concurrency Runtime to Other Concurrency Models
Migrating from OpenMP to the Concurrency Runtime
How to: Convert an OpenMP parallel for Loop to Use the Concurrency Runtime

How to: Convert an OpenMP Loop that Uses Cancellation to Use the Concurrency
Runtime

How to: Convert an OpenMP Loop that Uses Exception Handling to Use the
Concurrency Runtime

How to: Convert an OpenMP Loop that Uses a Reduction Variable to Use the
Concurrency Runtime

Parallel Patterns Library (PPL)
Task Parallelism (Concurrency Runtime)
How to: Use parallel_invoke to Write a Parallel Sort Routine
How to: Use parallel_invoke to Execute Parallel Operations

How to: Create a Task that Completes After a Delay

Parallel Algorithms
How to: Write a parallel_for Loop
How to: Write a parallel_for_each Loop
How to: Perform Map and Reduce Operations in Parallel
Parallel Containers and Objects
How to: Use Parallel Containers to Increase Efficiency
How to: Use combinable to Improve Performance
How to: Use combinable to Combine Sets
Cancellation in the PPL
How to: Use Cancellation to Break from a Parallel Loop
How to: Use Exception Handling to Break from a Parallel Loop
Asynchronous Agents Library
Asynchronous Agents
Asynchronous Message Blocks
Message Passing Functions
How to: Implement Various Producer-Consumer Patterns
How to: Provide Work Functions to the call and transformer Classes
How to: Use transformer in a Data Pipeline
How to: Select Among Completed Tasks
How to: Send a Message at a Regular Interval
How to: Use a Message Block Filter
Synchronization Data Structures
Comparing Synchronization Data Structures to the Windows API
Task Scheduler (Concurrency Runtime)
Scheduler Instances
How to: Manage a Scheduler Instance
Scheduler Policies
How to: Specify Specific Scheduler Policies
How to: Create Agents that Use Specific Scheduler Policies
Schedule Groups
How to: Use Schedule Groups to Influence Order of Execution

Lightweight Tasks

Contexts
How to: Use the Context Class to Implement a Cooperative Semaphore
How to: Use Oversubscription to Offset Latency
Memory Management Functions
How to: Use Alloc and Free to Improve Memory Performance
Concurrency Runtime Walkthroughs
Walkthrough: Connecting Using Tasks and XML HTTP Requests
Walkthrough: Creating an Agent-Based Application
Walkthrough: Creating a Dataflow Agent
Walkthrough: Creating an Image-Processing Network
Walkthrough: Implementing Futures
Walkthrough: Using join to Prevent Deadlock
Walkthrough: Removing Work from a User-Interface Thread
Walkthrough: Using the Concurrency Runtime in a COM-Enabled Application
Walkthrough: Adapting Existing Code to Use Lightweight Tasks
Walkthrough: Creating a Custom Message Block
Concurrency Runtime Best Practices
Best Practices in the Parallel Patterns Library
Best Practices in the Asynchronous Agents Library
General Best Practices in the Concurrency Runtime
Reference
Reference (Concurrency Runtime)
concurrency Namespace
concurrency namespace functions
concurrency namespace Operators
concurrency namespace constants'
concurrency hamespace enums
affinity_partitioner Class
agent Class
auto_partitioner Class
bad_target Class

call Class

cancellation_token Class
cancellation_token_registration Class
cancellation_token_source Class
choice Class

combinable Class
concurrent_priority_queue Class
concurrent_queue Class
concurrent_unordered_map Class
concurrent_unordered_multimap Class
concurrent_unordered_multiset Class
concurrent_unordered_set Class
concurrent_vector Class

Context Class

context_self_unblock Class
context_unblock_unbalanced Class
critical_section Class
CurrentScheduler Class
default_scheduler_exists Class
DispatchState Structure

event Class

|ExecutionContext Structure
|ExecutionResource Structure
improper_lock Class
improper_scheduler_attach Class
improper_scheduler_detach Class
improper_scheduler_reference Class
invalid_link_target Class
invalid_multiple_scheduling Class
invalid_operation Class
invalid_oversubscribe_operation Class
invalid_scheduler_policy_key Class

invalid_scheduler_policy_thread_specification Class

invalid_scheduler_policy_value Class
|IResourceManager Structure
IScheduler Structure
ISchedulerProxy Structure

ISource Class

ITarget Class

IThreadProxy Structure

I TopologyExecutionResource Structure
ITopologyNode Structure
IUMSCompletionList Structure
IUMSScheduler Structure
IUMSThreadProxy Structure
I[UMSUnblockNotification Structure
|VirtualProcessorRoot Structure
join Class

location Class

message Class

message_not_found Class
message_processor Class
missing_wait Class
multi_link_registry Class
multitype_join Class
nested_scheduler_missing_detach Class
network_link_registry Class
operation_timed_out Class
ordered_message_processor Class
overwrite_buffer Class
progress_reporter Class
propagator_block Class
reader_writer_lock Class
ScheduleGroup Class

Scheduler Class

scheduler_interface Structure
scheduler_not_attached Class
scheduler_ptr Structure (Concurrency Runtime)
scheduler_resource_allocation_error Class
scheduler_worker_creation_error Class
SchedulerPolicy Class
simple_partitioner Class
single_assignment Class
single_link_registry Class
source_block Class
source_link_manager Class
static_partitioner Class
structured_task_group Class
target_block Class
task Class (Concurrency Runtime)
task_canceled Class
task_completion_event Class
task_continuation_context Class
task_group Class
task_handle Class
task_options Class (Concurrency Runtime)
timer Class
transformer Class
unbounded_buffer Class
unsupported_os Class
std Namespace
make_exception_ptr Function
stdx Namespace
declval Function
OpenMP
OpenMP in Visual C++
SIMD Extension

OpenMP C and C++ Application Program Interface
Introduction
Directives
Run-time library functions
Environment variables
Appendices
Examples
Stubs for run-time library functions
OpenMP C and C++ grammar
The schedule clause
Implementation-defined behaviors in OpenMP C/C++
New features and clarifications in version 2.0
OpenMP Library Reference
Directives
Clauses
Functions
Environment Variables
Multithreading Support for Older Code (Visual C++)
Multithreading with C and Win32
Multithread Programs
Library Support for Multithreading
Include Files for Multithreading
C Run-Time Library Functions for Thread Control
Sample Multithread C Program
Writing a Multithreaded Win32 Program
Compiling and Linking Multithread Programs
Avoiding Problem Areas with Multithread Programs
Thread Local Storage (TLS)
Multithreading with C++ and MFC
Multithreading: Creating User-Interface Threads
Multithreading: Creating Worker Threads
Multithreading: When to Use the Synchronization Classes

Multithreading: How to Use the Synchronization Classes
Multithreading: Terminating Threads
Multithreading: Programming Tips

Multithreading and Locales

Parallel Programming in Visual C++

5/15/2019 « 2 minutes to read « Edit Online

Visual C++ provides the following technologies to help you create multi-threaded and parallel programs that take
advantage of multiple cores and use the GPU for general purpose programming.

Related Articles

TITLE DESCRIPTION

Auto-Parallelization and Auto-Vectorization Compiler optimizations that speed up code.

Concurrency Runtime Classes that simplify the writing of programs that use data

parallelism or task parallelism.

C++ AMP (C++ Accelerated Massive Parallelism) Classes that enable the use of modern graphics processors for

general purpose programming.

Multithreading Support for Older Code (Visual C++) Older technologies that may be useful in older applications.

For new apps, use the Concurrency Runtime or C++ AMP.

OpenMP The Microsoft implementation of the OpenMP API.

C++ in Visual Studio This section of the documentation contains information about

most of the features of Visual C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/parallel-programming-in-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/auto-parallelization-and-auto-vectorization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/concurrency-runtime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/overview/visual-cpp-in-visual-studio

Auto-Parallelization and Auto-Vectorization

3/4/2019 « 3 minutes to read Edit Online

Auto-Parallelizer and Auto-Vectorizer are designed to provide automatic performance gains for loops in your code.

Auto-Parallelizer

The /Qpar compiler switch enables automatic parallelization of loops in your code. When you specify this flag
without changing your existing code, the compiler evaluates the code to find loops that might benefit from
parallelization. Because it might find loops that don't do much work and therefore won't benefit from
parallelization, and because every unnecessary parallelization can engender the spawning of a thread pool, extra
synchronization, or other processing that would tend to slow performance instead of improving it, the compiler is
conservative in selecting the loops that it parallelizes. For example, consider the following example in which the
upper bound of the loop is not known at compile time:

void loop_test(int u) {
for (int i=0; i<u; ++i)
A[i] = B[i] * C[i];

Because u could be a small value, the compiler won’t automatically parallelize this loop. However, you might still
want it parallelized because you know that u will always be large. To enable the auto-parallelization, specify
#pragma loop(hint_parallel(n)), where n is the number of threads to parallelize across. In the following example,
the compiler will attempt to parallelize the loop across 8 threads.

void loop_test(int u) {
#pragma loop(hint_parallel(8))
for (int i=0; i<u; ++i)
A[i] = B[i] * C[i];

As with all pragma directives, the alternate pragma syntax _ pragma(loop(hint_parallel(n))) is also supported.

There are some loops that the compiler can’t parallelize even if you want it to. Here's an example:

#pragma loop(hint_parallel(8))
for (int i=@; i<upper_bound(); ++1i)
A[i] = B[i] * C[i];

The function upper_bound() might change every time it's called. Because the upper bound cannot be known, the
compiler can emit a diagnostic message that explains why it can’t parallelize this loop. The following example
demonstrates a loop that can be parallelized, a loop that cannot be parallelized, the compiler syntax to use at the
command prompt, and the compiler output for each command line option:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/auto-parallelization-and-auto-vectorization.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-auto-parallelizer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword

int A[1000];
void test() {
#tpragma loop(hint_parallel(9))
for (int i=0; i<1000; ++i) {
A[i] = A[i] + 1;

for (int i=1000; i<2000; ++i) {
A[i] = A[i] + 1;

Compiling by using this command:
cl d:\myproject\mylooptest.cpp /02 /Qpar /Qpar-report:1
yields this output:
--- Analyzing function: void _ cdecl test(void)
d:\myproject\mytest.cpp(4) : loop parallelized
Compiling by using this command:
cl d:\myproject\mylooptest.cpp /02 /Qpar /Qpar-report:2
yields this output:
--- Analyzing function: void _ cdecl test(void)

d:\myproject\mytest.cpp(4) : loop parallelized
d:\myproject\mytest.cpp(4) : loop not parallelized due to reason '1008'

Notice the difference in output between the two different /Qpar-report (Auto-Parallelizer Reporting Level) options.
/Qpar-report:1 outputs parallelizer messages only for loops that are successfully parallelized. /Qpar-report:2

outputs parallelizer messages for both successful and unsuccessful loop parallelizations.

For more information about reason codes and messages, see Vectorizer and Parallelizer Messages.

Auto-Vectorizer

The Auto-Vectorizer analyzes loops in your code, and uses the vector registers and instructions on the target
computer to execute them, if it can. This can improve the performance of your code. The compiler targets the SSE2,
AVX, and AV X2 instructions in Intel or AMD processors, or the NEON instructions on ARM processors, according
to the /arch switch.

The Auto-Vectorizer may generate different instructions than specified by the /arch switch. These instructions are
guarded by a runtime check to make sure that code still runs correctly. For example, when you compile /arch:ssg2 ,
SSE4.2 instructions may be emitted. A runtime check verifies that SSE4.2 is available on the target processor and
jumps to a non-SSE4.2 version of the loop if the processor does not support those instructions.

By default, the Auto-Vectorizer is enabled. If you want to compare the performance of your code under
vectorization, you can use #pragma loop(no_vector) to disable vectorization of any given loop.

#pragma loop(no_vector)
for (int i = @; i < 1000; ++i)
A[i] = B[i] + C[i];

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-report-auto-parallelizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-minimum-cpu-architecture
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop

As with all pragma directives, the alternate pragma syntax __pragma(loop(no_vector)) is also supported.

As with the Auto-Parallelizer, you can specify the /Qvec-report (Auto-Vectorizer Reporting Level) command-line
option to report either successfully vectorized loops only— /qQvec-report:1 —or both successfully and

unsuccessfully vectorized loops— /qQvec-report:2).
For more information about reason codes and messages, see Vectorizer and Parallelizer Messages.

For an example showing how the vectorizer works in practice, see Project Austin Part 2 of 6: Page Curling

See also

loop

Parallel Programming in Native Code

/Qpar (Auto-Parallelizer)

/Qpar-report (Auto-Parallelizer Reporting Level)
/Qvec-report (Auto-Vectorizer Reporting Level)
Vectorizer and Parallelizer Messages

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qvec-report-auto-vectorizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages
http://blogs.msdn.com/b/vcblog/archive/2012/09/27/10348494.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop
http://go.microsoft.com/fwlink/p/?linkid=263662
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-auto-parallelizer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-report-auto-parallelizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qvec-report-auto-vectorizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages

C++ AMP (C++ Accelerated Massive Parallelism)

10/31/2018 « 2 minutes to read Edit Online

C++ AMP (C++ Accelerated Massive Parallelism) accelerates the execution of your C++ code by taking
advantage of the data-parallel hardware that's commonly present as a graphics processing unit (GPU) on a
discrete graphics card. The C++ AMP programming model includes support for multidimensional arrays,
indexing, memory transfer, and tiling. It also includes a mathematical function library. You can use C++ AMP
language extensions to control how data is moved from the CPU to the GPU and back.

Related Topics

TITLE DESCRIPTION

C++ AMP Overview Describes the key features of C++ AMP and the mathematical
library.

Using Lambdas, Function Objects, and Restricted Functions Describes how to use lambda expressions, function objects,
and restricted functions in calls to the parallel_for_each
method.

Using Tiles Describes how to use tiles to accelerate your C++ AMP code.

Using accelerator and accelerator_view Objects Describes how to use accelerators to customize execution of

your code on the GPU.

Using C++ AMP in UWP Apps Describes how to use C++ AMP in Universal Windows
Platform (UWP) apps that use Windows Runtime types.

Graphics (C++ AMP) Describes how to use the C++ AMP graphics library.

Walkthrough: Matrix Multiplication Demonstrates matrix multiplication using C++ AMP code and
tiling.

Walkthrough: Debugging a C++ AMP Application Explains how to create and debug an application that uses

parallel reduction to sum up a large array of integers.

Reference

Reference (C++ AMP)
tile_static Keyword
restrict (C++ AMP)

Other Resources

Parallel Programming in Native Code Blog
C++ AMP sample projects for download

Analyzing C++ AMP Code with the Concurrency Visualizer

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tile-static-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp
http://go.microsoft.com/fwlink/p/?linkid=238472
http://go.microsoft.com/fwlink/p/?linkid=248508
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/03/09/analyzing-c-amp-code-with-the-concurrency-visualizer/

C++ AMP Overview

3/22/2019 « 18 minutes to read « Edit Online

C++ Accelerated Massive Parallelism (C++ AMP) accelerates execution of C++ code by taking advantage of data-
parallel hardware such as a graphics processing unit (GPU) on a discrete graphics card. By using C++ AMP, you
can code multi-dimensional data algorithms so that execution can be accelerated by using parallelism on
heterogeneous hardware. The C++ AMP programming model includes multidimensional arrays, indexing,
memory transfer, tiling, and a mathematical function library. You can use C++ AMP language extensions to
control how data is moved from the CPU to the GPU and back, so that you can improve performance.

System Requirements

e Windows 7 or later

e Windows Server 2008 R2 or later

e DirectX 11 Feature Level 11.0 or later hardware

e For debugging on the software emulator, Windows 8 or Windows Server 2012 is required. For debugging
on the hardware, you must install the drivers for your graphics card. For more information, see Debugging
GPU Code.

e Note: AMP is currently not supported on ARM64.

Introduction

The following two examples illustrate the primary components of C++ AMP. Assume that you want to add the
corresponding elements of two one-dimensional arrays. For example, you might wantto add {1, 2, 3, 4, 5}
and {e, 7, 8, 9, 10} toobtain {7, 9, 11, 13, 15} . Without using C++ AMP, you might write the following
code to add the numbers and display the results.

#include <iostream>

void StandardMethod() {
int aCPP[] = {1, 2, 3, 4, 5};
int bCPP[] = {6, 7, 8, 9, 10};

int sumCPP[5];

for (int idx = @; idx < 5; idx++)

{
sumCPP[idx] = aCPP[idx] + bCPP[idx];
}
for (int idx = @; idx < 5; idx++)
{
std::cout << sumCPP[idx] << "\n";
}

The important parts of the code are as follows:
e Data: The data consists of three arrays. All have the same rank (one) and length (five).

e |[teration: The first for loop provides a mechanism for iterating through the elements in the arrays. The

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/cpp-amp-overview.md
https://docs.microsoft.com/visualstudio/debugger/debugging-gpu-code

code that you want to execute to compute the sums is contained in the first for block.

Index: The idx variable accesses the individual elements of the arrays.

Using C++ AMP, you might write the following code instead.

#include <amp.h>
#include <iostream>
using namespace concurrency;

const int size = 5;

void CppAmpMethod() {
int acPP[] = {1, 2, 3, 4, 5};
int bCPP[] = {6, 7, 8, 9, 10};
int sumCPP[size];

// Create C++ AMP objects.
array_view<const int, 1> a(size, aCPP);
array_view<const int, 1> b(size, bCPP);
array_view<int, 1> sum(size, sumCPP);
sum.discard_data();

parallel_for_each(
// Define the compute domain, which is the set of threads that are created.
sum.extent,
// Define the code to run on each thread on the accelerator.
[=1(index<1> idx) restrict(amp) {
sum[idx] = a[idx] + b[idx];

)5
// Print the results. The expected output is "7, 9, 11, 13, 15".

for (int i = 0; i < size; i++) {
std::cout << sum[i] << "\n";

The same basic elements are present, but C++ AMP constructs are used:

Data: You use C++ arrays to construct three C++ AMP array_view objects. You supply four values to
construct an array_view object: the data values, the rank, the element type, and the length of the
array_view objectin each dimension. The rank and type are passed as type parameters. The data and
length are passed as constructor parameters. In this example, the C++ array that is passed to the
constructor is one-dimensional. The rank and length are used to construct the rectangular shape of the data
in the array_view object, and the data values are used to fill the array. The runtime library also includes the

array Class, which has an interface that resembles the array_view class and is discussed later in this article.

Iteration: The parallel_for_each Function (C++ AMP) provides a mechanism for iterating through the data
elements, or compute domain. In this example, the compute domain is specified by sum.extent . The code
that you want to execute is contained in a lambda expression, or kernel function. The restrict(amp)
indicates that only the subset of the C++ language that C++ AMP can accelerate is used.

Index: The index Class variable, idx , is declared with a rank of one to match the rank of the array_view
object. By using the index, you can access the individual elements of the array_view objects.

Shaping and Indexing Data: index and extent

You must define the data values and declare the shape of the data before you can run the kernel code. All data is

defined to be an array (rectangular), and you can define the array to have any rank (number of dimensions). The

data can be any size in any of the dimensions.

index Class

The index Class specifies a location in the array or array_view object by encapsulating the offset from the origin
in each dimension into one object. When you access a location in the array, you pass an index object to the
indexing operator, [],instead of a list of integer indexes. You can access the elements in each dimension by using
the array:operator() Operator or the array_view:operator() Operator.

The following example creates a one-dimensional index that specifies the third element in a one-dimensional
array_view object. The index is used to print the third elementin the array_view object. The output is 3.

int acPP[] = {1, 2, 3, 4, 5};
array_view<int, 1> a(5, aCPP);
index<1> idx(2);

std::cout << a[idx] << "\n";

// Output: 3

The following example creates a two-dimensional index that specifies the element where the row = 1 and the
column = 2 in a two-dimensional array_view object. The first parameter in the index constructor is the row
component, and the second parameter is the column component. The output is 6.

int aCPP[] = {1, 2, 3, 4, 5, 6};
array_view<int, 2> a(2, 3, aCPP);
index<2> idx(1, 2);

std::cout <<a[idx] << "\n";

// Output: 6

The following example creates a three-dimensional index that specifies the element where the depth = 0, the row
= 1,and the column = 3 in a three-dimensional array_view object. Notice that the first parameter is the depth
component, the second parameter is the row component, and the third parameter is the column component. The

outputis 8.
int aCPP[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

array_view<int, 3> a(2, 3, 4, aCPP);

// Specifies the element at 3, 1, 0.
index<3> idx(e, 1, 3);

std::cout << a[idx] << "\n";
// Output: 8

extent Class

The extent Class specifies the length of the data in each dimension of the array or array_view object. You can
create an extent and use it to create an array or array_view oObject. You can also retrieve the extent of an existing
array Or array_view object. The following example prints the length of the extent in each dimension of an

array_view oObject.

int aCPP[] = {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12};
// There are 3 rows and 4 columns, and the depth is two.
array_view<int, 3> a(2, 3, 4, aCPP);

std::cout << "The number of columns is << a.extent[2] << "\n";

std::cout << "The number of rows is " << a.extent[1] << "\n";
std::cout << "The depth is " << a.extent[@] << "\n";
std::cout << "Length in most significant dimension is " << a.extent[@] << "\n";

The following example creates an array_view object that has the same dimensions as the object in the previous
example, but this example uses an extent object instead of using explicit parameters in the array_view
constructor.

int acPP[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24};
extent<3> e(2, 3, 4);

array_view<int, 3> a(e, aCPP);

std::cout << "The number of columns is " << a.extent[2] << "\n";

std::cout << "The number of rows is " << a.extent[1] << "\n";
std::cout << "The depth is " << a.extent[@] << "\n";

Moving Data to the Accelerator: array and array_view

Two data containers used to move data to the accelerator are defined in the runtime library. They are the array
Class and the array_view Class. The array class is a container class that creates a deep copy of the data when the
object is constructed. The array_view class is a wrapper class that copies the data when the kernel function
accesses the data. When the data is needed on the source device the data is copied back.

array Class

When an array objectis constructed, a deep copy of the data is created on the accelerator if you use a
constructor that includes a pointer to the data set. The kernel function modifies the copy on the accelerator. When
the execution of the kernel function is finished, you must copy the data back to the source data structure. The
following example multiplies each element in a vector by 10. After the kernel function is finished, the

vector conversion operator is used to copy the data back into the vector object.

std::vector<int> data(5);

for (int count = @; count <5; count++)

{

data[count] = count;

array<int, 1> a(5, data.begin(), data.end());

parallel for_each(
a.extent,
[=, &a](index<1> idx) restrict(amp) {
a[idx] = a[idx]* 1@;
1)

data = a;
for (int i = 0; 1 < 5; i++)
{

std::cout << data[i] << "\n";

array_view Class

The array_view has nearly the same members as the array class, but the underlying behavior is not the same.

Data passed to the array_view constructor is not replicated on the GPU as it is with an array constructor.

Instead, the data is copied to the accelerator when the kernel function is executed. Therefore, if you create two

array_view Objects that use the same data, both array_view objects refer to the same memory space. When you

do this, you have to synchronize any multithreaded access. The main advantage of using the array_view class is

that data is moved only if it is necessary.

Comparison of array and array_view

The following table summarizes the similarities and differences between the array and array_view classes.

DESCRIPTION

When rank is determined

When extent is determined

Shape

Data storage

ARRAY CLASS

At compile time.

At run time.

Rectangular.

Is a data container.

ARRAY_VIEW CLASS

At compile time.

At run time.

Rectangular.

Is a data wrapper.

Copy Explicit and deep copy at definition. Implicit copy when it is accessed by the

kernel function.

Data retrieval By copying the array data back to an

object on the CPU thread.

By direct access of the array_view
object or by calling the
array_view:synchronize Method to
continue accessing the data on the
original container.

Shared memory with array and array_view

Shared memory is memory that can be accessed by both the CPU and the accelerator. The use of shared memory
eliminates or significantly reduces the overhead of copying data between the CPU and the accelerator. Although
the memory is shared, it cannot be accessed concurrently by both the CPU and the accelerator, and doing so
causes undefined behavior.

array objects can be used to specify fine-grained control over the use of shared memory if the associated
accelerator supports it. Whether an accelerator supports shared memory is determined by the accelerator’s
supports_cpu_shared_memory property, which returns true when shared memory is supported. If shared
memory is supported, the default access_type Enumeration for memory allocations on the accelerator is
determined by the default_cpu_access_type property. By default, array and array_view objects take on the same

access_type as the primary associated accelerator .

By setting the array:cpu_access_type Data Member property of an array explicitly, you can exercise fine-grained
control over how shared memory is used, so that you can optimize the app for the hardware’s performance
characteristics, based on the memory access patterns of its computation kernels. An array_view reflects the same
cpu_access_type as the array thatit's associated with; or, if the array_view is constructed without a data source,
its access_type reflects the environment that first causes it to allocate storage. That is, if it's first accessed by the
host (CPU), then it behaves as if it were created over a CPU data source and shares the access_type of the
accelerator_view associated by capture; however, if it's first accessed by an accelerator_view , then it behaves as if

it were created over an array created on that accelerator view and shares the array 's access_type .

The following code example shows how to determine whether the default accelerator supports shared memory,
and then creates several arrays that have different cpu_access_type configurations.

#include <amp.h>
#include <iostream>

using namespace Concurrency;

int main()

{

accelerator acc = accelerator(accelerator::default_accelerator);

// Early out if the default accelerator doesn’t support shared memory.
if (lacc.supports_cpu_shared_memory)

{

std::cout << "The default accelerator does not support shared memory" << std::endl;
return 1;

// Override the default CPU access type.
acc.default_cpu_access_type = access_type_read_write

// Create an accelerator_view from the default accelerator. The
// accelerator_view inherits its default_cpu_access_type from acc.

accelerator_view acc_v = acc.default_view;

// Create an extent object to size the arrays.
extent<1l> ex(10);

// Input array that can be written on the CPU.
array<int, 1> arr_w(ex, acc_v, access_type_write);

// Output array that can be read on the CPU.
array<int, 1> arr_r(ex, acc_v, access_type_read);

// Read-write array that can be both written to and read from on the CPU.
array<int, 1> arr_rw(ex, acc_v, access_type_read_write);

Executing Code over Data: parallel_for_each

The parallel_for_each function defines the code that you want to run on the accelerator against the data in the

array Or array_view object. Consider the following code from the introduction of this topic.

#include <amp.h>
#include <iostream>
using namespace concurrency;

void AddArrays() {
int aCPP[] = {1, 2, 3, 4, 5};
int bCPP[] = {6, 7, 8, 9, 10};
int sumCPP[5] = {@, @, 0, 8, 0};

array_view<int, 1> a(5, aCPP);
array_view<int, 1> b(5, bCPP);
array_view<int, 1> sum(5, sumCPP);

parallel_for_each(
sum.extent,
[=1(index<1> idx) restrict(amp)

{

sum[idx] = a[idx] + b[idx];
)s

for (int 1 = 0; i < 5; i++) {
std::cout << sum[i] << "\n";

The parallel_for_each method takes two arguments, a compute domain and a lambda expression.

The compute domain is an extent objector a tiled_extent objectthat defines the set of threads to create for
parallel execution. One thread is generated for each element in the compute domain. In this case, the extent
object is one-dimensional and has five elements. Therefore, five threads are started.

The lambda expression defines the code to run on each thread. The capture clause, [=], specifies that the body of
the lambda expression accesses all captured variables by value, which in this case are a, b,and sum . In this
example, the parameter list creates a one-dimensional index variable named idx . The value of the idx[e] is O
in the first thread and increases by one in each subsequent thread. The restrict(amp) indicates that only the
subset of the C++ language that C++ AMP can accelerate is used. The limitations on functions that have the

restrict modifier are described in restrict (C++ AMP). For more information, see, Lambda Expression Syntax.

The lambda expression can include the code to execute or it can call a separate kernel function. The kernel function
must include the restrict(amp) modifier. The following example is equivalent to the previous example, but it calls

a separate kernel function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expression-syntax

#include <amp.h>
#include <iostream>
using namespace concurrency;

void AddElements(
index<1> idx,
array_view<int, 1> sum,
array_view<int, 1> a,
array_view<int, 1> b) restrict(amp) {
sum[idx] = a[idx] + b[idx];

void AddArraysWithFunction() {

int acPP[] = {1, 2, 3, 4, 5};
int bCPP[] = {6, 7, 8, 9, 10};
int sumCPP[5] = {e@, ©, @, 0, 0};

array_view<int, 1> a(5, aCPP);
array_view<int, 1> b(5, bCPP);
array_view<int, 1> sum(5, sumCPP);

parallel_for_each(
sum.extent,
[=1(index<1> idx) restrict(amp) {
AddElements(idx, sum, a, b);

)s

for (int i = 0; 1 < 5; i++) {
std::cout << sum[i] << "\n";

Accelerating Code: Tiles and Barriers

You can gain additional acceleration by using tiling. Tiling divides the threads into equal rectangular subsets or
tiles. You determine the appropriate tile size based on your data set and the algorithm that you are coding. For
each thread, you have access to the global location of a data element relative to the whole array or array_view
and access to the local location relative to the tile. Using the local index value simplifies your code because you
don't have to write the code to translate index values from global to local. To use tiling, call the extent:tile Method
on the compute domain in the parallel_for_each method, and use a tiled_index object in the lambda expression.

In typical applications, the elements in a tile are related in some way, and the code has to access and keep track of
values across the tile. Use the tile_static Keyword keyword and the tile_barrier:wait Method to accomplish this. A
variable that has the tile_static keyword has a scope across an entire tile, and an instance of the variable is created
for each tile. You must handle synchronization of tile-thread access to the variable. The tile_barrier:wait Method
stops execution of the current thread until all the threads in the tile have reached the call to tile_barrier::wait .
So you can accumulate values across the tile by using tile_static variables. Then you can finish any computations
that require access to all the values.

The following diagram represents a two-dimensional array of sampling data that is arranged in tiles.

idx.global=index<2>(1,3)
ojpz|2zjo|7|1|4 idx.local=index<2>(1,1)

i g lelsls idx.tile=index<2>(0,1)

idx.tile_origin=index<2=>(0,2)

; sample[idx]=8
I|lejeay3|2]7|2 sample(idx.y,idx.x)=8

The following code example uses the sampling data from the previous diagram. The code replaces each value in

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tile-static-keyword

the tile by the average of the values in the tile.

// Sample data:

int sampledata[] = {
2, 2,9, 7, 1, 4,
4, 4, 8, 8, 3, 4,
iy By iy &y By 2
6, 8, 3, 2, 7, 2};

// The tiles:

// 22 97 14
// 4 4 8 8 34
//

// 15 12 52
// 68 32 7 2

// Averages:
int averagedatal
0, 0, 0,

=

B})

1

)
)e))

)

0

B}

-

[SERCI I

E} 9

¥
array_view<int, 2> sample(4, 6, sampledata);
array_view<int, 2> average(4, 6, averagedata);

parallel_for_each(
// Create threads for sample.extent and divide the extent into 2 x 2 tiles.
sample.extent.tile<2,2>(),
[=](tiled_index<2,2> idx) restrict(amp) {
// Create a 2 x 2 array to hold the values in this tile.
tile_static int nums[2][2];

// Copy the values for the tile into the 2 x 2 array.
nums[idx.local[1]][idx.local[@]] = sample[idx.global];

// When all the threads have executed and the 2 x 2 array is complete, find the average.
idx.barrier.wait();
int sum = nums[@][@] + nums[@][1] + nums[1][@] + nums[1][1];

// Copy the average into the array_view.
average[idx.global] = sum / 4;

Hs

for (int i = @; i <4; i++) {
for (int j = 0; j <6; j++) {

std::cout << average(i,j) << " ";
}
std::cout << "\n";
}
// Output:

// 338833
// 338833
// 552244
// 552244

Math Libraries

C++ AMP includes two math libraries. The double-precision library in the Concurrency:precise_math Namespace
provides support for double-precision functions. It also provides support for single-precision functions, although
double-precision support on the hardware is still required. It complies with the C99 Specification (ISO/IEC 9899).

http://go.microsoft.com/fwlink/p/?linkid=225887

The accelerator must support full double precision. You can determine whether it does by checking the value of
the accelerator:supports_double_precision Data Member. The fast math library, in the Concurrency:fast_math
Namespace, contains another set of math functions. These functions, which support only float operands, execute
more quickly but aren’t as precise as those in the double-precision math library. The functions are contained in the
<amp_math.h> header file and all are declared with restrict(amp) . The functions in the <cmath> header file are
imported into both the fast_math and precise_math namespaces. The restrict keyword is used to distinguish the
<cmath> version and the C++ AMP version. The following code calculates the base-10 logarithm, using the fast
method, of each value that is in the compute domain.

#include <amp.h>

#include <amp_math.h>
#include <iostream>

using namespace concurrency;

void MathExample() {

double numbers[] = { 1.0, 10.0, 60.0, 100.0, 600.0, 1000.0 };
array_view<double, 1> logs(6, numbers);

parallel for_each(
logs.extent,
[=] (index<1> idx) restrict(amp) {
logs[idx] = concurrency::fast_math::logl@(numbers[idx]);
}
)s

for (int 1 = 0; i < 6; i++) {

std::cout << logs[i] << "\n";

}

Graphics Library

C++ AMP includes a graphics library that is designed for accelerated graphics programming. This library is used
only on devices that support native graphics functionality. The methods are in the Concurrency:graphics
Namespace and are contained in the <amp_graphics.h> header file. The key components of the graphics library
are:

e texture Class: You can use the texture class to create textures from memory or from a file. Textures resemble
arrays because they contain data, and they resemble containers in the C++ Standard Library with respect to
assignment and copy construction. For more information, see C++ Standard Library C