
Contents

 Parallel Programming in Visual C++
 Auto-Parallelization and Auto-Vectorization
 Accelerated Multiprocessing (AMP)

 C++ AMP (C++ Accelerated Massive Parallelism)
 C++ AMP Overview
 Using Tiles
 Using C++ AMP in UWP Apps
 Walkthrough: Matrix Multiplication
 Walkthrough: Debugging a C++ AMP Application
 Using Lambdas, Function Objects, and Restricted Functions
 Graphics (C++ AMP)
 Using accelerator and accelerator_view Objects
 Reference

 Reference (C++ AMP)
 Concurrency Namespace (C++ AMP)

 Concurrency namespace functions (AMP)
 Concurrency namespace enums (AMP)
 Concurrency namespace operators (AMP)
 Concurrency namespace constants (AMP)
 accelerator Class
 accelerator_view Class
 accelerator_view_removed Class
 array Class
 array_view Class
 completion_future Class
 extent Class (C++ AMP)
 index Class
 invalid_compute_domain Class
 out_of_memory Class

 runtime_exception Class
 tile_barrier Class
 tiled_extent Class
 tiled_index Class
 uninitialized_object Class
 unsupported_feature Class

 Concurrency::direct3d Namespace
 Concurrency::direct3d namespace functions (AMP)
 adopt_d3d_access_lock_t Structure
 scoped_d3d_access_lock Class

 Concurrency::fast_math Namespace
 Concurrency::fast_math namespace functions

 Concurrency::graphics Namespace
 Concurrency::graphics::direct3d Namespace

 Concurrency::graphics::direct3d namespace functions
 Concurrency::graphics namespace functions
 Concurrency::graphics namespace enums
 double_2 Class
 double_3 Class
 double_4 Class
 float_2 Class
 float_3 Class
 float_4 Class
 int_2 Class
 int_3 Class
 int_4 Class
 norm Class
 norm_2 Class
 norm_3 Class
 norm_4 Class
 sampler Class
 short_vector Structure

 short_vector_traits Structure
 texture Class
 texture_view Class
 writeonly_texture_view Class
 uint_2 Class
 uint_3 Class
 uint_4 Class
 unorm Class
 unorm_2 Class
 unorm_3 Class
 unorm_4 Class

 Concurrency::precise_math Namespace
 Concurrency::precise_math namespace functions

 Concurrency Runtime (ConCRT)
 Concurrency Runtime
 Overview of the Concurrency Runtime
 Exception Handling in the Concurrency Runtime
 Parallel Diagnostic Tools (Concurrency Runtime)
 Creating Asynchronous Operations in C++ for UWP Apps
 Comparing the Concurrency Runtime to Other Concurrency Models

 Migrating from OpenMP to the Concurrency Runtime
 How to: Convert an OpenMP parallel for Loop to Use the Concurrency Runtime
 How to: Convert an OpenMP Loop that Uses Cancellation to Use the Concurrency

Runtime
 How to: Convert an OpenMP Loop that Uses Exception Handling to Use the

Concurrency Runtime
 How to: Convert an OpenMP Loop that Uses a Reduction Variable to Use the

Concurrency Runtime
 Parallel Patterns Library (PPL)

 Task Parallelism (Concurrency Runtime)
 How to: Use parallel_invoke to Write a Parallel Sort Routine
 How to: Use parallel_invoke to Execute Parallel Operations
 How to: Create a Task that Completes After a Delay

 Parallel Algorithms
 How to: Write a parallel_for Loop
 How to: Write a parallel_for_each Loop
 How to: Perform Map and Reduce Operations in Parallel

 Parallel Containers and Objects
 How to: Use Parallel Containers to Increase Efficiency
 How to: Use combinable to Improve Performance
 How to: Use combinable to Combine Sets

 Cancellation in the PPL
 How to: Use Cancellation to Break from a Parallel Loop
 How to: Use Exception Handling to Break from a Parallel Loop

 Asynchronous Agents Library
 Asynchronous Agents
 Asynchronous Message Blocks
 Message Passing Functions
 How to: Implement Various Producer-Consumer Patterns
 How to: Provide Work Functions to the call and transformer Classes
 How to: Use transformer in a Data Pipeline
 How to: Select Among Completed Tasks
 How to: Send a Message at a Regular Interval
 How to: Use a Message Block Filter

 Synchronization Data Structures
 Comparing Synchronization Data Structures to the Windows API

 Task Scheduler (Concurrency Runtime)
 Scheduler Instances

 How to: Manage a Scheduler Instance
 Scheduler Policies

 How to: Specify Specific Scheduler Policies
 How to: Create Agents that Use Specific Scheduler Policies

 Schedule Groups
 How to: Use Schedule Groups to Influence Order of Execution

 Lightweight Tasks

 Contexts
 How to: Use the Context Class to Implement a Cooperative Semaphore
 How to: Use Oversubscription to Offset Latency

 Memory Management Functions
 How to: Use Alloc and Free to Improve Memory Performance

 Concurrency Runtime Walkthroughs
 Walkthrough: Connecting Using Tasks and XML HTTP Requests
 Walkthrough: Creating an Agent-Based Application
 Walkthrough: Creating a Dataflow Agent
 Walkthrough: Creating an Image-Processing Network
 Walkthrough: Implementing Futures
 Walkthrough: Using join to Prevent Deadlock
 Walkthrough: Removing Work from a User-Interface Thread
 Walkthrough: Using the Concurrency Runtime in a COM-Enabled Application
 Walkthrough: Adapting Existing Code to Use Lightweight Tasks
 Walkthrough: Creating a Custom Message Block

 Concurrency Runtime Best Practices
 Best Practices in the Parallel Patterns Library
 Best Practices in the Asynchronous Agents Library
 General Best Practices in the Concurrency Runtime

 Reference
 Reference (Concurrency Runtime)

 concurrency Namespace
 concurrency namespace functions
 concurrency namespace Operators
 concurrency namespace constants1
 concurrency namespace enums
 affinity_partitioner Class
 agent Class
 auto_partitioner Class
 bad_target Class
 call Class

 cancellation_token Class
 cancellation_token_registration Class
 cancellation_token_source Class
 choice Class
 combinable Class
 concurrent_priority_queue Class
 concurrent_queue Class
 concurrent_unordered_map Class
 concurrent_unordered_multimap Class
 concurrent_unordered_multiset Class
 concurrent_unordered_set Class
 concurrent_vector Class
 Context Class
 context_self_unblock Class
 context_unblock_unbalanced Class
 critical_section Class
 CurrentScheduler Class
 default_scheduler_exists Class
 DispatchState Structure
 event Class
 IExecutionContext Structure
 IExecutionResource Structure
 improper_lock Class
 improper_scheduler_attach Class
 improper_scheduler_detach Class
 improper_scheduler_reference Class
 invalid_link_target Class
 invalid_multiple_scheduling Class
 invalid_operation Class
 invalid_oversubscribe_operation Class
 invalid_scheduler_policy_key Class
 invalid_scheduler_policy_thread_specification Class

 invalid_scheduler_policy_value Class
 IResourceManager Structure
 IScheduler Structure
 ISchedulerProxy Structure
 ISource Class
 ITarget Class
 IThreadProxy Structure
 ITopologyExecutionResource Structure
 ITopologyNode Structure
 IUMSCompletionList Structure
 IUMSScheduler Structure
 IUMSThreadProxy Structure
 IUMSUnblockNotification Structure
 IVirtualProcessorRoot Structure
 join Class
 location Class
 message Class
 message_not_found Class
 message_processor Class
 missing_wait Class
 multi_link_registry Class
 multitype_join Class
 nested_scheduler_missing_detach Class
 network_link_registry Class
 operation_timed_out Class
 ordered_message_processor Class
 overwrite_buffer Class
 progress_reporter Class
 propagator_block Class
 reader_writer_lock Class
 ScheduleGroup Class
 Scheduler Class

 scheduler_interface Structure
 scheduler_not_attached Class
 scheduler_ptr Structure (Concurrency Runtime)
 scheduler_resource_allocation_error Class
 scheduler_worker_creation_error Class
 SchedulerPolicy Class
 simple_partitioner Class
 single_assignment Class
 single_link_registry Class
 source_block Class
 source_link_manager Class
 static_partitioner Class
 structured_task_group Class
 target_block Class
 task Class (Concurrency Runtime)
 task_canceled Class
 task_completion_event Class
 task_continuation_context Class
 task_group Class
 task_handle Class
 task_options Class (Concurrency Runtime)
 timer Class
 transformer Class
 unbounded_buffer Class
 unsupported_os Class

 std Namespace
 make_exception_ptr Function

 stdx Namespace
 declval Function

 OpenMP
 OpenMP in Visual C++
 SIMD Extension

 OpenMP C and C++ Application Program Interface
 Introduction
 Directives
 Run-time library functions
 Environment variables
 Appendices

 Examples
 Stubs for run-time library functions
 OpenMP C and C++ grammar
 The schedule clause
 Implementation-defined behaviors in OpenMP C/C++
 New features and clarifications in version 2.0

 OpenMP Library Reference
 Directives
 Clauses
 Functions
 Environment Variables

 Multithreading Support for Older Code (Visual C++)
 Multithreading with C and Win32

 Multithread Programs
 Library Support for Multithreading
 Include Files for Multithreading
 C Run-Time Library Functions for Thread Control
 Sample Multithread C Program
 Writing a Multithreaded Win32 Program
 Compiling and Linking Multithread Programs
 Avoiding Problem Areas with Multithread Programs
 Thread Local Storage (TLS)

 Multithreading with C++ and MFC
 Multithreading: Creating User-Interface Threads
 Multithreading: Creating Worker Threads
 Multithreading: When to Use the Synchronization Classes

 Multithreading: How to Use the Synchronization Classes
 Multithreading: Terminating Threads
 Multithreading: Programming Tips

 Multithreading and Locales

Parallel Programming in Visual C++
5/15/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Auto-Parallelization and Auto-Vectorization Compiler optimizations that speed up code.

Concurrency Runtime Classes that simplify the writing of programs that use data
parallelism or task parallelism.

C++ AMP (C++ Accelerated Massive Parallelism) Classes that enable the use of modern graphics processors for
general purpose programming.

Multithreading Support for Older Code (Visual C++) Older technologies that may be useful in older applications.
For new apps, use the Concurrency Runtime or C++ AMP.

OpenMP The Microsoft implementation of the OpenMP API.

C++ in Visual Studio This section of the documentation contains information about
most of the features of Visual C++.

Visual C++ provides the following technologies to help you create multi-threaded and parallel programs that take
advantage of multiple cores and use the GPU for general purpose programming.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/parallel-programming-in-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/auto-parallelization-and-auto-vectorization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/concurrency-runtime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/overview/visual-cpp-in-visual-studio

Auto-Parallelization and Auto-Vectorization
3/4/2019 • 3 minutes to read • Edit Online

Auto-Parallelizer

void loop_test(int u) {
 for (int i=0; i<u; ++i)
 A[i] = B[i] * C[i];
}

void loop_test(int u) {
#pragma loop(hint_parallel(8))
 for (int i=0; i<u; ++i)
 A[i] = B[i] * C[i];
}

#pragma loop(hint_parallel(8))
for (int i=0; i<upper_bound(); ++i)
 A[i] = B[i] * C[i];

Auto-Parallelizer and Auto-Vectorizer are designed to provide automatic performance gains for loops in your code.

The /Qpar compiler switch enables automatic parallelization of loops in your code. When you specify this flag
without changing your existing code, the compiler evaluates the code to find loops that might benefit from
parallelization. Because it might find loops that don't do much work and therefore won't benefit from
parallelization, and because every unnecessary parallelization can engender the spawning of a thread pool, extra
synchronization, or other processing that would tend to slow performance instead of improving it, the compiler is
conservative in selecting the loops that it parallelizes. For example, consider the following example in which the
upper bound of the loop is not known at compile time:

Because u could be a small value, the compiler won’t automatically parallelize this loop. However, you might still
want it parallelized because you know that u will always be large. To enable the auto-parallelization, specify
#pragma loop(hint_parallel(n)), where n is the number of threads to parallelize across. In the following example,
the compiler will attempt to parallelize the loop across 8 threads.

As with all pragma directives, the alternate pragma syntax __pragma(loop(hint_parallel(n))) is also supported.

There are some loops that the compiler can’t parallelize even if you want it to. Here's an example:

The function upper_bound() might change every time it's called. Because the upper bound cannot be known, the
compiler can emit a diagnostic message that explains why it can’t parallelize this loop. The following example
demonstrates a loop that can be parallelized, a loop that cannot be parallelized, the compiler syntax to use at the
command prompt, and the compiler output for each command line option:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/auto-parallelization-and-auto-vectorization.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-auto-parallelizer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword

int A[1000];
void test() {
#pragma loop(hint_parallel(0))
 for (int i=0; i<1000; ++i) {
 A[i] = A[i] + 1;
 }

 for (int i=1000; i<2000; ++i) {
 A[i] = A[i] + 1;
 }
}

--- Analyzing function: void __cdecl test(void)
d:\myproject\mytest.cpp(4) : loop parallelized

--- Analyzing function: void __cdecl test(void)
d:\myproject\mytest.cpp(4) : loop parallelized
d:\myproject\mytest.cpp(4) : loop not parallelized due to reason '1008'

Auto-Vectorizer

#pragma loop(no_vector)
for (int i = 0; i < 1000; ++i)
 A[i] = B[i] + C[i];

Compiling by using this command:

cl d:\myproject\mylooptest.cpp /O2 /Qpar /Qpar-report:1

yields this output:

Compiling by using this command:

cl d:\myproject\mylooptest.cpp /O2 /Qpar /Qpar-report:2

yields this output:

Notice the difference in output between the two different /Qpar-report (Auto-Parallelizer Reporting Level) options.
/Qpar-report:1 outputs parallelizer messages only for loops that are successfully parallelized. /Qpar-report:2

outputs parallelizer messages for both successful and unsuccessful loop parallelizations.

For more information about reason codes and messages, see Vectorizer and Parallelizer Messages.

The Auto-Vectorizer analyzes loops in your code, and uses the vector registers and instructions on the target
computer to execute them, if it can. This can improve the performance of your code. The compiler targets the SSE2,
AVX, and AVX2 instructions in Intel or AMD processors, or the NEON instructions on ARM processors, according
to the /arch switch.

The Auto-Vectorizer may generate different instructions than specified by the /arch switch. These instructions are
guarded by a runtime check to make sure that code still runs correctly. For example, when you compile /arch:SSE2 ,
SSE4.2 instructions may be emitted. A runtime check verifies that SSE4.2 is available on the target processor and
jumps to a non-SSE4.2 version of the loop if the processor does not support those instructions.

By default, the Auto-Vectorizer is enabled. If you want to compare the performance of your code under
vectorization, you can use #pragma loop(no_vector) to disable vectorization of any given loop.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-report-auto-parallelizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-minimum-cpu-architecture
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop

See also

As with all pragma directives, the alternate pragma syntax __pragma(loop(no_vector)) is also supported.

As with the Auto-Parallelizer, you can specify the /Qvec-report (Auto-Vectorizer Reporting Level) command-line
option to report either successfully vectorized loops only— /Qvec-report:1 —or both successfully and
unsuccessfully vectorized loops— /Qvec-report:2).

For more information about reason codes and messages, see Vectorizer and Parallelizer Messages.

For an example showing how the vectorizer works in practice, see Project Austin Part 2 of 6: Page Curling

loop
Parallel Programming in Native Code
/Qpar (Auto-Parallelizer)
/Qpar-report (Auto-Parallelizer Reporting Level)
/Qvec-report (Auto-Vectorizer Reporting Level)
Vectorizer and Parallelizer Messages

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qvec-report-auto-vectorizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages
http://blogs.msdn.com/b/vcblog/archive/2012/09/27/10348494.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/loop
http://go.microsoft.com/fwlink/p/?linkid=263662
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-auto-parallelizer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-report-auto-parallelizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qvec-report-auto-vectorizer-reporting-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/vectorizer-and-parallelizer-messages

C++ AMP (C++ Accelerated Massive Parallelism)
10/31/2018 • 2 minutes to read • Edit Online

Related Topics
TITLE DESCRIPTION

C++ AMP Overview Describes the key features of C++ AMP and the mathematical
library.

Using Lambdas, Function Objects, and Restricted Functions Describes how to use lambda expressions, function objects,
and restricted functions in calls to the parallel_for_each
method.

Using Tiles Describes how to use tiles to accelerate your C++ AMP code.

Using accelerator and accelerator_view Objects Describes how to use accelerators to customize execution of
your code on the GPU.

Using C++ AMP in UWP Apps Describes how to use C++ AMP in Universal Windows
Platform (UWP) apps that use Windows Runtime types.

Graphics (C++ AMP) Describes how to use the C++ AMP graphics library.

Walkthrough: Matrix Multiplication Demonstrates matrix multiplication using C++ AMP code and
tiling.

Walkthrough: Debugging a C++ AMP Application Explains how to create and debug an application that uses
parallel reduction to sum up a large array of integers.

Reference

Other Resources

C++ AMP (C++ Accelerated Massive Parallelism) accelerates the execution of your C++ code by taking
advantage of the data-parallel hardware that's commonly present as a graphics processing unit (GPU) on a
discrete graphics card. The C++ AMP programming model includes support for multidimensional arrays,
indexing, memory transfer, and tiling. It also includes a mathematical function library. You can use C++ AMP
language extensions to control how data is moved from the CPU to the GPU and back.

Reference (C++ AMP)
tile_static Keyword
restrict (C++ AMP)

Parallel Programming in Native Code Blog
C++ AMP sample projects for download
Analyzing C++ AMP Code with the Concurrency Visualizer

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tile-static-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp
http://go.microsoft.com/fwlink/p/?linkid=238472
http://go.microsoft.com/fwlink/p/?linkid=248508
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/03/09/analyzing-c-amp-code-with-the-concurrency-visualizer/

C++ AMP Overview
3/22/2019 • 18 minutes to read • Edit Online

System Requirements

Introduction

#include <iostream>

void StandardMethod() {

 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5];

 for (int idx = 0; idx < 5; idx++)
 {
 sumCPP[idx] = aCPP[idx] + bCPP[idx];
 }

 for (int idx = 0; idx < 5; idx++)
 {
 std::cout << sumCPP[idx] << "\n";
 }
}

C++ Accelerated Massive Parallelism (C++ AMP) accelerates execution of C++ code by taking advantage of data-
parallel hardware such as a graphics processing unit (GPU) on a discrete graphics card. By using C++ AMP, you
can code multi-dimensional data algorithms so that execution can be accelerated by using parallelism on
heterogeneous hardware. The C++ AMP programming model includes multidimensional arrays, indexing,
memory transfer, tiling, and a mathematical function library. You can use C++ AMP language extensions to
control how data is moved from the CPU to the GPU and back, so that you can improve performance.

Windows 7 or later

Windows Server 2008 R2 or later

DirectX 11 Feature Level 11.0 or later hardware

For debugging on the software emulator, Windows 8 or Windows Server 2012 is required. For debugging
on the hardware, you must install the drivers for your graphics card. For more information, see Debugging
GPU Code.

Note: AMP is currently not supported on ARM64.

The following two examples illustrate the primary components of C++ AMP. Assume that you want to add the
corresponding elements of two one-dimensional arrays. For example, you might want to add {1, 2, 3, 4, 5}

and {6, 7, 8, 9, 10} to obtain {7, 9, 11, 13, 15} . Without using C++ AMP, you might write the following
code to add the numbers and display the results.

The important parts of the code are as follows:

Data: The data consists of three arrays. All have the same rank (one) and length (five).

Iteration: The first for loop provides a mechanism for iterating through the elements in the arrays. The

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/cpp-amp-overview.md
https://docs.microsoft.com/visualstudio/debugger/debugging-gpu-code

#include <amp.h>
#include <iostream>
using namespace concurrency;

const int size = 5;

void CppAmpMethod() {
 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[size];

 // Create C++ AMP objects.
 array_view<const int, 1> a(size, aCPP);
 array_view<const int, 1> b(size, bCPP);
 array_view<int, 1> sum(size, sumCPP);
 sum.discard_data();

 parallel_for_each(
 // Define the compute domain, which is the set of threads that are created.
 sum.extent,
 // Define the code to run on each thread on the accelerator.
 [=](index<1> idx) restrict(amp) {
 sum[idx] = a[idx] + b[idx];
 }
);

 // Print the results. The expected output is "7, 9, 11, 13, 15".
 for (int i = 0; i < size; i++) {
 std::cout << sum[i] << "\n";
 }
}

Shaping and Indexing Data: index and extent

code that you want to execute to compute the sums is contained in the first for block.

Index: The idx variable accesses the individual elements of the arrays.

Using C++ AMP, you might write the following code instead.

The same basic elements are present, but C++ AMP constructs are used:

Data: You use C++ arrays to construct three C++ AMP array_view objects. You supply four values to
construct an array_view object: the data values, the rank, the element type, and the length of the
array_view object in each dimension. The rank and type are passed as type parameters. The data and

length are passed as constructor parameters. In this example, the C++ array that is passed to the
constructor is one-dimensional. The rank and length are used to construct the rectangular shape of the data
in the array_view object, and the data values are used to fill the array. The runtime library also includes the
array Class, which has an interface that resembles the array_view class and is discussed later in this article.

Iteration: The parallel_for_each Function (C++ AMP) provides a mechanism for iterating through the data
elements, or compute domain. In this example, the compute domain is specified by sum.extent . The code
that you want to execute is contained in a lambda expression, or kernel function. The restrict(amp)

indicates that only the subset of the C++ language that C++ AMP can accelerate is used.

Index: The index Class variable, idx , is declared with a rank of one to match the rank of the array_view

object. By using the index, you can access the individual elements of the array_view objects.

You must define the data values and declare the shape of the data before you can run the kernel code. All data is
defined to be an array (rectangular), and you can define the array to have any rank (number of dimensions). The
data can be any size in any of the dimensions.

index Class

int aCPP[] = {1, 2, 3, 4, 5};
array_view<int, 1> a(5, aCPP);

index<1> idx(2);

std::cout << a[idx] << "\n";
// Output: 3

int aCPP[] = {1, 2, 3, 4, 5, 6};
array_view<int, 2> a(2, 3, aCPP);

index<2> idx(1, 2);

std::cout <<a[idx] << "\n";
// Output: 6

int aCPP[] = {
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

array_view<int, 3> a(2, 3, 4, aCPP);

// Specifies the element at 3, 1, 0.
index<3> idx(0, 1, 3);

std::cout << a[idx] << "\n";
// Output: 8

extent Class

The index Class specifies a location in the array or array_view object by encapsulating the offset from the origin
in each dimension into one object. When you access a location in the array, you pass an index object to the
indexing operator, [] , instead of a list of integer indexes. You can access the elements in each dimension by using
the array::operator() Operator or the array_view::operator() Operator.

The following example creates a one-dimensional index that specifies the third element in a one-dimensional
array_view object. The index is used to print the third element in the array_view object. The output is 3.

The following example creates a two-dimensional index that specifies the element where the row = 1 and the
column = 2 in a two-dimensional array_view object. The first parameter in the index constructor is the row
component, and the second parameter is the column component. The output is 6.

The following example creates a three-dimensional index that specifies the element where the depth = 0, the row
= 1, and the column = 3 in a three-dimensional array_view object. Notice that the first parameter is the depth
component, the second parameter is the row component, and the third parameter is the column component. The
output is 8.

The extent Class specifies the length of the data in each dimension of the array or array_view object. You can
create an extent and use it to create an array or array_view object. You can also retrieve the extent of an existing
array or array_view object. The following example prints the length of the extent in each dimension of an
array_view object.

int aCPP[] = {
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
// There are 3 rows and 4 columns, and the depth is two.
array_view<int, 3> a(2, 3, 4, aCPP);

std::cout << "The number of columns is " << a.extent[2] << "\n";
std::cout << "The number of rows is " << a.extent[1] << "\n";
std::cout << "The depth is " << a.extent[0] << "\n";
std::cout << "Length in most significant dimension is " << a.extent[0] << "\n";

int aCPP[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24};
extent<3> e(2, 3, 4);

array_view<int, 3> a(e, aCPP);

std::cout << "The number of columns is " << a.extent[2] << "\n";
std::cout << "The number of rows is " << a.extent[1] << "\n";
std::cout << "The depth is " << a.extent[0] << "\n";

Moving Data to the Accelerator: array and array_view

array Class

std::vector<int> data(5);

for (int count = 0; count <5; count++)
{
 data[count] = count;
}

array<int, 1> a(5, data.begin(), data.end());

parallel_for_each(
 a.extent,
 [=, &a](index<1> idx) restrict(amp) {
 a[idx] = a[idx]* 10;
 });

data = a;
for (int i = 0; i < 5; i++)
{
 std::cout << data[i] << "\n";
}

The following example creates an array_view object that has the same dimensions as the object in the previous
example, but this example uses an extent object instead of using explicit parameters in the array_view

constructor.

Two data containers used to move data to the accelerator are defined in the runtime library. They are the array
Class and the array_view Class. The array class is a container class that creates a deep copy of the data when the
object is constructed. The array_view class is a wrapper class that copies the data when the kernel function
accesses the data. When the data is needed on the source device the data is copied back.

When an array object is constructed, a deep copy of the data is created on the accelerator if you use a
constructor that includes a pointer to the data set. The kernel function modifies the copy on the accelerator. When
the execution of the kernel function is finished, you must copy the data back to the source data structure. The
following example multiplies each element in a vector by 10. After the kernel function is finished, the
vector conversion operator is used to copy the data back into the vector object.

array_view Class

Comparison of array and array_view

DESCRIPTION ARRAY CLASS ARRAY_VIEW CLASS

When rank is determined At compile time. At compile time.

When extent is determined At run time. At run time.

Shape Rectangular. Rectangular.

Data storage Is a data container. Is a data wrapper.

Copy Explicit and deep copy at definition. Implicit copy when it is accessed by the
kernel function.

Data retrieval By copying the array data back to an
object on the CPU thread.

By direct access of the array_view

object or by calling the
array_view::synchronize Method to
continue accessing the data on the
original container.

Shared memory with array and array_view

The array_view has nearly the same members as the array class, but the underlying behavior is not the same.
Data passed to the array_view constructor is not replicated on the GPU as it is with an array constructor.
Instead, the data is copied to the accelerator when the kernel function is executed. Therefore, if you create two
array_view objects that use the same data, both array_view objects refer to the same memory space. When you

do this, you have to synchronize any multithreaded access. The main advantage of using the array_view class is
that data is moved only if it is necessary.

The following table summarizes the similarities and differences between the array and array_view classes.

Shared memory is memory that can be accessed by both the CPU and the accelerator. The use of shared memory
eliminates or significantly reduces the overhead of copying data between the CPU and the accelerator. Although
the memory is shared, it cannot be accessed concurrently by both the CPU and the accelerator, and doing so
causes undefined behavior.

array objects can be used to specify fine-grained control over the use of shared memory if the associated
accelerator supports it. Whether an accelerator supports shared memory is determined by the accelerator’s
supports_cpu_shared_memory property, which returns true when shared memory is supported. If shared
memory is supported, the default access_type Enumeration for memory allocations on the accelerator is
determined by the default_cpu_access_type property. By default, array and array_view objects take on the same
access_type as the primary associated accelerator .

By setting the array::cpu_access_type Data Member property of an array explicitly, you can exercise fine-grained
control over how shared memory is used, so that you can optimize the app for the hardware’s performance
characteristics, based on the memory access patterns of its computation kernels. An array_view reflects the same
cpu_access_type as the array that it’s associated with; or, if the array_view is constructed without a data source,

its access_type reflects the environment that first causes it to allocate storage. That is, if it’s first accessed by the
host (CPU), then it behaves as if it were created over a CPU data source and shares the access_type of the
accelerator_view associated by capture; however, if it's first accessed by an accelerator_view , then it behaves as if

it were created over an array created on that accelerator_view and shares the array ’s access_type .

The following code example shows how to determine whether the default accelerator supports shared memory,
and then creates several arrays that have different cpu_access_type configurations.

#include <amp.h>
#include <iostream>

using namespace Concurrency;

int main()
{
 accelerator acc = accelerator(accelerator::default_accelerator);

 // Early out if the default accelerator doesn’t support shared memory.
 if (!acc.supports_cpu_shared_memory)
 {
 std::cout << "The default accelerator does not support shared memory" << std::endl;
 return 1;
 }

 // Override the default CPU access type.
 acc.default_cpu_access_type = access_type_read_write

 // Create an accelerator_view from the default accelerator. The
 // accelerator_view inherits its default_cpu_access_type from acc.
 accelerator_view acc_v = acc.default_view;

 // Create an extent object to size the arrays.
 extent<1> ex(10);

 // Input array that can be written on the CPU.
 array<int, 1> arr_w(ex, acc_v, access_type_write);

 // Output array that can be read on the CPU.
 array<int, 1> arr_r(ex, acc_v, access_type_read);

 // Read-write array that can be both written to and read from on the CPU.
 array<int, 1> arr_rw(ex, acc_v, access_type_read_write);
}

Executing Code over Data: parallel_for_each
The parallel_for_each function defines the code that you want to run on the accelerator against the data in the
array or array_view object. Consider the following code from the introduction of this topic.

#include <amp.h>
#include <iostream>
using namespace concurrency;

void AddArrays() {
 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5] = {0, 0, 0, 0, 0};

 array_view<int, 1> a(5, aCPP);
 array_view<int, 1> b(5, bCPP);
 array_view<int, 1> sum(5, sumCPP);

 parallel_for_each(
 sum.extent,
 [=](index<1> idx) restrict(amp)
 {
 sum[idx] = a[idx] + b[idx];
 }
);

 for (int i = 0; i < 5; i++) {
 std::cout << sum[i] << "\n";
 }
}

The parallel_for_each method takes two arguments, a compute domain and a lambda expression.

The compute domain is an extent object or a tiled_extent object that defines the set of threads to create for
parallel execution. One thread is generated for each element in the compute domain. In this case, the extent

object is one-dimensional and has five elements. Therefore, five threads are started.

The lambda expression defines the code to run on each thread. The capture clause, [=] , specifies that the body of
the lambda expression accesses all captured variables by value, which in this case are a , b , and sum . In this
example, the parameter list creates a one-dimensional index variable named idx . The value of the idx[0] is 0
in the first thread and increases by one in each subsequent thread. The restrict(amp) indicates that only the
subset of the C++ language that C++ AMP can accelerate is used. The limitations on functions that have the
restrict modifier are described in restrict (C++ AMP). For more information, see, Lambda Expression Syntax.

The lambda expression can include the code to execute or it can call a separate kernel function. The kernel function
must include the restrict(amp) modifier. The following example is equivalent to the previous example, but it calls
a separate kernel function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expression-syntax

#include <amp.h>
#include <iostream>
using namespace concurrency;

void AddElements(
 index<1> idx,
 array_view<int, 1> sum,
 array_view<int, 1> a,
 array_view<int, 1> b) restrict(amp) {
 sum[idx] = a[idx] + b[idx];
}

void AddArraysWithFunction() {

 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5] = {0, 0, 0, 0, 0};

 array_view<int, 1> a(5, aCPP);
 array_view<int, 1> b(5, bCPP);
 array_view<int, 1> sum(5, sumCPP);

 parallel_for_each(
 sum.extent,
 [=](index<1> idx) restrict(amp) {
 AddElements(idx, sum, a, b);
 }
);

 for (int i = 0; i < 5; i++) {
 std::cout << sum[i] << "\n";
 }
}

Accelerating Code: Tiles and Barriers
You can gain additional acceleration by using tiling. Tiling divides the threads into equal rectangular subsets or
tiles. You determine the appropriate tile size based on your data set and the algorithm that you are coding. For
each thread, you have access to the global location of a data element relative to the whole array or array_view

and access to the local location relative to the tile. Using the local index value simplifies your code because you
don't have to write the code to translate index values from global to local. To use tiling, call the extent::tile Method
on the compute domain in the parallel_for_each method, and use a tiled_index object in the lambda expression.

In typical applications, the elements in a tile are related in some way, and the code has to access and keep track of
values across the tile. Use the tile_static Keyword keyword and the tile_barrier::wait Method to accomplish this. A
variable that has the tile_static keyword has a scope across an entire tile, and an instance of the variable is created
for each tile. You must handle synchronization of tile-thread access to the variable. The tile_barrier::wait Method
stops execution of the current thread until all the threads in the tile have reached the call to tile_barrier::wait .
So you can accumulate values across the tile by using tile_static variables. Then you can finish any computations
that require access to all the values.

The following diagram represents a two-dimensional array of sampling data that is arranged in tiles.

The following code example uses the sampling data from the previous diagram. The code replaces each value in

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tile-static-keyword

// Sample data:
int sampledata[] = {
 2, 2, 9, 7, 1, 4,
 4, 4, 8, 8, 3, 4,
 1, 5, 1, 2, 5, 2,
 6, 8, 3, 2, 7, 2};

// The tiles:
// 2 2 9 7 1 4
// 4 4 8 8 3 4
//
// 1 5 1 2 5 2
// 6 8 3 2 7 2

// Averages:
int averagedata[] = {
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
};

array_view<int, 2> sample(4, 6, sampledata);

array_view<int, 2> average(4, 6, averagedata);

parallel_for_each(
 // Create threads for sample.extent and divide the extent into 2 x 2 tiles.
 sample.extent.tile<2,2>(),
 [=](tiled_index<2,2> idx) restrict(amp) {
 // Create a 2 x 2 array to hold the values in this tile.
 tile_static int nums[2][2];

 // Copy the values for the tile into the 2 x 2 array.
 nums[idx.local[1]][idx.local[0]] = sample[idx.global];

 // When all the threads have executed and the 2 x 2 array is complete, find the average.
 idx.barrier.wait();
 int sum = nums[0][0] + nums[0][1] + nums[1][0] + nums[1][1];

 // Copy the average into the array_view.
 average[idx.global] = sum / 4;
 });

for (int i = 0; i <4; i++) {
 for (int j = 0; j <6; j++) {
 std::cout << average(i,j) << " ";
 }
 std::cout << "\n";
}

// Output:
// 3 3 8 8 3 3
// 3 3 8 8 3 3
// 5 5 2 2 4 4
// 5 5 2 2 4 4

Math Libraries

the tile by the average of the values in the tile.

C++ AMP includes two math libraries. The double-precision library in the Concurrency::precise_math Namespace
provides support for double-precision functions. It also provides support for single-precision functions, although
double-precision support on the hardware is still required. It complies with the C99 Specification (ISO/IEC 9899).

http://go.microsoft.com/fwlink/p/?linkid=225887

#include <amp.h>
#include <amp_math.h>
#include <iostream>
using namespace concurrency;

void MathExample() {

 double numbers[] = { 1.0, 10.0, 60.0, 100.0, 600.0, 1000.0 };
 array_view<double, 1> logs(6, numbers);

 parallel_for_each(
 logs.extent,
 [=] (index<1> idx) restrict(amp) {
 logs[idx] = concurrency::fast_math::log10(numbers[idx]);
 }
);

 for (int i = 0; i < 6; i++) {
 std::cout << logs[i] << "\n";
 }
}

Graphics Library

Universal Windows Platform (UWP) Apps

The accelerator must support full double precision. You can determine whether it does by checking the value of
the accelerator::supports_double_precision Data Member . The fast math library, in the Concurrency::fast_math
Namespace, contains another set of math functions. These functions, which support only float operands, execute
more quickly but aren’t as precise as those in the double-precision math library. The functions are contained in the
<amp_math.h> header file and all are declared with restrict(amp) . The functions in the <cmath> header file are
imported into both the fast_math and precise_math namespaces. The restrict keyword is used to distinguish the
<cmath> version and the C++ AMP version. The following code calculates the base-10 logarithm, using the fast
method, of each value that is in the compute domain.

C++ AMP includes a graphics library that is designed for accelerated graphics programming. This library is used
only on devices that support native graphics functionality. The methods are in the Concurrency::graphics
Namespace and are contained in the <amp_graphics.h> header file. The key components of the graphics library
are:

texture Class: You can use the texture class to create textures from memory or from a file. Textures resemble
arrays because they contain data, and they resemble containers in the C++ Standard Library with respect to
assignment and copy construction. For more information, see C++ Standard Library Containers. The
template parameters for the texture class are the element type and the rank. The rank can be 1, 2, or 3.
The element type can be one of the short vector types that are described later in this article.

writeonly_texture_view Class: Provides write-only access to any texture.

Short Vector Library: Defines a set of short vector types of length 2, 3, and 4 that are based on int, uint ,
float, double, norm, or unorm.

Like other C++ libraries, you can use C++ AMP in your UWP apps. These articles describe how to include C++
AMP code in apps that is created by using C++, C#, Visual Basic, or JavaScript:

Using C++ AMP in UWP Apps

Walkthrough: Creating a basic Windows Runtime component in C++ and calling it from JavaScript

Bing Maps Trip Optimizer, a Window Store app in JavaScript and C++

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/stl-containers
http://go.microsoft.com/fwlink/p/?linkid=249077
http://go.microsoft.com/fwlink/p/?linkid=249078

C++ AMP and Concurrency Visualizer

Performance Recommendations

See also

How to use C++ AMP from C# using the Windows Runtime

How to use C++ AMP from C#

Calling Native Functions from Managed Code

The Concurrency Visualizer includes support for analyzing performance of C++ AMP code. These articles
describe these features:

GPU Activity Graph

GPU Activity (Paging)

GPU Activity (This Process)

GPU Activity (Other Processes)

Channels (Threads View)

Analyzing C++ AMP Code with the Concurrency Visualizer

Modulus and division of unsigned integers have significantly better performance than modulus and division of
signed integers. We recommend that you use unsigned integers when possible.

C++ AMP (C++ Accelerated Massive Parallelism)
Lambda Expression Syntax
Reference (C++ AMP)
Parallel Programming in Native Code Blog

http://go.microsoft.com/fwlink/p/?linkid=249080
http://go.microsoft.com/fwlink/p/?linkid=249081
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/calling-native-functions-from-managed-code
https://docs.microsoft.com/visualstudio/profiling/gpu-activity-graph
https://docs.microsoft.com/visualstudio/profiling/gpu-activity-paging
https://docs.microsoft.com/visualstudio/profiling/gpu-activity-this-process
https://docs.microsoft.com/visualstudio/profiling/gpu-activity-other-processes
https://docs.microsoft.com/visualstudio/profiling/channels-threads-view
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/03/09/analyzing-c-amp-code-with-the-concurrency-visualizer/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expression-syntax
http://go.microsoft.com/fwlink/p/?linkid=238472

Using Tiles
11/20/2018 • 11 minutes to read • Edit Online

Example of Global, Tile, and Local Indices

You can use tiling to maximize the acceleration of your app. Tiling divides threads into equal rectangular subsets or
tiles. If you use an appropriate tile size and tiled algorithm, you can get even more acceleration from your C++
AMP code. The basic components of tiling are:

tile_static variables. The primary benefit of tiling is the performance gain from tile_static access.
Access to data in tile_static memory can be significantly faster than access to data in the global space (
array or array_view objects). An instance of a tile_static variable is created for each tile, and all threads

in the tile have access to the variable. In a typical tiled algorithm, data is copied into tile_static memory
once from global memory and then accessed many times from the tile_static memory.

tile_barrier::wait Method. A call to tile_barrier::wait suspends execution of the current thread until all of
the threads in the same tile reach the call to tile_barrier::wait . You cannot guarantee the order that the
threads will run in, only that no threads in the tile will execute past the call to tile_barrier::wait until all of
the threads have reached the call. This means that by using the tile_barrier::wait method, you can
perform tasks on a tile-by-tile basis rather than a thread-by-thread basis. A typical tiling algorithm has code
to initialize the tile_static memory for the whole tile followed by a call to tile_barrer::wait . Code that
follows tile_barrier::wait contains computations that require access to all the tile_static values.

Local and global indexing. You have access to the index of the thread relative to the entire array_view or
array object and the index relative to the tile. Using the local index can make your code easier to read and

debug. Typically, you use local indexing to access tile_static variables, and global indexing to access
array and array_view variables.

tiled_extent Class and tiled_index Class. You use a tiled_extent object instead of an extent object in the
parallel_for_each call. You use a tiled_index object instead of an index object in the parallel_for_each

call.

To take advantage of tiling, your algorithm must partition the compute domain into tiles and then copy the tile
data into tile_static variables for faster access.

The following diagram represents an 8x9 matrix of data that is arranged in 2x3 tiles.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/using-tiles.md

#include <iostream>
#include <iomanip>
#include <Windows.h>
#include <amp.h>
using namespace concurrency;

const int ROWS = 8;
const int COLS = 9;

// tileRow and tileColumn specify the tile that each thread is in.
// globalRow and globalColumn specify the location of the thread in the array_view.
// localRow and localColumn specify the location of the thread relative to the tile.
struct Description {
 int value;
 int tileRow;
 int tileColumn;
 int globalRow;
 int globalColumn;
 int localRow;
 int localColumn;
};

// A helper function for formatting the output.
void SetConsoleColor(int color) {
 int colorValue = (color == 0) 4 : 2;
 SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colorValue);
}

// A helper function for formatting the output.
void SetConsoleSize(int height, int width) {
 COORD coord;

 coord.X = width;
 coord.Y = height;
 SetConsoleScreenBufferSize(GetStdHandle(STD_OUTPUT_HANDLE), coord);

 SMALL_RECT* rect = new SMALL_RECT();
 rect->Left = 0;
 rect->Top = 0;
 rect->Right = width;
 rect->Bottom = height;
 SetConsoleWindowInfo(GetStdHandle(STD_OUTPUT_HANDLE), true, rect);
}

// This method creates an 8x9 matrix of Description structures.
// In the call to parallel_for_each, the structure is updated
// with tile, global, and local indices.
void TilingDescription() {
 // Create 72 (8x9) Description structures.
 std::vector<Description> descs;
 for (int i = 0; i < ROWS * COLS; i++) {
 Description d = {i, 0, 0, 0, 0, 0, 0};
 descs.push_back(d);
 }

 // Create an array_view from the Description structures.
 extent<2> matrix(ROWS, COLS);
 array_view<Description, 2> descriptions(matrix, descs);

 // Update each Description with the tile, global, and local indices.
 parallel_for_each(descriptions.extent.tile< 2, 3>(),
 [=] (tiled_index< 2, 3> t_idx) restrict(amp)

The following example displays the global, tile, and local indices of this tiled matrix. An array_view object is
created by using elements of type Description . The Description holds the global, tile, and local indices of the
element in the matrix. The code in the call to parallel_for_each sets the values of the global, tile, and local indices
of each element. The output displays the values in the Description structures.

 [=] (tiled_index< 2, 3> t_idx) restrict(amp)
 {
 descriptions[t_idx].globalRow = t_idx.global[0];
 descriptions[t_idx].globalColumn = t_idx.global[1];
 descriptions[t_idx].tileRow = t_idx.tile[0];
 descriptions[t_idx].tileColumn = t_idx.tile[1];
 descriptions[t_idx].localRow = t_idx.local[0];
 descriptions[t_idx].localColumn= t_idx.local[1];
 });

 // Print out the Description structure for each element in the matrix.
 // Tiles are displayed in red and green to distinguish them from each other.
 SetConsoleSize(100, 150);
 for (int row = 0; row < ROWS; row++) {
 for (int column = 0; column < COLS; column++) {
 SetConsoleColor((descriptions(row, column).tileRow + descriptions(row, column).tileColumn) % 2);
 std::cout << "Value: " << std::setw(2) << descriptions(row, column).value << " ";
 }
 std::cout << "\n";

 for (int column = 0; column < COLS; column++) {
 SetConsoleColor((descriptions(row, column).tileRow + descriptions(row, column).tileColumn) % 2);
 std::cout << "Tile: " << "(" << descriptions(row, column).tileRow << "," << descriptions(row,
column).tileColumn << ") ";
 }
 std::cout << "\n";

 for (int column = 0; column < COLS; column++) {
 SetConsoleColor((descriptions(row, column).tileRow + descriptions(row, column).tileColumn) % 2);
 std::cout << "Global: " << "(" << descriptions(row, column).globalRow << "," << descriptions(row,
column).globalColumn << ") ";
 }
 std::cout << "\n";

 for (int column = 0; column < COLS; column++) {
 SetConsoleColor((descriptions(row, column).tileRow + descriptions(row, column).tileColumn) % 2);
 std::cout << "Local: " << "(" << descriptions(row, column).localRow << "," << descriptions(row,
column).localColumn << ") ";
 }
 std::cout << "\n";
 std::cout << "\n";
 }
}

void main() {
 TilingDescription();
 char wait;
 std::cin >> wait;
}

The main work of the example is in the definition of the array_view object and the call to parallel_for_each .

1. The vector of Description structures is copied into an 8x9 array_view object.

2. The parallel_for_each method is called with a tiled_extent object as the compute domain. The
tiled_extent object is created by calling the extent::tile() method of the descriptions variable. The

type parameters of the call to extent::tile() , <2,3> , specify that 2x3 tiles are created. Thus, the 8x9 matrix
is tiled into 12 tiles, four rows and three columns.

3. The parallel_for_each method is called by using a tiled_index<2,3> object (t_idx) as the index. The type
parameters of the index (t_idx) must match the type parameters of the compute domain (
descriptions.extent.tile< 2, 3>()).

4. When each thread is executed, the index t_idx returns information about which tile the thread is in (
tiled_index::tile property) and the location of the thread within the tile (tiled_index::local property).

Tile Synchronization—tile_static and tile_barrier::wait

#include <iostream>
#include <amp.h>
using namespace concurrency;

#define SAMPLESIZE 2
#define MATRIXSIZE 8
void SamplingExample() {

 // Create data and array_view for the matrix.
 std::vector<float> rawData;
 for (int i = 0; i < MATRIXSIZE * MATRIXSIZE; i++) {
 rawData.push_back((float)i);
 }
 extent<2> dataExtent(MATRIXSIZE, MATRIXSIZE);
 array_view<float, 2> matrix(dataExtent, rawData);

 // Create the array for the averages.
 // There is one element in the output for each tile in the data.
 std::vector<float> outputData;
 int outputSize = MATRIXSIZE / SAMPLESIZE;
 for (int j = 0; j < outputSize * outputSize; j++) {
 outputData.push_back((float)0);
 }

The previous example illustrates the tile layout and indices, but is not in itself very useful. Tiling becomes useful
when the tiles are integral to the algorithm and exploit tile_static variables. Because all threads in a tile have
access to tile_static variables, calls to tile_barrier::wait are used to synchronize access to the tile_static

variables. Although all of the threads in a tile have access to the tile_static variables, there is no guaranteed
order of execution of threads in the tile. The following example shows how to use tile_static variables and the
tile_barrier::wait method to calculate the average value of each tile. Here are the keys to understanding the

example:

1. The rawData is stored in an 8x8 matrix.

2. The tile size is 2x2. This creates a 4x4 grid of tiles and the averages can be stored in a 4x4 matrix by using an
array object. There are only a limited number of types that you can capture by reference in an AMP-

restricted function. The array class is one of them.

3. The matrix size and sample size are defined by using #define statements, because the type parameters to
array , array_view , extent , and tiled_index must be constant values. You can also use const int static

declarations. As an additional benefit, it is trivial to change the sample size to calculate the average over 4x4
tiles.

4. A tile_static 2x2 array of float values is declared for each tile. Although the declaration is in the code path
for every thread, only one array is created for each tile in the matrix.

5. There is a line of code to copy the values in each tile to the tile_static array. For each thread, after the
value is copied to the array, execution on the thread stops due to the call to tile_barrier::wait .

6. When all of the threads in a tile have reached the barrier, the average can be calculated. Because the code
executes for every thread, there is an if statement to only calculate the average on one thread. The
average is stored in the averages variable. The barrier is essentially the construct that controls calculations
by tile, much as you might use a for loop.

7. The data in the averages variable, because it is an array object, must be copied back to the host. This
example uses the vector conversion operator.

8. In the complete example, you can change SAMPLESIZE to 4 and the code executes correctly without any
other changes.

 }
 extent<2> outputExtent(MATRIXSIZE / SAMPLESIZE, MATRIXSIZE / SAMPLESIZE);
 array<float, 2> averages(outputExtent, outputData.begin(), outputData.end());

 // Use tiles that are SAMPLESIZE x SAMPLESIZE.
 // Find the average of the values in each tile.
 // The only reference-type variable you can pass into the parallel_for_each call
 // is a concurrency::array.
 parallel_for_each(matrix.extent.tile<SAMPLESIZE, SAMPLESIZE>(),
 [=, &averages] (tiled_index<SAMPLESIZE, SAMPLESIZE> t_idx) restrict(amp)
 {
 // Copy the values of the tile into a tile-sized array.
 tile_static float tileValues[SAMPLESIZE][SAMPLESIZE];
 tileValues[t_idx.local[0]][t_idx.local[1]] = matrix[t_idx];

 // Wait for the tile-sized array to load before you calculate the average.
 t_idx.barrier.wait();

 // If you remove the if statement, then the calculation executes for every
 // thread in the tile, and makes the same assignment to averages each time.
 if (t_idx.local[0] == 0 && t_idx.local[1] == 0) {
 for (int trow = 0; trow < SAMPLESIZE; trow++) {
 for (int tcol = 0; tcol < SAMPLESIZE; tcol++) {
 averages(t_idx.tile[0],t_idx.tile[1]) += tileValues[trow][tcol];
 }
 }
 averages(t_idx.tile[0],t_idx.tile[1]) /= (float) (SAMPLESIZE * SAMPLESIZE);
 }
 });

 // Print out the results.
 // You cannot access the values in averages directly. You must copy them
 // back to a CPU variable.
 outputData = averages;
 for (int row = 0; row < outputSize; row++) {
 for (int col = 0; col < outputSize; col++) {
 std::cout << outputData[row*outputSize + col] << " ";
 }
 std::cout << "\n";
 }
 // Output for SAMPLESSIZE = 2 is:
 // 4.5 6.5 8.5 10.5
 // 20.5 22.5 24.5 26.5
 // 36.5 38.5 40.5 42.5
 // 52.5 54.5 56.5 58.5

 // Output for SAMPLESIZE = 4 is:
 // 13.5 17.5
 // 45.5 49.5
}

int main() {
 SamplingExample();
}

Race Conditions
It might be tempting to create a tile_static variable named total and increment that variable for each thread,
like this:

// Do not do this.
tile_static float total;
total += matrix[t_idx];
t_idx.barrier.wait();

averages(t_idx.tile[0],t_idx.tile[1]) /= (float) (SAMPLESIZE* SAMPLESIZE);

// Do not do this.
tile_static float total;
if (t_idx.local[0] == 0&& t_idx.local[1] == 0) {
 total = matrix[t_idx];
}
t_idx.barrier.wait();

if (t_idx.local[0] == 0&& t_idx.local[1] == 1) {
 total += matrix[t_idx];
}
t_idx.barrier.wait();

// etc.

Memory Fences

The first problem with this approach is that tile_static variables cannot have initializers. The second problem is
that there is a race condition on the assignment to total , because all of the threads in the tile have access to the
variable in no particular order. You could program an algorithm to only allow one thread to access the total at each
barrier, as shown next. However, this solution is not extensible.

There are two kinds of memory accesses that must be synchronized—global memory access and tile_static

memory access. A concurrency::array object allocates only global memory. A concurrency::array_view can
reference global memory, tile_static memory, or both, depending on how it was constructed. There are two
kinds of memory that must be synchronized:

global memory

tile_static

A memory fence ensures that memory accesses are available to other threads in the thread tile, and that memory
accesses are executed according to program order. To ensure this, compilers and processors do not reorder reads
and writes across the fence. In C++ AMP, a memory fence is created by a call to one of these methods:

tile_barrier::wait Method: Creates a fence around both global and tile_static memory.

tile_barrier::wait_with_all_memory_fence Method: Creates a fence around both global and tile_static

memory.

tile_barrier::wait_with_global_memory_fence Method: Creates a fence around only global memory.

tile_barrier::wait_with_tile_static_memory_fence Method: Creates a fence around only tile_static

memory.

Calling the specific fence that you require can improve the performance of your app. The barrier type affects how
the compiler and the hardware reorder statements. For example, if you use a global memory fence, it applies only
to global memory accesses and therefore, the compiler and the hardware might reorder reads and writes to
tile_static variables on the two sides of the fence.

In the next example, the barrier synchronizes the writes to tileValues , a tile_static variable. In this example,
tile_barrier::wait_with_tile_static_memory_fence is called instead of tile_barrier::wait .

// Using a tile_static memory fence.
parallel_for_each(matrix.extent.tile<SAMPLESIZE, SAMPLESIZE>(),
 [=, &averages] (tiled_index<SAMPLESIZE, SAMPLESIZE> t_idx) restrict(amp)
{
 // Copy the values of the tile into a tile-sized array.
 tile_static float tileValues[SAMPLESIZE][SAMPLESIZE];
 tileValues[t_idx.local[0]][t_idx.local[1]] = matrix[t_idx];

 // Wait for the tile-sized array to load before calculating the average.
 t_idx.barrier.wait_with_tile_static_memory_fence();

 // If you remove the if statement, then the calculation executes
 // for every thread in the tile, and makes the same assignment to
 // averages each time.
 if (t_idx.local[0] == 0&& t_idx.local[1] == 0) {
 for (int trow = 0; trow <SAMPLESIZE; trow++) {
 for (int tcol = 0; tcol <SAMPLESIZE; tcol++) {
 averages(t_idx.tile[0],t_idx.tile[1]) += tileValues[trow][tcol];
 }
 }
 averages(t_idx.tile[0],t_idx.tile[1]) /= (float) (SAMPLESIZE* SAMPLESIZE);
 }
});

See also
C++ AMP (C++ Accelerated Massive Parallelism)
tile_static Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tile-static-keyword

Using C++ AMP in UWP Apps
3/4/2019 • 3 minutes to read • Edit Online

Performance considerations

// simple vector addition example
std::vector<int> data0(1024, 1);
std::vector<int> data1(1024, 2);
std::vector<int> data_out(data0.size(), 0);

concurrency::array_view<int, 1> av0(data0.size(), data0);
concurrency::array_view<int, 1> av1(data1.size(), data1);
concurrency::array_view<int, 1> av2(data_out.size(), data2);

av2.discard_data();

concurrency::parallel_for_each(av0.extent, [=](concurrency::index<1> idx) restrict(amp)
 {
 av2[idx] = av0[idx] + av1[idx];
 });

Marshaling Windows Runtime types

Platform::Array<T>^, where T is a POD type

Platform::Array<float>^ arr; // Assume that this was returned by a Windows Runtime API
concurrency::array_view<float, 1> av(arr->Length, &arr->get(0));

Windows Runtime types: ref classes and value classes

You can use C++ AMP (C++ Accelerated Massive Parallelism) in your Universal Windows Platform (UWP) app to
perform calculations on the GPU (Graphics Processing Unit) or other computational accelerators. However, C++
AMP doesn't provide APIs for working directly with Windows Runtime types, and the Windows Runtime doesn't
provide a wrapper for C++ AMP. When you use Windows Runtime types in your code—including those that
you've created yourself—you must convert them to types that are compatible with C++ AMP.

If you're using Visual C++ component extensions C++/CX to create your Universal Windows Platform (UWP)
app, we recommend that you use plain-old-data (POD) types together with contiguous storage—for example,
std::vector or C-style arrays—for data that will be used with C++ AMP. This can help you achieve higher

performance than by using non-POD types or Windows RT containers because no marshaling has to occur.

In a C++ AMP kernel, to access data that’s stored in this way, just wrap the std::vector or array storage in a
concurrency::array_view and then use the array view in a concurrency::parallel_for_each loop:

When you work with Windows Runtime APIs, you might want to use C++ AMP on data that's stored in a
Windows Runtime container such as a Platform::Array<T>^ or in complex data types such as classes or structs
that are declared by using the ref keyword or the value keyword. In these situations, you have to do some extra
work to make the data available to C++ AMP.

When you encounter a Platform::Array<T>^ and T is a POD type, you can access its underlying storage just by
using the get member function:

If T is not a POD type, use the technique that's described in the following section to use the data with C++ AMP.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/using-cpp-amp-in-windows-store-apps.md

// pixel_color.h
ref class pixel_color sealed
{
public:
 pixel_color(Platform::String^ color_name, int red, int green, int blue)
 {
 name = color_name;
 r = red;
 g = green;
 b = blue;
 }

 property Platform::String^ name;
 property int r;
 property int g;
 property int b;
};

// Some other file

std::vector<pixel_color^> pixels (256);

for (pixel_color ^pixel : pixels)
{
 pixels.push_back(ref new pixel_color("blue", 0, 0, 255));
}

// Create the accelerators
auto cpuAccelerator = concurrency::accelerator(concurrency::accelerator::cpu_accelerator);
auto devAccelerator = concurrency::accelerator(concurrency::accelerator::default_accelerator);

// Create the staging arrays
concurrency::array<float, 1> red_vec(256, cpuAccelerator.default_view, devAccelerator.default_view);
concurrency::array<float, 1> blue_vec(256, cpuAccelerator.default_view, devAccelerator.default_view);

// Extract data from the complex array of structs into staging arrays.
concurrency::parallel_for(0, 256, [&](int i)
 {
 red_vec[i] = pixels[i]->r;
 blue_vec[i] = pixels[i]->b;
 });

// Array views are still used to copy data to the accelerator
concurrency::array_view<float, 1> av_red(red_vec);
concurrency::array_view<float, 1> av_blue(blue_vec);

// Change all pixels from blue to red.
concurrency::parallel_for_each(av_red.extent, [=](index<1> idx) restrict(amp)
 {
 av_red[idx] = 255;
 av_blue[idx] = 0;
 });

C++ AMP doesn't support complex data types. This includes non-POD types and any types that are declared by
using the ref keyword or the value keyword. If an unsupported type is used in a restrict(amp) context, a
compile-time error is generated.

When you encounter an unsupported type, you can copy interesting parts of its data into a concurrency::array

object. In addition to making the data available for C++ AMP to consume, this manual-copy approach can also
improve performance by maximizing data locality, and by ensuring that data that won't be used isn't copied to the
accelerator. You can improve performance further by using a staging array, which is a special form of
concurrency::array that provides a hint to the AMP runtime that the array should be optimized for frequent

transfer between it and other arrays on the specified accelerator.

See also
Create your first UWP app using C++
Creating Windows Runtime Components in C++

https://docs.microsoft.com/windows/uwp/get-started/create-a-basic-windows-10-app-in-cpp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp

Walkthrough: Matrix Multiplication
4/29/2019 • 10 minutes to read • Edit Online

Prerequisites

To create the project

To create the project in Visual Studio 2019

To create a project in Visual Studio 2017 or 2015

This step-by-step walkthrough demonstrates how to use C++ AMP to accelerate the execution of matrix
multiplication. Two algorithms are presented, one without tiling and one with tiling.

Before you start:

Read C++ AMP Overview.

Read Using Tiles.

Make sure that you are running at least Windows 7, or Windows Server 2008 R2.

Instructions for creating a new project vary depending on which version of Visual Studio you have installed. Make
sure you have the version selector in the upper left set to the correct version.

1. On the menu bar, choose File > New > Project to open the Create a New Project dialog box.

2. At the top of the dialog, set Language to C++, set Platform to Windows, and set Project type to
Console.

3. From the filtered list of project types, choose Empty Project then choose Next. In the next page, enter
MatrixMultiply in the Name box to specify a name for the project, and specify the project location if desired.

4. Choose the Create button to create the client project.

5. In Solution Explorer, open the shortcut menu for Source Files, and then choose Add > New Item.

6. In the Add New Item dialog box, select C++ File (.cpp), enter MatrixMultiply.cpp in the Name box, and
then choose the Add button.

1. On the menu bar in Visual Studio, choose File > New > Project.

2. Under Installed in the templates pane, select Visual C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/walkthrough-matrix-multiplication.md

Multiplication without tiling

To multiply without using C++ AMP

3. Select Empty Project, enter MatrixMultiply in the Name box, and then choose the OK button.

4. Choose the Next button.

5. In Solution Explorer, open the shortcut menu for Source Files, and then choose Add > New Item.

6. In the Add New Item dialog box, select C++ File (.cpp), enter MatrixMultiply.cpp in the Name box, and
then choose the Add button.

In this section, consider the multiplication of two matrices, A and B, which are defined as follows:

A is a 3-by-2 matrix and B is a 2-by-3 matrix. The product of multiplying A by B is the following 3-by-3 matrix. The
product is calculated by multiplying the rows of A by the columns of B element by element.

#include <iostream>

void MultiplyWithOutAMP() {
 int aMatrix[3][2] = {{1, 4}, {2, 5}, {3, 6}};
 int bMatrix[2][3] = {{7, 8, 9}, {10, 11, 12}};
 int product[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};

 for (int row = 0; row < 3; row++) {
 for (int col = 0; col < 3; col++) {
 // Multiply the row of A by the column of B to get the row, column of product.
 for (int inner = 0; inner < 2; inner++) {
 product[row][col] += aMatrix[row][inner] * bMatrix[inner][col];
 }
 std::cout << product[row][col] << " ";
 }
 std::cout << "\n";
 }
}

void main() {
 MultiplyWithOutAMP();
 getchar();
}

1. Open MatrixMultiply.cpp and use the following code to replace the existing code.

The algorithm is a straightforward implementation of the definition of matrix multiplication. It does not use
any parallel or threaded algorithms to reduce the computation time.

2. On the menu bar, choose File > Save All.

3. Choose the F5 keyboard shortcut to start debugging and verify that the output is correct.

To multiply by using C++ AMP

4. Choose Enter to exit the application.

void MultiplyWithAMP() {
int aMatrix[] = { 1, 4, 2, 5, 3, 6 };
int bMatrix[] = { 7, 8, 9, 10, 11, 12 };
int productMatrix[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };

array_view<int, 2> a(3, 2, aMatrix);

array_view<int, 2> b(2, 3, bMatrix);

array_view<int, 2> product(3, 3, productMatrix);

parallel_for_each(product.extent,
 [=] (index<2> idx) restrict(amp) {
 int row = idx[0];
 int col = idx[1];
 for (int inner = 0; inner <2; inner++) {
 product[idx] += a(row, inner)* b(inner, col);
 }
 });

product.synchronize();

for (int row = 0; row <3; row++) {
 for (int col = 0; col <3; col++) {
 //std::cout << productMatrix[row*3 + col] << " ";
 std::cout << product(row, col) << " ";
 }
 std::cout << "\n";
 }
}

#include <amp.h>
using namespace concurrency;

void main() {
 MultiplyWithOutAMP();
 MultiplyWithAMP();
 getchar();
}

1. In MatrixMultiply.cpp, add the following code before the main method.

The AMP code resembles the non-AMP code. The call to parallel_for_each starts one thread for each
element in product.extent , and replaces the for loops for row and column. The value of the cell at the row
and column is available in idx . You can access the elements of an array_view object by using either the
[] operator and an index variable, or the () operator and the row and column variables. The example

demonstrates both methods. The array_view::synchronize method copies the values of the product

variable back to the productMatrix variable.

2. Add the following include and using statements at the top of MatrixMultiply.cpp.

3. Modify the main method to call the MultiplyWithAMP method.

4. Press the Ctrl+F5 keyboard shortcut to start debugging and verify that the output is correct.

5. Press the Spacebar to exit the application.

Multiplication with tiling
Tiling is a technique in which you partition data into equal-sized subsets, which are known as tiles. Three things
change when you use tiling.

You can create tile_static variables. Access to data in tile_static space can be many times faster than
access to data in the global space. An instance of a tile_static variable is created for each tile, and all
threads in the tile have access to the variable. The primary benefit of tiling is the performance gain due to
tile_static access.

You can call the tile_barrier ::wait method to stop all of the threads in one tile at a specified line of code. You
cannot guarantee the order that the threads will run in, only that all of the threads in one tile will stop at the
call to tile_barrier::wait before they continue execution.

You have access to the index of the thread relative to the entire array_view object and the index relative to
the tile. By using the local index, you can make your code easier to read and debug.

To take advantage of tiling in matrix multiplication, the algorithm must partition the matrix into tiles and then copy
the tile data into tile_static variables for faster access. In this example, the matrix is partitioned into submatrices
of equal size. The product is found by multiplying the submatrices. The two matrices and their product in this
example are:

The matrices are partitioned into four 2x2 matrices, which are defined as follows:

The product of A and B can now be written and calculated as follows:

Because matrices a through h are 2x2 matrices, all of the products and sums of them are also 2x2 matrices. It
also follows that the product of A and B is a 4x4 matrix, as expected. To quickly check the algorithm, calculate the
value of the element in the first row, first column in the product. In the example, that would be the value of the
element in the first row and first column of ae + bg . You only have to calculate the first column, first row of ae

To multiply by using AMP and tiling

and bg for each term. That value for ae is (1 * 1) + (2 * 5) = 11 . The value for bg is (3 * 1) + (4 * 5) = 23 .
The final value is 11 + 23 = 34 , which is correct.

To implement this algorithm, the code:

Uses a tiled_extent object instead of an extent object in the parallel_for_each call.

Uses a tiled_index object instead of an index object in the parallel_for_each call.

Creates tile_static variables to hold the submatrices.

Uses the tile_barrier::wait method to stop the threads for the calculation of the products of the
submatrices.

void MultiplyWithTiling() {
 // The tile size is 2.
 static const int TS = 2;

 // The raw data.
 int aMatrix[] = { 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8 };
 int bMatrix[] = { 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8 };
 int productMatrix[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

 // Create the array_view objects.
 array_view<int, 2> a(4, 4, aMatrix);
 array_view<int, 2> b(4, 4, bMatrix);
 array_view<int, 2> product(4, 4, productMatrix);

 // Call parallel_for_each by using 2x2 tiles.
 parallel_for_each(product.extent.tile<TS, TS>(),
 [=] (tiled_index<TS, TS> t_idx) restrict(amp)
 {
 // Get the location of the thread relative to the tile (row, col)
 // and the entire array_view (rowGlobal, colGlobal).
 int row = t_idx.local[0];
 int col = t_idx.local[1];
 int rowGlobal = t_idx.global[0];
 int colGlobal = t_idx.global[1];
 int sum = 0;

 // Given a 4x4 matrix and a 2x2 tile size, this loop executes twice for each thread.
 // For the first tile and the first loop, it copies a into locA and e into locB.
 // For the first tile and the second loop, it copies b into locA and g into locB.
 for (int i = 0; i < 4; i += TS) {
 tile_static int locA[TS][TS];
 tile_static int locB[TS][TS];
 locA[row][col] = a(rowGlobal, col + i);
 locB[row][col] = b(row + i, colGlobal);
 // The threads in the tile all wait here until locA and locB are filled.
 t_idx.barrier.wait();

 // Return the product for the thread. The sum is retained across
 // both iterations of the loop, in effect adding the two products
 // together, for example, a*e.
 for (int k = 0; k < TS; k++) {
 sum += locA[row][k] * locB[k][col];
 }

 // All threads must wait until the sums are calculated. If any threads
 // moved ahead, the values in locA and locB would change.
 t_idx.barrier.wait();
 // Now go on to the next iteration of the loop.
 }

1. In MatrixMultiply.cpp, add the following code before the main method.

 // After both iterations of the loop, copy the sum to the product variable by using the
global location.
 product[t_idx.global] = sum;
 });

 // Copy the contents of product back to the productMatrix variable.
 product.synchronize();

 for (int row = 0; row <4; row++) {
 for (int col = 0; col <4; col++) {
 // The results are available from both the product and productMatrix variables.
 //std::cout << productMatrix[row*3 + col] << " ";
 std::cout << product(row, col) << " ";
 }
 std::cout << "\n";
 }
}

void main() {
 MultiplyWithOutAMP();
 MultiplyWithAMP();
 MultiplyWithTiling();
 getchar();
}

This example is significantly different than the example without tiling. The code uses these conceptual steps:

a. Copy the elements of tile[0,0] of a into locA . Copy the elements of tile[0,0] of b into locB . Notice
that product is tiled, not a and b . Therefore, you use global indices to access a, b , and product .
The call to tile_barrier::wait is essential. It stops all of the threads in the tile until both locA and
locB are filled.

b. Multiply locA and locB and put the results in product .

c. Copy the elements of tile[0,1] of a into locA . Copy the elements of tile [1,0] of b into locB .

d. Multiply locA and locB and add them to the results that are already in product .

e. The multiplication of tile[0,0] is complete.

f. Repeat for the other four tiles. There is no indexing specifically for the tiles and the threads can
execute in any order. As each thread executes, the tile_static variables are created for each tile
appropriately and the call to tile_barrier::wait controls the program flow.

g. As you examine the algorithm closely, notice that each submatrix is loaded into a tile_static
memory twice. That data transfer does take time. However, once the data is in tile_static memory,
access to the data is much faster. Because calculating the products requires repeated access to the
values in the submatrices, there is an overall performance gain. For each algorithm, experimentation
is required to find the optimal algorithm and tile size.

In the non-AMP and non-tile examples, each element of A and B is accessed four times from the global
memory to calculate the product. In the tile example, each element is accessed twice from the global
memory and four times from the tile_static memory. That is not a significant performance gain.
However, if the A and B were 1024x1024 matrices and the tile size were 16, there would be a significant
performance gain. In that case, each element would be copied into tile_static memory only 16 times and
accessed from tile_static memory 1024 times.

2. Modify the main method to call the MultiplyWithTiling method, as shown.

See also

3. Press the Ctrl+F5 keyboard shortcut to start debugging and verify that the output is correct.

4. Press the Space bar to exit the application.

C++ AMP (C++ Accelerated Massive Parallelism)
Walkthrough: Debugging a C++ AMP Application

Walkthrough: Debugging a C++ AMP Application
4/29/2019 • 13 minutes to read • Edit Online

Prerequisites

NOTE

To create the sample project

To create the sample project in Visual Studio 2019

This topic demonstrates how to debug an application that uses C++ Accelerated Massive Parallelism (C++ AMP)
to take advantage of the graphics processing unit (GPU). It uses a parallel-reduction program that sums up a large
array of integers. This walkthrough illustrates the following tasks:

Launching the GPU debugger.

Inspecting GPU threads in the GPU Threads window.

Using the Parallel Stacks window to simultaneously observe the call stacks of multiple GPU threads.

Using the Parallel Watch window to inspect values of a single expression across multiple threads at the
same time.

Flagging, freezing, thawing, and grouping GPU threads.

Executing all the threads of a tile to a specific location in code.

Before you start this walkthrough:

Read C++ AMP Overview.

Make sure that line numbers are displayed in the text editor. For more information, see How to: Display Line
Numbers in the Editor.

Make sure you are running at least Windows 8 or Windows Server 2012 to support debugging on the
software emulator.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the
following instructions. The Visual Studio edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

The instructions for creating a project vary depending on which version of Visual Studio you are using. Make sure
you have the correct version selected in the upper left of this page.

1. On the menu bar, choose File > New > Project to open the Create a New Project dialog box.

2. At the top of the dialog, set Language to C++, set Platform to Windows, and set Project type to
Console.

3. From the filtered list of project types, choose Console App then choose Next. In the next page, enter
AMPMapReduce in the Name box to specify a name for the project, and specify the project location if desired.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/walkthrough-debugging-a-cpp-amp-application.md
https://docs.microsoft.com/visualstudio/ide/reference/how-to-display-line-numbers-in-the-editor
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide

To create the sample project in Visual Studio 2017 or Visual Studio 2015

 // AMPMapReduce.cpp defines the entry point for the program.
 // The program performs a parallel-sum reduction that computes the sum of an array of integers.

 #include <stdio.h>
 #include <tchar.h>
 #include <amp.h>

 const int BLOCK_DIM = 32;

 using namespace concurrency;

 void sum_kernel_tiled(tiled_index<BLOCK_DIM> t_idx, array<int, 1> &A, int stride_size) restrict(amp)
 {
 tile_static int localA[BLOCK_DIM];

 index<1> globalIdx = t_idx.global * stride_size;
 index<1> localIdx = t_idx.local;

 localA[localIdx[0]] = A[globalIdx];

 t_idx.barrier.wait();

 // Aggregate all elements in one tile into the first element.
 for (int i = BLOCK_DIM / 2; i > 0; i /= 2)
 {
 if (localIdx[0] < i)
 {

 localA[localIdx[0]] += localA[localIdx[0] + i];

4. Choose the Create button to create the client project.

1. Start Visual Studio.

2. On the menu bar, choose File > New > Project.

3. Under Installed in the templates pane, choose Visual C++.

4. Choose Win32 Console Application, type AMPMapReduce in the Name box, and then choose the OK
button.

5. Choose the Next button.

6. Clear the Precompiled header check box, and then choose the Finish button.

7. In Solution Explorer, delete stdafx.h, targetver.h, and stdafx.cpp from the project.

8. Open AMPMapReduce.cpp and replace its content with the following code.

 localA[localIdx[0]] += localA[localIdx[0] + i];
 }

 t_idx.barrier.wait();
 }

 if (localIdx[0] == 0)
 {
 A[globalIdx] = localA[0];
 }
 }

 int size_after_padding(int n)
 {
 // The extent might have to be slightly bigger than num_stride to
 // be evenly divisible by BLOCK_DIM. You can do this by padding with zeros.
 // The calculation to do this is BLOCK_DIM * ceil(n / BLOCK_DIM)
 return ((n - 1) / BLOCK_DIM + 1) * BLOCK_DIM;
 }

 int reduction_sum_gpu_kernel(array<int, 1> input)
 {
 int len = input.extent[0];

 //Tree-based reduction control that uses the CPU.
 for (int stride_size = 1; stride_size < len; stride_size *= BLOCK_DIM)
 {
 // Number of useful values in the array, given the current
 // stride size.
 int num_strides = len / stride_size;

 extent<1> e(size_after_padding(num_strides));

 // The sum kernel that uses the GPU.
 parallel_for_each(extent<1>(e).tile<BLOCK_DIM>(), [&input, stride_size] (tiled_index<BLOCK_DIM>
idx) restrict(amp)
 {
 sum_kernel_tiled(idx, input, stride_size);
 });
 }

 array_view<int, 1> output = input.section(extent<1>(1));
 return output[0];
 }

 int cpu_sum(const std::vector<int> &arr) {
 int sum = 0;
 for (size_t i = 0; i < arr.size(); i++) {
 sum += arr[i];
 }
 return sum;
 }

 std::vector<int> rand_vector(unsigned int size) {
 srand(2011);

 std::vector<int> vec(size);
 for (size_t i = 0; i < size; i++) {
 vec[i] = rand();
 }
 return vec;
 }

 array<int, 1> vector_to_array(const std::vector<int> &vec) {
 array<int, 1> arr(vec.size());
 copy(vec.begin(), vec.end(), arr);
 return arr;
 }

 int _tmain(int argc, _TCHAR* argv[])
 {
 std::vector<int> vec = rand_vector(10000);
 array<int, 1> arr = vector_to_array(vec);

 int expected = cpu_sum(vec);
 int actual = reduction_sum_gpu_kernel(arr);

 bool passed = (expected == actual);
 if (!passed) {
 printf("Actual (GPU): %d, Expected (CPU): %d", actual, expected);
 }
 printf("sum: %s\n", passed "Passed!" : "Failed!");

 getchar();

 return 0;
 }

Debugging the CPU Code

To debug the CPU code

9. On the menu bar, choose File > Save All.

10. In Solution Explorer, open the shortcut menu for AMPMapReduce, and then choose Properties.

11. In the Property Pages dialog box, under Configuration Properties, choose C/C++ > Precompiled
Headers.

12. For the Precompiled Header property, select Not Using Precompiled Headers, and then choose the
OK button.

13. On the menu bar, choose Build > Build Solution.

In this procedure, you will use the Local Windows Debugger to make sure that the CPU code in this application is
correct. The segment of the CPU code in this application that is especially interesting is the for loop in the
reduction_sum_gpu_kernel function. It controls the tree-based parallel reduction that is run on the GPU.

1. In Solution Explorer, open the shortcut menu for AMPMapReduce, and then choose Properties.

2. In the Property Pages dialog box, under Configuration Properties, choose Debugging. Verify that
Local Windows Debugger is selected in the Debugger to launch list.

3. Return to the Code Editor.

4. Set breakpoints on the lines of code shown in the following illustration (approximately lines 67 line 70).

CPU breakpoints

5. On the menu bar, choose Debug > Start Debugging.

6. In the Locals window, observe the value for stride_size until the breakpoint at line 70 is reached.

7. On the menu bar, choose Debug > Stop Debugging.

Debugging the GPU Code

To debug the GPU code

To use the GPU Threads window

This section shows how to debug the GPU code, which is the code contained in the sum_kernel_tiled function.
The GPU code computes the sum of integers for each "block" in parallel.

1. In Solution Explorer, open the shortcut menu for AMPMapReduce, and then choose Properties.

2. In the Property Pages dialog box, under Configuration Properties, choose Debugging.

3. In the Debugger to launch list, select Local Windows Debugger.

4. In the Debugger Type list, verify that Auto is selected.

Auto is the default value. Prior to Windows 10, GPU Only is the required value instead of Auto.

5. Choose the OK button.

6. Set a breakpoint at line 30, as shown in the following illustration.

GPU breakpoint

7. On the menu bar, choose Debug > Start Debugging. The breakpoints in the CPU code at lines 67 and 70
are not executed during GPU debugging because those lines of code are executed on the CPU.

1. To open the GPU Threads window, on the menu bar, choose Debug > Windows > GPU Threads.

You can inspect the state the GPU threads in the GPU Threads window that appears.

2. Dock the GPU Threads window at the bottom of Visual Studio. Choose the Expand Thread Switch
button to display the tile and thread text boxes. The GPU Threads window shows the total number of
active and blocked GPU threads, as shown in the following illustration.

GPU Threads window

There are 313 tiles allocated for this computation. Each tile contains 32 threads. Because local GPU
debugging occurs on a software emulator, there are four active GPU threads. The four threads execute the
instructions simultaneously and then move on together to the next instruction.

In the GPU Threads window, there are four GPU threads active and 28 GPU threads blocked at the
tile_barrier ::wait statement defined at about line 21 (t_idx.barrier.wait();). All 32 GPU threads belong to
the first tile, tile[0] . An arrow points to the row that includes the current thread. To switch to a different
thread, use one of the following methods:

In the row for the thread to switch to in the GPU Threads window, open the shortcut menu and

To use the Parallel Stacks window

To use the Parallel Watch window

choose Switch To Thread. If the row represents more than one thread, you will switch to the first
thread according to the thread coordinates.

Enter the tile and thread values of the thread in the corresponding text boxes and then choose the
Switch Thread button.

The Call Stack window displays the call stack of the current GPU thread.

1. To open the Parallel Stacks window, on the menu bar, choose Debug > Windows > Parallel Stacks.

You can use the Parallel Stacks window to simultaneously inspect the stack frames of multiple GPU
threads.

2. Dock the Parallel Stacks window at the bottom of Visual Studio.

3. Make sure that Threads is selected in the list in the upper-left corner. In the following illustration, the
Parallel Stacks window shows a call-stack focused view of the GPU threads that you saw in the GPU
Threads window.

Parallel Stacks window

32 threads went from _kernel_stub to the lambda statement in the parallel_for_each function call and
then to the sum_kernel_tiled function, where the parallel reduction occurs. 28 out of the 32 threads have
progressed to the tile_barrier ::wait statement and remain blocked at line 22, whereas the other 4 threads
remain active in the sum_kernel_tiled function at line 30.

You can inspect the properties of a GPU thread that are available in the GPU Threads window in the rich
DataTip of the Parallel Stacks window. To do this, rest the mouse pointer on the stack frame of
sum_kernel_tiled. The following illustration shows the DataTip.

GPU thread DataTip

For more information about the Parallel Stacks window, see Using the Parallel Stacks Window.

1. To open the Parallel Watch window, on the menu bar, choose Debug > Windows > Parallel Watch >
Parallel Watch 1.

You can use the Parallel Watch window to inspect the values of an expression across multiple threads.

https://docs.microsoft.com/visualstudio/debugger/using-the-parallel-stacks-window

Flagging GPU Threads

To flag GPU threads

2. Dock the Parallel Watch 1 window to the bottom of Visual Studio. There are 32 rows in the table of the
Parallel Watch window. Each corresponds to a GPU thread that appeared in both the GPU Threads
window and the Parallel Stacks window. Now, you can enter expressions whose values you want to inspect
across all 32 GPU threads.

3. Select the Add Watch column header, enter localIdx , and then choose the Enter key.

4. Select the Add Watch column header again, type globalIdx , and then choose the Enter key.

5. Select the Add Watch column header again, type localA[localIdx[0]] , and then choose the Enter key.

You can sort by a specified expression by selecting its corresponding column header.

Select the localA[localIdx[0]] column header to sort the column. The following illustration shows the
results of sorting by localA[localIdx[0]].

Results of sort

You can export the content in the Parallel Watch window to Excel by choosing the Excel button and then
choosing Open in Excel. If you have Excel installed on your development computer, this opens an Excel
worksheet that contains the content.

6. In the upper-right corner of the Parallel Watch window, there's a filter control that you can use to filter the
content by using Boolean expressions. Enter localA[localIdx[0]] > 20000 in the filter control text box and
then choose the Enter key.

The window now contains only threads on which the localA[localIdx[0]] value is greater than 20000. The
content is still sorted by the localA[localIdx[0]] column, which is the sorting action you performed earlier.

You can mark specific GPU threads by flagging them in the GPU Threads window, the Parallel Watch window,
or the DataTip in the Parallel Stacks window. If a row in the GPU Threads window contains more than one
thread, flagging that row flags all threads that are contained in the row.

1. Select the [Thread] column header in the Parallel Watch 1 window to sort by tile index and thread index.

2. On the menu bar, choose Debug > Continue, which causes the four threads that were active to progress to
the next barrier (defined at line 32 of AMPMapReduce.cpp).

3. Choose the flag symbol on the left side of the row that contains the four threads that are now active.

The following illustration shows the four active flagged threads in the GPU Threads window.

Freezing and Thawing GPU Threads

To freeze and thaw GPU threads

Active threads in the GPU Threads window

The Parallel Watch window and the DataTip of the Parallel Stacks window both indicate the flagged
threads.

4. If you want to focus on the four threads that you flagged, you can choose to show, in the GPU Threads,
Parallel Watch, and Parallel Stacks windows, only the flagged threads.

Choose the Show Flagged Only button on any of the windows or on the Debug Location toolbar. The
following illustration shows the Show Flagged Only button on the Debug Location toolbar.

Show Flagged Only button

Now the GPU Threads, Parallel Watch, and Parallel Stacks windows display only the flagged threads.

You can freeze (suspend) and thaw (resume) GPU threads from either the GPU Threads window or the Parallel
Watch window. You can freeze and thaw CPU threads the same way; for information, see How to: Use the Threads
Window.

1. Choose the Show Flagged Only button to display all the threads.

2. On the menu bar, choose Debug > Continue.

3. Open the shortcut menu for the active row and then choose Freeze.

The following illustration of the GPU Threads window shows that all four threads are frozen.

Frozen threads in the GPU Threads window

Similarly, the Parallel Watch window shows that all four threads are frozen.

4. On the menu bar, choose Debug > Continue to allow the next four GPU threads to progress past the
barrier at line 22 and to reach the breakpoint at line 30. The GPU Threads window shows that the four
previously frozen threads remain frozen and in the active state.

https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-threads-window

To group GPU threads

Running All Threads to a Specific Location in Code

To run all threads to the location marked by the cursor

See also

5. On the menu bar, choose Debug, Continue.

6. From the Parallel Watch window, you can also thaw individual or multiple GPU threads.

1. On the shortcut menu for one of the threads in the GPU Threads window, choose Group By, Address.

The threads in the GPU Threads window are grouped by address. The address corresponds to the
instruction in disassembly where each group of threads is located. 24 threads are at line 22 where the
tile_barrier::wait Method is executed. 12 threads are at the instruction for the barrier at line 32. Four of these
threads are flagged. Eight threads are at the breakpoint at line 30. Four of these threads are frozen. The
following illustration shows the grouped threads in the GPU Threads window.

Grouped threads in the GPU Threads window

2. You can also perform the Group By operation by opening the shortcut menu for the data grid of the
Parallel Watch window, choosing Group By, and then choosing the menu item that corresponds to how
you want to group the threads.

You run all the threads in a given tile to the line that contains the cursor by using Run Current Tile To Cursor.

1. On the shortcut menu for the frozen threads, choose Thaw.

2. In the Code Editor, put the cursor in line 30.

3. On the shortcut menu for the Code Editor, choose Run Current Tile To Cursor.

The 24 threads that were previously blocked at the barrier at line 21 have progressed to line 32. This is
shown in the GPU Threads window.

C++ AMP Overview
Debugging GPU Code
How to: Use the GPU Threads Window
How to: Use the Parallel Watch Window
Analyzing C++ AMP Code with the Concurrency Visualizer

https://docs.microsoft.com/visualstudio/debugger/debugging-gpu-code
https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-gpu-threads-window
https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-parallel-watch-window
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/03/09/analyzing-c-amp-code-with-the-concurrency-visualizer/

Using Lambdas, Function Objects, and Restricted
Functions
3/4/2019 • 3 minutes to read • Edit Online

void CpuMethod() {

 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5];

 for (int idx = 0; idx <5; idx++)
 {
 sumCPP[idx] = aCPP[idx] + bCPP[idx];
 }

 for (int idx = 0; idx <5; idx++)
 {
 std::cout <<sumCPP[idx] <<"\n";
 }
}

Lambda Expression

The C++ AMP code that you want to run on the accelerator is specified as an argument in a call to the
parallel_for_each method. You can provide either a lambda expression or a function object (functor) as that
argument. Additionally, the lambda expression or function object can call a C++ AMP-restricted function. This
topic uses an array addition algorithm to demonstrate lambdas, function objects, and restricted functions. The
following example shows the algorithm without C++ AMP code. Two 1-dimensional arrays of equal length are
created. The corresponding integer elements are added and stored in a third 1-dimensional array. C++ AMP is not
used.

Using a lambda expression is the most direct way to use C++ AMP to rewrite the code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/using-lambdas-function-objects-and-restricted-functions.md

void AddArraysWithLambda() {
 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5];

 array_view<const int, 1> a(5, aCPP);

 array_view<const int, 1> b(5, bCPP);

 array_view<int, 1> sum(5, sumCPP);

 sum.discard_data();

 parallel_for_each(
 sum.extent,
 [=](index<1> idx) restrict(amp)
 {
 sum[idx] = a[idx] + b[idx];
 });

 for (int i = 0; i <5; i++) {
 std::cout <<sum[i] <<"\n";
 }
}

Function Object

The lambda expression must include one indexing parameter and must include restrict(amp) . In the example, the
array_view sum object has a rank of 1. Therefore, the parameter to the lambda statement is an index object that has
rank 1. At runtime, the lambda expression is executed once for each element in the array_view object. For more
information, see Lambda Expression Syntax.

You can factor the accelerator code into a function object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expression-syntax

class AdditionFunctionObject
{
public:
 AdditionFunctionObject(const array_view<int, 1>& a,
 const array_view<int, 1>& b,
 const array_view<int, 1>& sum)
 : a(a), b(b), sum(sum)
 {
 }

 void operator()(index<1> idx) restrict(amp)
 {
 sum[idx] = a[idx] + b[idx];
 }

private:
 array_view<int, 1> a;
 array_view<int, 1> b;
 array_view<int, 1> sum;
};

void AddArraysWithFunctionObject() {
 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5];

 array_view<const int, 1> a(5, aCPP);

 array_view<const int, 1> b(5, bCPP);

 array_view<int, 1> sum(5, sumCPP);

 sum.discard_data();

 parallel_for_each(
 sum.extent,
 AdditionFunctionObject(a, b, sum));

 for (int i = 0; i <5; i++) {
 std::cout <<sum[i] <<"\n";
 }
}

C++ AMP-Restricted Function

The function object must include a constructor and must include an overload of the function call operator. The
function call operator must include one indexing parameter. An instance of the function object is passed as the
second argument to the parallel_for_each method. In this example, three array_view objects are passed to the
function object constructor. The array_view object sum has a rank of 1. Therefore, the parameter to the function
call operator is an index object that has rank 1. At runtime, the function is executed once for each element in the
array_view object. For more information, see Function Call and Function Objects in the C++ Standard Library.

You can further factor the accelerator code by creating a restricted function and calling it from a lambda expression
or a function object. The following code example demonstrates how to call a restricted function from a lambda
expression.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/function-call-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-objects-in-the-stl

void AddElementsWithRestrictedFunction(index<1> idx, array_view<int, 1> sum, array_view<int, 1> a,
array_view<int, 1> b) restrict(amp)
{
 sum[idx] = a[idx] + b[idx];
}

void AddArraysWithFunction() {

 int aCPP[] = {1, 2, 3, 4, 5};
 int bCPP[] = {6, 7, 8, 9, 10};
 int sumCPP[5];

 array_view<int, 1> a(5, aCPP);

 array_view<int, 1> b(5, bCPP);

 array_view<int, 1> sum(5, sumCPP);

 sum.discard_data();

 parallel_for_each(
 sum.extent,
 [=](index<1> idx) restrict(amp)
 {
 AddElementsWithRestrictedFunction(idx, sum, a, b);
 });

 for (int i = 0; i <5; i++) {
 std::cout <<sum[i] <<"\n";
 }
}

See also

The restricted function must include restrict(amp) and conform to the restrictions that are described in restrict
(C++ AMP).

C++ AMP (C++ Accelerated Massive Parallelism)
Lambda Expression Syntax
Function Call
Function Objects in the C++ Standard Library
restrict (C++ AMP)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expression-syntax
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/function-call-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-objects-in-the-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict-cpp-amp

Graphics (C++ AMP)
3/4/2019 • 17 minutes to read • Edit Online

The norm and unorm Types

Short Vector Library

LENGTH 2 LENGTH 3 LENGTH 4

double double_2

double2

double_3

double3

double_4

double4

float float_2

float2

float_3

float3

float_4

float4

int int_2

int2

int_3

int3

int_4

int4

C++ AMP contains several APIs in the Concurrency::graphics namespace that you can use to access the texture
support on GPUs. Some common scenarios are:

You can use the texture class as a data container for computation and exploit the spatial locality of the
texture cache and layouts of GPU hardware. Spatial locality is the property of data elements being
physically close to each other.

The runtime provides efficient interoperability with non-compute shaders. Pixel, vertex, tessellation, and hull
shaders frequently consume or produce textures that you can use in your C++ AMP computations.

The graphics APIs in C++ AMP provide alternative ways to access sub-word packed buffers. Textures that
have formats that represent texels (texture elements) that are composed of 8-bit or 16-bit scalars allow
access to such packed data storage.

The norm and unorm types are scalar types that limit the range of float values; this is known as clamping. These
types can be explicitly constructed from other scalar types. In casting, the value is first cast to float and then
clamped to the respective region that's allowed by norm [-1.0, 1.0] or unorm [0.0, 1.0]. Casting from +/- infinity
returns +/-1. Casting from NaN is undefined. A norm can be implicitly constructed from a unorm and there is no
loss of data. The implicit conversion operator to float is defined on these types. Binary operators are defined
between these types and other built-in scalar types such as float and int: +, -, *, /, ==, !=, >, <, >=, <=. The
compound assignment operators are also supported: +=, -=, *=, /=. The unary negation operator (-) is defined for
norm types.

The Short Vector Library provides some of the functionality of the Vector Type that's defined in HLSL and is
typically used to define texels. A short vector is a data structure that holds one to four values of the same type. The
supported types are double, float, int, norm , uint , and unorm . The type names are shown in the following table.
For each type, there is also a corresponding typedef that doesn't have an underscore in the name. The types that
have the underscores are in the Concurrency::graphics Namespace. The types that don't have the underscores are
in the Concurrency::graphics::direct3d Namespace so that they are clearly separated from the similarly-named
fundamental types such as __int8 and __int16.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/graphics-cpp-amp.md
http://go.microsoft.com/fwlink/p/?linkid=248500

norm norm_2

norm2

norm_3

norm3

norm_4

norm4

uint uint_2

uint2

uint_3

uint3

uint_4

uint4

unorm unorm_2

unorm2

unorm_3

unorm3

unorm_4

unorm4

LENGTH 2 LENGTH 3 LENGTH 4

Operators

OPERATOR TYPE VALID TYPES

Binary operators Valid on all types: +, -, *, /,

Valid on integer types: %, ^, |, &, <<, >>

The two vectors must have the same size, and the result is a
vector of the same size.

Relational operators Valid on all types: == and !=

Compound assignment operator Valid on all types: +=, -=, *=, /=

Valid on integer types: %=, ^=, |=, &=, <<=, >>=

Increment and decrement operators Valid on all types: ++, --

Both prefix and postfix are valid.

Bitwise NOT operator (~) Valid on integer types.

Unary - operator Valid on all types except unorm and uint .

Swizzling Expressions

If an operator is defined between two short vectors, then it is also defined between a short vector and a scalar.
Also, one of these must be true:

The scalar’s type must be the same as the short vector’s element type.

The scalar’s type can be implicitly converted to the vector’s element type by using only one user-defined
conversion.

The operation is carried component-wise between each component of the short vector and the scalar. Here are the
valid operators:

The Short Vector Library supports the vector_type.identifier accessor construct to access the components of a
short vector. The identifier , which is known as a swizzling expression, specifies the components of the vector. The
expression can be an l-value or an r-value. Individual characters in the identifier may be: x, y, z, and w; or r, g, b, and
a. "x" and "r" mean the zero-th component, "y" and "g" mean the first component, and so on. (Notice that "x" and "r"
cannot be used in the same identifier.) Therefore, "rgba" and "xyzw" return the same result. Single-component
accessors such as "x" and "y" are scalar value types. Multi-component accessors are short vector types. For

Texture Classes

Instantiating Texture Objects

#include <amp.h>
#include <amp_graphics.h>
using namespace concurrency;
using namespace concurrency::graphics;

void declareTextures() {
 // Create a 16-texel texture of int.
 texture<int, 1> intTexture1(16);
 texture<int, 1> intTexture2(extent<1>(16));

 // Create a 16 x 32 texture of float_2.
 texture<float_2, 2> floatTexture1(16, 32);
 texture<float_2, 2> floatTexture2(extent<2>(16, 32));

 // Create a 2 x 4 x 8 texture of uint_4.
 texture<uint_4, 3> uintTexture1(2, 4, 8);
 texture<uint_4, 3> uintTexture2(extent<3>(2, 4, 8));
}

example, if you construct an int_4 vector that's named fourInts and has the values 2, 4, 6, and 8, then
fourInts.y returns the integer 4 and fourInts.rg returns an int_2 object that has the values 2 and 4.

Many GPUs have hardware and caches that are optimized to fetch pixels and texels and to render images and
textures. The texture<T,N> class, which is a container class for texel objects, exposes the texture functionality of
these GPUs. A texel can be:

An int, uint , float, double, norm , or unorm scalar.

A short vector that has two or four components. The only exception is double_4 , which is not allowed.

The texture object can have a rank of 1, 2, or 3. The texture object can be captured only by reference in the
lambda of a call to parallel_for_each . The texture is stored on the GPU as Direct3D texture objects. For more
information about textures and texels in Direct3D, see Introduction to Textures in Direct3D 11.

The texel type you use might be one of the many texture formats that are used in graphics programming. For
example, an RGBA format could use 32 bits, with 8 bits each for the R, G, B, and A scalar elements. The texture
hardware of a graphics card can access the individual elements based on the format. For example, if you are using
the RGBA format, the texture hardware can extract each 8-bit element into a 32-bit form. In C++ AMP, you can set
the bits per scalar element of your texel so that you can automatically access the individual scalar elements in the
code without using bit-shifting.

You can declare a texture object without initialization. The following code example declares several texture objects.

You can also use a constructor to declare and initialize a texture object. The following code example instantiates a
texture object from a vector of float_4 objects. The bits per scalar element is set to the default. You cannot use

this constructor with norm , unorm , or the short vectors of norm and unorm , because they do not have a default
bits per scalar element.

http://go.microsoft.com/fwlink/p/?linkid=248502

#include <amp.h>
#include <amp_graphics.h>
#include <vector>
using namespace concurrency;
using namespace concurrency::graphics;

void initializeTexture() {
 std::vector<int_4> texels;
 for (int i = 0; i < 768 * 1024; i++) {
 int_4 i4(i, i, i, i);
 texels.push_back(i4);
 }

 texture<int_4, 2> aTexture(768, 1024, texels.begin(), texels.end());
}

void createTextureWithBPC() { // Create the source data.
 float source[1024* 2];
 for (int i = 0; i <1024* 2; i++) {
 source[i] = (float)i;
 }
 // Initialize the texture by using the size of source in bytes // and bits per scalar element.
 texture<float_2, 1> floatTexture(1024, source, (unsigned int)sizeof(source), 32U);
}

TEX TURE SIZE LIMITATION PER DIMENSION

texture<T,1> 16384

texture<T,2> 16384

texture<T,3> 2048

Reading from Texture Objects

You can also declare and initialize a texture object by using a constructor overload that takes a pointer to the
source data, the size of source data in bytes, and the bits per scalar element.

The textures in these examples are created on the default view of the default accelerator. You can use other
overloads of the constructor if you want to specify an accelerator_view object. You cannot create a texture object
on a CPU accelerator.

There are limits on the size of each dimension of the texture object, as shown in the following table. A run-time
error is generated if you exceed the limits.

You can read from a texture object by using texture::operator[], texture::operator() Operator, or texture::get
Method. The two operators return a value, not a reference. Therefore, you cannot write to a texture object by
using texture::operator\[\] .

void readTexture() {
 std::vector<int_2> src;
 for (int i = 0; i <16 *32; i++) {
 int_2 i2(i, i);

 src.push_back(i2);
 }

 std::vector<int_2> dst(16* 32);

 array_view<int_2, 2> arr(16, 32, dst);

 arr.discard_data();

 const texture<int_2, 2> tex9(16, 32, src.begin(), src.end());

 parallel_for_each(tex9.extent, [=, &tex9] (index<2> idx) restrict(amp) { // Use the subscript operator.
 arr[idx].x += tex9[idx].x; // Use the function () operator.
 arr[idx].x += tex9(idx).x; // Use the get method.
 arr[idx].y += tex9.get(idx).y; // Use the function () operator.
 arr[idx].y += tex9(idx[0], idx[1]).y;
 });

 arr.synchronize();
}

void UseBitsPerScalarElement() { // Create the image data. // Each unsigned int (32-bit) represents four 8-bit
scalar elements(r,g,b,a values).
 const int image_height = 16;
 const int image_width = 16;
 std::vector<unsigned int> image(image_height* image_width);

 extent<2> image_extent(image_height, image_width);

 // By using uint_4 and 8 bits per channel, each 8-bit channel in the data source is // stored in one 32-
bit component of a uint_4.
 texture<uint_4, 2> image_texture(image_extent, image.data(), image_extent.size()* 4U, 8U);

 // Use can access the RGBA values of the source data by using swizzling expressions of the uint_4.
 parallel_for_each(image_extent,
 [&image_texture](index<2> idx) restrict(amp)
 { // 4 bytes are automatically extracted when reading.
 uint_4 color = image_texture[idx];
 unsigned int r = color.r;
 unsigned int g = color.g;
 unsigned int b = color.b;
 unsigned int a = color.a;
 });
}

TEX TURE DATA TYPE VALID BITS PER SCALAR ELEMENT

int, int_2, int_4

uint, uint_2, uint_4

8, 16, 32

int_3, uint_3 32

The following code example demonstrates how to store texture channels in a short vector, and then access the
individual scalar elements as properties of the short vector.

The following table lists the valid bits per channel for each sort vector type.

float, float_2, float_4 16, 32

float_3 32

double, double_2 64

norm, norm_2, norm_4

unorm, unorm_2, unorm, 4

8, 16

TEX TURE DATA TYPE VALID BITS PER SCALAR ELEMENT

Writing to Texture Objects

void writeTexture() {
 texture<int, 1> tex1(16);

 parallel_for_each(tex1.extent, [&tex1] (index<1> idx) restrict(amp) {
 tex1.set(idx, 0);
 });
}

Copying Texture Objects

Use the texture::set method to write to texture objects. A texture object can be readonly or read/write. For a
texture object to be readable and writeable, the following conditions must be true:

T has only one scalar component. (Short vectors are not allowed.)

T is not double, norm , or unorm .

The texture::bits_per_scalar_element property is 32.

If all three are not true, then the texture object is readonly. The first two conditions are checked during
compilation. A compilation error is generated if you have code that tries to write to a readonly texture object. The
condition for texture::bits_per_scalar_element is detected at run time, and the runtime generates the
unsupported_feature exception if you try to write to a readonly texture object.

The following code example writes values to a texture object.

You can copy between texture objects by using the copy function or the copy_async function, as shown in the
following code example.

void copyHostArrayToTexture() { // Copy from source array to texture object by using the copy function.
 float floatSource[1024* 2];
 for (int i = 0; i <1024* 2; i++) {
 floatSource[i] = (float)i;
 }
 texture<float_2, 1> floatTexture(1024);

 copy(floatSource, (unsigned int)sizeof(floatSource), floatTexture);

 // Copy from source array to texture object by using the copy function.
 char charSource[16* 16];
 for (int i = 0; i <16* 16; i++) {
 charSource[i] = (char)i;
 }
 texture<int, 2> charTexture(16, 16, 8U);

 copy(charSource, (unsigned int)sizeof(charSource), charTexture);
 // Copy from texture object to source array by using the copy function.
 copy(charTexture, charSource, (unsigned int)sizeof(charSource));
}

Texture View Classes

writeonly_texture_view Deprecated

You can also copy from one texture to another by using the texture::copy_to method. The two textures can be on
different accelerator_views. When you copy to a writeonly_texture_view object, the data is copied to the
underlying texture object. The bits per scalar element and the extent must be the same on the source and
destination texture objects. If those requirements are not met, the runtime throws an exception.

C++ AMP introduces the texture_view Class in Visual Studio 2013. Texture views support the same texel types and
ranks as the texture Class, but unlike textures, they provide access to additional hardware features such as texture
sampling and mipmaps. Texture views support read-only, write-only, and read-write access to the underlying
texture data.

Read-only access is provided by the texture_view<const T, N> template specialization, which supports
elements that have 1, 2, or 4 components, texture sampling, and dynamic access to a range of mipmap
levels that are determined when the view is instantiated.

Write-only access is provided by the non-specialized template class texture_view<T, N> , which supports
elements that have either 2 or 4 components and can access one mipmap level that's determined when the
view is instantiated. It does not support sampling.

Read-write access is provided by the non-specialized template class texture_view<T, N> , which, like
textures, supports elements that have only one component; the view can access one mipmap level that's
determined when it is instantiated. It does not support sampling.

Texture views are analogous to array views, but do not provide the automatic data management and movement
functionality that the array_view Class provides over the array class. A texture_view can only be accessed on the
accelerator view where the underlying texture data resides.

For Visual Studio 2013, C++ AMP introduces better support for hardware texture features such as sampling and
mipmaps, which could not be supported by the writeonly_texture_view Class. The newly introduced texture_view

class supports a superset of the functionality in writeonly_texture_view ; as a result, writeonly_texture_view is
deprecated.

We recommend—at least for new code—that you use texture_view to access functionality that was formerly
provided by writeonly_texture_view . Compare the following two code examples that write to a texture object that
has two components (int_2). Notice that in both cases, the view, wo_tv4 , must be captured by value in the lambda

void write2ComponentTexture() {
 texture<int_2, 1> tex4(16);

 texture_view<int_2, 1> wo_tv4(tex4);

 parallel_for_each(extent<1>(16), [=] (index<1> idx) restrict(amp) {
 wo_tv4.set(idx, int_2(1, 1));
 });
}

void write2ComponentTexture() {
 texture<int_2, 1> tex4(16);

 writeonly_texture_view<int_2, 1> wo_tv4(tex4);

 parallel_for_each(extent<1>(16), [=] (index<1> idx) restrict(amp) {
 wo_tv4.set(idx, int_2(1, 1));
 });
}

Instantiating Texture View Objects

#include <amp.h>
#include <amp_graphics.h>
using namespace concurrency;
using namespace concurrency::graphics;

void declareTextureViews()
{
 // Create a 16-texel texture of int, with associated texture_views.
 texture<int, 1> intTexture(16);
 texture_view<const int, 1> intTextureViewRO(intTexture); // read-only
 texture_view<int, 1> intTextureViewRW(intTexture); // read-write

 // Create a 16 x 32 texture of float_2, with associated texture_views.
 texture<float_2, 2> floatTexture(16, 32);
 texture_view<const float_2, 2> floatTextureViewRO(floatTexture); // read-only
 texture_view<float_2, 2> floatTextureViewRO(floatTexture); // write-only

 // Create a 2 x 4 x 8 texture of uint_4, with associated texture_views.
 texture<uint_4, 3> uintTexture(2, 4, 8);
 texture_view<const uint_4, 3> uintTextureViewRO(uintTexture); // read-only
 texture_view<uint_4, 3> uintTextureViewWO(uintTexture); // write-only
}

expression. Here is the example that uses the new texture_view class:

And here is the deprecated writeonly_texture_view class:

As you can see, the two code examples are nearly identical when all you are doing is writing to the primary
mipmap level. If you used writeonly_texture_view in existing code and you're not planning to enhance that code,
you don't have to change it. However, if you're thinking about bringing that code forward, we suggest that you
rewrite it to use texture_view because the enhancements in it support new hardware texture features. Read on for
more information about these new capabilities.

For more information about the deprecation of writeonly_texture_view , see Overview of the Texture View Design
in C++ AMP on the Parallel Programming in Native Code blog.

Declaring a texture_view is similar to declaring an array_view that's associated with an array. The following code
example declares several texture objects and texture_view objects that are associated with them.

http://blogs.msdn.com/b/nativeconcurrency/archive/2013/07/25/overview-of-the-texture-view-design-in-c-amp.aspx

TYPE COMPONENTS READ WRITE SAMPLING MIPMAP ACCESS

texture_view<con
st T, N>

1, 2, 4 Yes No (1) Yes Yes, indexable.
Range is
determined at
instantiation.

Texture_view<T,
N>

1

2, 4

Yes

No (2)

Yes

Yes

No (1)

No (1)

Yes, one level.
Level is
determined at
instantiation.

Yes, one level.
Level is
determined at
instantiation.

Reading from Texture View Objects

void write2ComponentTexture() {
 texture<int_2, 1> text_data(16);

 parallel_for_each(extent<1>(16), [&] (index<1> idx) restrict(amp) {
 tex_data.set(idx, int_2(1, 1));
 });
}

void write2ComponentTexture() {
 texture<int_2, 1> tex_data(16);

 texture_view<int_2, 1> tex_view(tex_data);

 parallel_for_each(extent<1>(16), [=] (index<1> idx) restrict(amp) {
 tex_view.set(idx, int_2(1, 1));
 });
}

Notice how a texture view whose element type is non-const and has one component is read-write, but a texture
view whose element type is non-const but has more than one componenent are write-only. Texture views of const
element types are always read-only, but if the element type is non-const, then the number of components in the
element determines whether it is read-write (1 component) or write-only (multiple components).

The element type of a texture_view —its const-ness and also the number of components it has—also plays a role
in determining whether the view supports texture sampling, and how mipmap levels can be accessed:

From this table, you can see that read-only texture views fully support the new capabilities in exchange for not
being able to write to the view. Writable texture views are limited in that they can only access one mipmap level.
Read-write texture views are even more specialized than writable ones, because they add the requirement that the
element type of the texture view has only one component. Notice that sampling is not supported for writable
texture views because it's a read-oriented operation.

Reading unsampled texture data through a texture view is just like reading it from the texture itself, except that
textures are captured by reference, whereas texture views are captured by value. The following two code examples
demonstrate; first, by using texture only:

And here is the same example, except it now uses the texture_view class:

Texture views whose elements are based on floating-point types—for example, float, float_2, or float_4—can also
be read by using texture sampling to take advantage of hardware support for various filtering modes and

Writing to Texture View Objects

// Create a texture that has 4 mipmap levels : 16x16, 8x8, 4x4, 2x2
texture<int, 2> tex(extent<2>(16, 16), 16U, 4);

// Create a writable texture view to the second mipmap level :4x4
texture_view<int, 2> w_view(tex, 1);

parallel_for_each(w_view.extent, [=](index<2> idx) restrict(amp)
{
 w_view.set(idx, 123);
});

Interoperability

See also

addressing modes. C++ AMP supports the two filtering modes that are most common in compute scenarios—
point-filtering (nearest-neighbor) and linear-filtering (weighted average)—and four addressing modes—wrapped,
mirrored, clamped, and border. For more information about addressing modes, see address_mode Enumeration.

In addition to modes that C++ AMP supports directly, you can access other filtering modes and addressing modes
of the underlying platform by using the interop APIs to adopt a texture sampler that was created by using the
platform APIs directly. For example, Direct3D supports other filtering modes such as anisotropic filtering, and can
apply a different addressing mode to each dimension of a texture. You could create a texture sampler whose
coordinates are wrapped vertically, mirrored horizontally, and sampled with anisotropic filtering by using the
Direct3D APIs, and then leverage the sampler in your C++ AMP code by using the make_sampler interop API. For
more information see Texture Sampling in C++ AMP on the Parallel Programming in Native Code blog.

Texture views also support the reading of mipmaps. Read-only texture views (those that have a const element type)
offer the most flexibility because a range of mip-levels that is determined at instantiation can be dynamically
sampled, and because elements that have 1, 2, or 4 components are supported. Read-write texture views that have
elements that have one component also support mipmaps, but only of a level that's determined at instantiation.
For more information, see Texture with Mipmaps on the Parallel Programming in Native Code blog.

Use the texture_view::get Method to write to the underlying texture through the texture_view object. A texture
view can be read-only, read-write, or write-only. For a texture view to be writable it must have an element type that
is non-const; for a texture view to be readable and writable, its element type must also have only one component.
Otherwise, the texture view is read-only. You can only access one mipmap level of a texture at a time through a
texture view, and the level is specified when the view is instantiated.

This example shows how to write to the second-most detailed mipmap level of a texture that has 4 mipmap levels.
The most detailed mipmap level is level 0.

The C++ AMP runtime supports interoperability between texture<T,1> and the ID3D11Texture1D interface,
between texture<T,2> and the ID3D11Texture2D interface, and between texture<T,3> and the ID3D11Texture3D
interface. The get_texture method takes a texture object and returns an IUnknown interface. The make_texture
method takes an IUnknown interface and an accelerator_view object and returns a texture object.

double_2 Class
double_3 Class
double_4 Class
float_2 Class
float_3 Class
float_4 Class
int_2 Class

http://blogs.msdn.com/b/nativeconcurrency/archive/2013/07/18/texture-sampling-in-c-amp.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2013/08/22/texture-with-mipmaps.aspx
http://go.microsoft.com/fwlink/p/?linkId=248503
http://go.microsoft.com/fwlink/p/?linkId=255317
http://go.microsoft.com/fwlink/p/?linkId=255377

int_3 Class
int_4 Class
norm_2 Class
norm_3 Class
norm_4 Class
short_vector Structure
short_vector_traits Structure
uint_2 Class
uint_3 Class
uint_4 Class
unorm_2 Class
unorm_3 Class
unorm_4 Class

Using accelerator and accelerator_view Objects
3/4/2019 • 6 minutes to read • Edit Online

Using the Default Accelerator

void default_properties() {
 accelerator default_acc;
 std::wcout << default_acc.device_path << "\n";
 std::wcout << default_acc.dedicated_memory << "\n";
 std::wcout << (accs[i].supports_cpu_shared_memory ?
 "CPU shared memory: true" : "CPU shared memory: false") << "\n";
 std::wcout << (accs[i].supports_double_precision ?
 "double precision: true" : "double precision: false") << "\n";
 std::wcout << (accs[i].supports_limited_double_precision ?
 "limited double precision: true" : "limited double precision: false") << "\n";
}

CPPAMP_DEFAULT_ACCELERATOR Environment Variable

You can use the accelerator and accelerator_view classes to specify the device or emulator to run your C++ AMP
code on. A system might have several devices or emulators that differ by amount of memory, shared memory
support, debugging support, or double-precision support. C++ Accelerated Massive Parallelism (C++ AMP)
provides APIs that you can use to examine the available accelerators, set one as the default, specify multiple
accelerator_views for multiple calls to parallel_for_each, and perform special debugging tasks.

The C++ AMP runtime picks a default accelerator, unless you write code to pick a specific one. The runtime
chooses the default accelerator as follows:

1. If the app is running in debug mode, an accelerator that supports debugging.

2. Otherwise, the accelerator that's specified by the CPPAMP_DEFAULT_ACCELERATOR environment
variable, if it's set.

3. Otherwise, a non-emulated device.

4. Otherwise, the device that has the greatest amount of available memory.

5. Otherwise, a device that's not attached to the display.

Additionally, the runtime specifies an access_type of access_type_auto for the default accelerator. This means that
the default accelerator uses shared memory if it’s supported and if its performance characteristics (bandwidth and
latency) are known to be the same as dedicated (non-shared) memory.

You can determine the properties of the default accelerator by constructing the default accelerator and examining
its properties. The following code example prints the path, amount of accelerator memory, shared memory
support, double-precision support, and limited double-precision support of the default accelerator.

You can set the CPPAMP_DEFAULT_ACCELERATOR environment variable to specify the
accelerator::device_path of the default accelerator. The path is hardware-dependent. The following code uses the
accelerator::get_all function to retrieve a list of the available accelerators and then displays the path and

characteristics of each accelerator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/using-accelerator-and-accelerator-view-objects.md

void list_all_accelerators()
{
 std::vector<accelerator> accs = accelerator::get_all();

 for (int i = 0; i <accs.size(); i++) {
 std::wcout << accs[i].device_path << "\n";
 std::wcout << accs[i].dedicated_memory << "\n";
 std::wcout << (accs[i].supports_cpu_shared_memory ?
 "CPU shared memory: true" : "CPU shared memory: false") << "\n";
 std::wcout << (accs[i].supports_double_precision ?
 "double precision: true" : "double precision: false") << "\n";
 std::wcout << (accs[i].supports_limited_double_precision ?
 "limited double precision: true" : "limited double precision: false") << "\n";
 }
}

Selecting an Accelerator

void pick_with_most_memory()
{
 std::vector<accelerator> accs = accelerator::get_all();
 accelerator acc_chosen = accs[0];

 for (int i = 0; i <accs.size(); i++) {
 if (accs[i].dedicated_memory> acc_chosen.dedicated_memory) {
 acc_chosen = accs[i];
 }
 }

 std::wcout << "The accelerator with the most memory is "
 << acc_chosen.device_path << "\n"
 << acc_chosen.dedicated_memory << ".\n";
}

NOTE

Shared Memory

To select an accelerator, use the accelerator::get_all method to retrieve a list of the available accelerators and
then select one based on its properties. This example shows how to pick the accelerator that has the most memory:

One of the accelerators that are returned by accelerator::get_all is the CPU accelerator. You cannot execute code on the
CPU accelerator. To filter out the CPU accelerator, compare the value of the device_path property of the accelerator that's
returned by accelerator::get_all with the value of the accelerator::cpu_accelerator. For more information, see the
"Special Accelerators" section in this article.

Shared memory is memory that can be accessed by both the CPU and the accelerator. The use of shared memory
eliminates or significantly reduces the overhead of copying data between the CPU and the accelerator. Although
the memory is shared, it cannot be accessed concurrently by both the CPU and the accelerator, and doing so
causes undefined behavior. The accelerator property supports_cpu_shared_memory returns true if the accelerator
supports shared memory, and the default_cpu_access_type property gets the default access_type for memory
allocated on the accelerator —for example, arrays associated with the accelerator , or array_view objects
accessed on the accelerator .

The C++ AMP runtime automatically chooses the best default access_type for each accelerator , but the
performance characteristics (bandwidth and latency) of shared memory can be worse than those of dedicated
(non-shared) accelerator memory when reading from the CPU, writing from the CPU, or both. If shared memory

#include <amp.h>
#include <iostream>

using namespace Concurrency;

int main()
{
 accelerator acc = accelerator(accelerator::default_accelerator);

 // Early out if the default accelerator doesn’t support shared memory.
 if (!acc.supports_cpu_shared_memory)
 {
 std::cout << "The default accelerator does not support shared memory" << std::endl;
 return 1;
 }

 // Override the default CPU access type.
 acc.set_default_cpu_access_type(access_type_read_write);

 // Create an accelerator_view from the default accelerator. The
 // accelerator_view reflects the default_cpu_access_type of the
 // accelerator it’s associated with.
 accelerator_view acc_v = acc.default_view;
}

Changing the Default Accelerator

performs as well as dedicated memory for reading and writing from the CPU, the runtime defaults to
access_type_read_write ; otherwise, the runtime chooses a more conservative default access_type , and allows the

app to override it if the memory access patterns of its computation kernels benefit from a different access_type .

The following code example shows how to determine whether the default accelerator supports shared memory,
and then overrides its default access type and creates an accelerator_view from it.

An accelerator_view always reflects the default_cpu_access_type of the accelerator it’s associated with, and it
provides no interface to override or change its access_type .

You can change the default accelerator by calling the accelerator::set_default method. You can change the
default accelerator only once per app execution and you must change it before any code is executed on the GPU.
Any subsequent function calls to change the accelerator return false. If you want to use a different accelerator in a
call to parallel_for_each , read the "Using Multiple Accelerators" section in this article. The following code
example sets the default accelerator to one that is not emulated, is not connected to a display, and supports
double-precision.

bool pick_accelerator()
{
 std::vector<accelerator> accs = accelerator::get_all();
 accelerator chosen_one;

 auto result = std::find_if(accs.begin(), accs.end(),
 [] (const accelerator& acc) {
 return !acc.is_emulated &&
 acc.supports_double_precision &&
 !acc.has_display;
 });

 if (result != accs.end()) {
 chosen_one = *(result);
 }

 std::wcout <<chosen_one.description <<std::endl;
 bool success = accelerator::set_default(chosen_one.device_path);
 return success;
}

Using Multiple Accelerators

Special Accelerators

Interoperability

See also

There are two ways to use multiple accelerators in your app:

You can pass accelerator_view objects to the calls to the parallel_for_each method.

You can construct an array object using a specific accelerator_view object. The C+AMP runtime will pick
up the accelerator_view object from the captured array object in the lambda expression.

The device paths of three special accelerators are available as properties of the accelerator class:

accelerator::direct3d_ref Data Member: This single-threaded accelerator uses software on the CPU to
emulate a generic graphics card. It's used by default for debugging, but it's not useful in production because
it's slower than the hardware accelerators. Additionally, it's available only in the DirectX SDK and the
Windows SDK, and it's unlikely to be installed on your customers' computers. For more information, see
Debugging GPU Code.

accelerator::direct3d_warp Data Member: This accelerator provides a fallback solution for executing C++
AMP code on multi-core CPUs that use Streaming SIMD Extensions (SSE).

accelerator::cpu_accelerator Data Member: You can use this accelerator for setting up staging arrays. It
cannot execute C++ AMP code. For more information, see the Staging Arrays in C++ AMP post on the
Parallel Programming in Native Code blog.

The C++ AMP runtime supports interoperability between the accelerator_view class and the Direct3D
ID3D11Device interface. The create_accelerator_view method takes an IUnknown interface and returns an
accelerator_view object. The get_device method takes an accelerator_view object and returns an IUnknown

interface.

C++ AMP (C++ Accelerated Massive Parallelism)
Debugging GPU Code

https://docs.microsoft.com/visualstudio/debugger/debugging-gpu-code
https://blogs.msdn.microsoft.com/nativeconcurrency/2011/11/09/staging-arrays-in-c-amp/
https://docs.microsoft.com/windows/desktop/api/d3d11/nn-d3d11-id3d11device
https://docs.microsoft.com/visualstudio/debugger/debugging-gpu-code

accelerator_view Class

Reference (C++ AMP)
3/4/2019 • 2 minutes to read • Edit Online

NOTE

In This Section

Related Sections

This section contains reference information for the C++ Accelerated Massive Parallelism (C++ AMP) runtime.

The C++ language standard reserves the use of identifiers that begin with an underscore (_) character for implementations
such as libraries. Do not use names beginning with an underscore in your code. The behavior of code elements whose names
follow this convention are not guaranteed and are subject to change in future releases. For these reasons, such code
elements are omitted from this documentation.

Concurrency Namespace (C++ AMP)
Provides classes and functions that enable the acceleration of C++ code on data parallel hardware.

Concurrency::direct3d Namespace
Provides functions that support D3D interoperability. Enables seamless use of D3D resources for compute in
AMP code and the use of resources created in AMP in D3D code, without creating redundant intermediate copies.
You can use C++ AMP to incrementally accelerate the compute-intensive sections of your DirectX applications
and use the D3D API on data produced from AMP computations.

Concurrency::fast_math Namespace
Functions in the fast_math namespace are not C99-compliant. Only single-precision versions of each function are
provided. These functions use the DirectX intrinsic functions, which are faster than the corresponding functions in
the precise_math namespace and do not require extended double-precision support on the accelerator, but they
are less accurate. There are two versions of each function for source-level compatibility with C99 code; both
versions take and return single-precision values.

Concurrency::graphics Namespace
Provides types and functions that are designed for graphics programming.

Concurrency::precise_math Namespace
Functions in the precise_math namespace are C99 compliant. Both single-precision and double-precision versions
of each function are included. These functions—this includes the single-precision functions—require extended
double-precision support on the accelerator.

C++ AMP (C++ Accelerated Massive Parallelism)
C++ AMP accelerates the execution of your C++ code by taking advantage of the data-parallel hardware that's
commonly present as a graphics processing unit (GPU) on a discrete graphics card.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/reference-cpp-amp.md

Concurrency Namespace (C++ AMP)
3/4/2019 • 5 minutes to read • Edit Online

Syntax
namespace Concurrency;

Members
Namespaces

NAME DESCRIPTION

Concurrency::direct3d Namespace Provides functions that support D3D interoperability.
Enables seamless use of D3D resources for compute in AMP
code and the use of resources created in AMP in D3D code,
without creating redundant intermediate copies. You can use
C++ AMP to incrementally accelerate the compute-intensive
sections of your DirectX applications and use the D3D API
on data produced from AMP computations.

Concurrency::fast_math Namespace Functions in the fast_math namespace are not C99-
compliant. Only single-precision versions of each function
are provided. These functions use the DirectX intrinsic
functions, which are faster than the corresponding functions
in the precise_math namespace and do not require
extended double-precision support on the accelerator, but
they are less accurate. There are two versions of each
function for source-level compatibility with C99 code; both
versions take and return single-precision values.

Concurrency::graphics Namespace Provides types and functions that are designed for graphics
programming.

Concurrency::precise_math Namespace Functions in the precise_math namespace are C99
compliant. Both single-precision and double-precision
versions of each function are included. These functions—this
includes the single-precision functions—require extended
double-precision support on the accelerator.

Classes

NAME DESCRIPTION

accelerator Class Represents an abstraction of a physical DP-optimized
compute node.

accelerator_view Class Represents a virtual device abstraction on a C++ AMP data-
parallel accelerator.

Provides classes and functions that accelerate the execution of C++ code on data-parallel hardware. For more
information, see C++ AMP Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-namespace-cpp-amp.md

accelerator_view_removed Class The exception that is thrown when an underlying DirectX call
fails due to the Windows timeout-detection-and-recovery
mechanism.

array Class A data aggregate on an accelerator_view in the grid
domain. It is a collection of variables, one for each element in
a grid domain. Each variable holds a value that corresponds
to some C++ type.

array_view Class Represents a view into the data in an array<T,N>.

completion_future Class Represents a future that corresponds to a C++ AMP
asynchronous operation.

extent Class Represents a vector of N integer values that specify the
bounds of an N-dimensional space that has an origin of 0.
The values in the coordinate vector are ordered from most
significant to least significant. For example, in Cartesian 3-
dimensional space, the extent vector (7,5,3) represents a
space in which the z coordinate ranges from 0 to 7, the y
coordinate ranges from 0 to 5, and the x coordinate ranges
from 0 to 3.

index Class Defines an N-dimensional index point.

invalid_compute_domain Class The exception that's thrown when the runtime can't start a
kernel by using the compute domain specified at the
parallel_for_each call site.

out_of_memory Class The exception that is thrown when a method fails because of
a lack of system or device memory.

runtime_exception Class The base type for exceptions in the C++ AMP library.

tile_barrier Class A capability class that is only creatable by the system and is
passed to a tiled parallel_for_each lambda as part of the
tiled_index parameter. It provides one method, wait() ,

whose purpose is to synchronize execution of threads that
are running in the thread group (tile).

tiled_extent Class A tiled_extent object is an extent object of one to
three dimensions that subdivides the extent space into one-
dimensional, two-dimensional, or three-dimensional tiles.

tiled_index Class Provides an index into a tiled_grid object. This class has
properties to access element relative to the local tile origin
and relative to the global origin.

uninitialized_object Class The exception that is thrown when an uninitialized object is
used.

unsupported_feature Class The exception that is thrown when an unsupported feature
is used.

NAME DESCRIPTION

Enumerations

NAME DESCRIPTION

access_type Enumeration Specifies the data access type.

queuing_mode Enumeration Specifies the queuing modes that are supported on the
accelerator.

Operators

OPERATOR DESCRIPTION

operator== Operator (C++ AMP) Determines whether the specified data structures are equal.

operator!= Operator (C++ AMP) Determines whether the specified data structures are
unequal.

operator+ Operator (C++ AMP) Computes the component-wise sum of the specified
arguments.

operator- Operator (C++ AMP) Computes the component-wise difference between the
specified arguments.

operator* Operator (C++ AMP) Computes the component-wise product of the specified
arguments.

operator/ Operator (C++ AMP) Computes the component-wise quotient of the specified
arguments.

operator% Operator (C++ AMP) Computes the modulus of the first specified argument by
the second specified argument.

Functions

NAME DESCRIPTION

all_memory_fence Blocks execution of all threads in a tile until all memory
accesses have been completed.

amp_uninitialize Uninitializes the C++ AMP runtime.

atomic_compare_exchange Overloaded. If the value stored at the specified location
compares equal to the first specified value, then the second
specified value is stored in the same location as an atomic
operation.

atomic_exchange Overloaded. Sets the value stored at the specified location to
the specified value as an atomic operation.

atomic_fetch_add Overloaded. Sets the value stored at the specified location to
the sum of that value and a specified value as an atomic
operation.

atomic_fetch_and Overloaded. Sets the value stored at the specified location to
the bitwise and of that value and a specified value as an
atomic operation.

atomic_fetch_dec Overloaded. Decrements the value stored at the specified
location and stores the result in the same location as an
atomic operation.

atomic_fetch_inc Overloaded. Increments the value stored at the specified
location and stores the result in the same location as an
atomic operation.

atomic_fetch_max Overloaded. Sets the value stored at the specified location to
the larger of that value and a specified value as an atomic
operation.

atomic_fetch_min Overloaded. Sets the value stored at the specified location to
the smaller of that value and a specified value as an atomic
operation.

atomic_fetch_or Overloaded. Sets the value stored at the specified location to
the bitwise or of that value and a specified value as an
atomic operation.

atomic_fetch_sub Overloaded. Sets the value stored at the specified location to
the difference of that value and a specified value as an
atomic operation.

atomic_fetch_xor Overloaded. Sets the value stored at the specified location to
the bitwise xor of that value and a specified value as an
atomic operation.

copy Copies a C++ AMP object. All synchronous data transfer
requirements are met. Data can't be copied when code is
running code on an accelerator. The general form of this
function is copy(src, dest) .

copy_async Copies a C++ AMP object and returns completion_future
that can be waited on. Data can't be copied when code is
running on an accelerator. The general form of this function
is copy(src, dest) .

direct3d_abort Aborts the execution of a function that has the
restrict(amp) restriction clause.

direct3d_errorf Prints a formatted string to the Visual Studio Output
window and raises a runtime_exception exception that has
the same formatting string.

direct3d_printf Prints a formatted string to the Visual Studio Output
window. It is called from a function that has the
restrict(amp) restriction clause.

global_memory_fence Blocks execution of all threads in a tile until all global
memory accesses have been completed.

parallel_for_each Function (C++ AMP) Runs a function across the compute domain.

NAME DESCRIPTION

tile_static_memory_fence Blocks execution of all threads in a tile until tile_static

memory accesses have been completed.

NAME DESCRIPTION

Constants
NAME DESCRIPTION

HLSL_MAX_NUM_BUFFERS Constant The maximum number of buffers allowed by DirectX.

MODULENAME_MAX_LENGTH Constant Stores the maximum length of the module name. This value
must be the same on the compiler and the runtime.

Requirements

See also

Header: amp.h

Reference (C++ AMP)

Concurrency namespace functions (AMP)
3/4/2019 • 10 minutes to read • Edit Online

all_memory_fence amp_uninitialize atomic_compare_exchange

atomic_exchange Function (C++ AMP) atomic_fetch_add Function (C++ AMP) atomic_fetch_and Function (C++ AMP)

atomic_fetch_dec atomic_fetch_inc atomic_fetch_max

atomic_fetch_min atomic_fetch_or Function (C++ AMP) atomic_fetch_sub Function (C++ AMP)

atomic_fetch_xor Function (C++ AMP) copy copy_async

direct3d_abort direct3d_errorf direct3d_printf

global_memory_fence parallel_for_each Function (C++ AMP) tile_static_memory_fence

all_memory_fence

inline void all_memory_fence(const tile_barrier& _Barrier) restrict(amp);

Parameters

amp_uninitialize

void __cdecl amp_uninitialize();

atomic_compare_exchange

Blocks execution of all threads in a tile until all memory accesses have been completed. This ensures that all
memory accesses are visible to other threads in the thread tile, and are executed in program order.

_Barrier
A tile_barrier object.

Uninitializes the C++ AMP runtime. It is legal to call this function multiple times during an applications lifetime.
Calling any C++ AMP API afer calling this function will reinitialize the C++ AMP runtime. Note that it is illegal to
use C++ AMP objects across calls to this function and doing so will result in undefined behavior. Also, concurrently
calling this function and any other AMP APIs is illegal and would result in undefined behavior.

Atomically compares the value stored at a memory location specified in the first argument for equality with the
value of the second specified argument, and if the values are the same, the value at the memory location is
changed to that of the third specified argument.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-namespace-functions-amp.md

inline bool atomic_compare_exchange(
 Inout int* _Dest,
 Inout int* _Expected_value,
 int value
) restrict(amp)

inline bool atomic_compare_exchange(
 Inout unsigned int* _Dest,
 Inout unsigned int* _Expected_value,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_exchange Function (C++ AMP)

inline int atomic_exchange(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_exchange(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

inline float atomic_exchange(
 Inout float* _Dest,
 float value
) restrict(amp)

Parameters

Return Value

atomic_fetch_add Function (C++ AMP)

_Dest
The location from which one of the values to be compared is read, and to which the new value, if any, is to be
stored.

_Expected_value
The location from which the second value to be compared is read.

value
The value to be stored to the memory location specified in by _Dest if _Dest is equal to _Expected_value .

true if the operation is successful; otherwise, false.

Sets the value of destination location as an atomic operation.

_Dest
Pointer to the destionation location.

value
The new value.

The original value of the destination location.

Atomically add a value to the value of a memory location.

inline int atomic_fetch_add(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_add(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_and Function (C++ AMP)

inline int atomic_fetch_and(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_and(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_dec

inline int atomic_fetch_dec(_Inout_ int* _Dest
) restrict(amp)

inline unsigned int atomic_fetch_dec(_Inout_ unsigned int* _Dest) restrict(amp);

Parameters

_Dest
Pointer to the memory location.

value
The value to be added.

The original value of the memory location.

Atomically performs a bitwise AND operation of a value and the value of a memory location.

_Dest
Pointer to the memory location.

value
The value to use in the bitwise AND calculation.

The original value of the memory location.

Atomically decrements the value stored at the specified memory location.

_Dest
The location in memory of the value to be decremented.

Return Value

atomic_fetch_inc

inline int atomic_fetch_inc(_Inout_ int* _Dest) restrict(amp);

inline unsigned int atomic_fetch_inc(_Inout_ unsigned int* _Dest) restrict(amp);

Parameters

Return Value

atomic_fetch_max

inline int atomic_fetch_max(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_max(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_min

The original value stored at the memory location.

Atomically increments the value stored at the specified memory location.

_Dest
The location in memory of the value to be incremented.

The original value stored at the memory location.

Atomically computes the maximum value between the value stored at the memory location specified in the first
argument and the value specified in the second argument, and stores it at the same memory location.

_Dest
The location from which one of the values to be compared is read, and to which the maximum of the two values is
to be stored.

value
The value to be compared to the value at the specified location.

The original value stored at the specified location location.

Atomically computes the minimum value between the value stored at the memory location specified in the first
argument and the value specified in the second argument, and stores it at the same memory location.

inline int atomic_fetch_min(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_min(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_or Function (C++ AMP)

inline int atomic_fetch_or(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_or(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_sub Function (C++ AMP)

_Dest
The location from which one of the values to be compared is read, and to which the minimum of the two values is
to be stored.

value
The value to be compared to the value at the specified location.

The original value stored at the specified location location.

Atomically performs a bitwise OR operation with a value and the value of a memory location.

_Dest
Pointer to the memory location.

value
The value to use in the bitwise OR calculation.

The original value of the memory location.

Atomically subtracts a value from a memory location.

inline int atomic_fetch_sub(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_sub(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

atomic_fetch_xor Function (C++ AMP)

inline int atomic_fetch_xor(
 Inout int* _Dest,
 int value
) restrict(amp)

inline unsigned int atomic_fetch_xor(
 Inout unsigned int* _Dest,
 unsigned int value
) restrict(amp)

Parameters

Return Value

copy

_Dest
Pointer to the destionation location.

value
The value to be subtracted.

The original value of the memory location.

Atomically peforms an bitwise XOR operation of a value and a memory location.

_Dest
Pointer to the memory location.

value
The value to use in the XOR calculation.

The original value of the memory location.

Copies a C++ AMP object. All synchronous data transfer requirements are met. You can't copy data when running
code on an accelerator. The general form of this function is copy(src, dest) .

template <typename value_type, int _Rank>
void copy(
 const array<value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
void copy(
 InputIterator _SrcFirst,
 InputIterator _SrcLast,
 array<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
void copy(
 InputIterator _SrcFirst,
 array<value_type, _Rank>& _Dest);

template <typename OutputIterator, typename value_type, int _Rank>
void copy(
 const array<value_type, _Rank>& _Src,
 OutputIterator _DestIter);

template <typename value_type, int _Rank>
void copy(
 const array<value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
void copy(
 const array_view<const value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
void copy(
 const array_view<value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
void copy(
 const array_view<const value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
void copy(
 const array_view<value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
void copy(
 InputIterator _SrcFirst,
 InputIterator _SrcLast,
 array_view<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
void copy(
 InputIterator _SrcFirst,
 array_view<value_type, _Rank>& _Dest);

template <typename OutputIterator, typename value_type, int _Rank>
void copy(
 const array_view<value_type, _Rank>& _Src,
 OutputIterator _DestIter);

Parameters
_Dest
The object to copy to.

 copy_async

_DestIter
An output iterator to the beginning position at destination.

InputIterator
The type of the input interator.

OutputIterator
The type of the output iterator.

_Rank
The rank of the object to copy from or the object to copy to.

_Src
To object to copy.

_SrcFirst
A beginning iterator into the source container.

_SrcLast
An ending iterator into the source container.

value_type
The data type of the elements that are copied.

Copies a C++ AMP object and returns a completion_future object that can be waited on. You can't copy data when
running code on an accelerator. The general form of this function is copy(src, dest) .

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array<value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(InputIterator _SrcFirst, InputIterator _SrcLast,
 array<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(InputIterator _SrcFirst,
 array<value_type, _Rank>& _Dest);

template <typename OutputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array<value_type, _Rank>& _Src, OutputIterator _DestIter);

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array<value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array_view<const value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array_view<value_type, _Rank>& _Src,
 array<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array_view<const value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array_view<value_type, _Rank>& _Src,
 array_view<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(InputIterator _SrcFirst, InputIterator _SrcLast,
 array_view<value_type, _Rank>& _Dest);

template <typename InputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(InputIterator _SrcFirst,
 array_view<value_type, _Rank>& _Dest);

template <typename OutputIterator, typename value_type, int _Rank>
concurrency::completion_future copy_async(
 const array_view<value_type, _Rank>& _Src, OutputIterator _DestIter);

Parameters
_Dest
The object to copy to.

_DestIter
An output iterator to the beginning position at destination.

InputIterator
The type of the input interator.

OutputIterator

Return Value

direct3d_abort

void direct3d_abort() restrict(amp);

direct3d_errorf

void direct3d_errorf(
 const char *,
...) restrict(amp);

direct3d_printf

void direct3d_printf(
 const char *,
...) restrict(amp);

global_memory_fence

The type of the output iterator.

_Rank
The rank of the object to copy from or the object to copy to.

_Src
To object to copy.

_SrcFirst
A beginning iterator into the source container.

_SrcLast
An ending iterator into the source container.

value_type
The data type of the elements that are copied.

A future<void> that can be waited on.

Aborts the execution of a function with the restrict(amp) restriction clause. When the AMP runtime detects the
call, it raises a runtime_exception exception with the error message "Reference Rasterizer: Shader abort instruction
hit".

Prints a formatted string to the Visual Studio output window. It is called from a function with the restrict(amp)
restriction clause. When the AMP runtime detects the call, it raises a runtime_exception exception with the same
formatting string.

Prints a formatted string to the Visual Studio output window. It is called from a function with the restrict(amp)
restriction clause.

Blocks execution of all threads in a tile until all global memory accesses have been completed. This ensures that
global memory accesses are visible to other threads in the thread tile, and are executed in program order.

inline void global_memory_fence(const tile_barrier& _Barrier) restrict(amp);

Parameters

parallel_for_each Function (C++ AMP)

template <int _Rank, typename _Kernel_type>
void parallel_for_each(
 const extent<_Rank>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, int _Dim1, int _Dim2, typename _Kernel_type>
void parallel_for_each(
 const tiled_extent<_Dim0, _Dim1, _Dim2>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, int _Dim1, typename _Kernel_type>
void parallel_for_each(
 const tiled_extent<_Dim0, _Dim1>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, typename _Kernel_type>
void parallel_for_each(
 const tiled_extent<_Dim0>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Rank, typename _Kernel_type>
void parallel_for_each(
 const accelerator_view& _Accl_view,
 const extent<_Rank>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, int _Dim1, int _Dim2, typename _Kernel_type>
void parallel_for_each(
 const accelerator_view& _Accl_view,
 const tiled_extent<_Dim0, _Dim1, _Dim2>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, int _Dim1, typename _Kernel_type>
void parallel_for_each(
 const accelerator_view& _Accl_view,
 const tiled_extent<_Dim0, _Dim1>& _Compute_domain,
 const _Kernel_type& _Kernel);

template <int _Dim0, typename _Kernel_type>
void parallel_for_each(
 const accelerator_view& _Accl_view,
 const tiled_extent<_Dim0>& _Compute_domain,
 const _Kernel_type& _Kernel);

Parameters

_Barrier
A tile_barrier object

Runs a function across the compute domain. For more information, see C++ AMP Overview.

_Accl_view
The accelerator_view object to run the parallel computation on.

_Compute_domain
An extent object that contains the data for the computation.

 tile_static_memory_fence

inline void tile_static_memory_fence(const tile_barrier& _Barrier) restrict(amp);

Parameters

See also

_Dim0
The dimension of the tiled_extent object.

_Dim1
The dimension of the tiled_extent object.

_Dim2
The dimension of the tiled_extent object.

_Kernel
A lambda or function object that takes an argument of type "index<_Rank>" and performs the parallel
computation.

_Kernel_type
A lambda or functor.

_Rank
The rank of the extent.

Blocks execution of all threads in a tile until all outstanding tile_static memory accesses have been completed.
This ensures that tile_static memory accesses are visible to other threads in the thread tile, and that accesses are
executed in program order.

_Barrier
A tile_barrier object.

Concurrency Namespace (C++ AMP)

Concurrency namespace enums (AMP)
3/4/2019 • 2 minutes to read • Edit Online

access_type Enumeration queuing_mode Enumeration

access_type Enumeration

enum access_type;

Values

NAME DESCRIPTION

access_type_auto Automatically choose the best access_type for the
accelerator.

access_type_none Dedicated. The allocation is only accessible on the accelerator
and not on the CPU.

access_type_read Shared. The allocation is accessible on the accelerator and is
readable on the CPU.

access_type_read_write Shared. The allocation is accessible on the accelerator and is
writable on the CPU.

access_type_write Shared. The allocation is accessible on the accelerator and is
both readable and writable on the CPU.

queuing_mode Enumeration

enum queuing_mode;

Values

NAME DESCRIPTION

queuing_mode_immediate A queuing mode that specifies that any commands, for
example, parallel_for_each Function (C++ AMP), are sent to
the corresponding accelerator device as soon as they return to
the caller.

Enumeration type used to denote the various types of access to data.

Specifies the queuing modes that are supported on the accelerator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-namespace-enums-amp.md

queuing_mode_automatic A queuing mode that specifies that commands be queued up
on a command queue that corresponds to the
accelerator_view object. Commands are sent to the device
when accelerator_view::flush is called.

NAME DESCRIPTION

See also
Concurrency Namespace (C++ AMP)

Concurrency namespace operators (AMP)
3/4/2019 • 2 minutes to read • Edit Online

operator!= operator% operator*

operator+ operator- operator/

operator==

operator==

template <
 int _Rank,
 template <int> class _Tuple_type
>
bool operator== (
 const _Tuple_type<_Rank>& _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp);

Parameters

Return Value

operator!=

template <
 int _Rank,
 template <int> class _Tuple_type
>
bool operator!= (
 const _Tuple_type<_Rank>& _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp);

Parameters

Determines whether the specified arguments are equal.

_Rank
The rank of the tuple arguments.

_Lhs
One of the tuples to compare.

_Rhs
One of the tuples to compare.

true if the tuples are equal; otherwise, false.

Determines whether the specified arguments are not equal.

_Rank
The rank of the tuple arguments.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-namespace-operators-amp.md

Return Value

operator+

template <
 int _Rank,
 template <int> class _Tuple_type
>
class _Tuple_type> _Tuple_type<_Rank> operator+(
 const _Tuple_type<_Rank>& _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
class _Tuple_type> _Tuple_type<_Rank> operator+(
 const _Tuple_type<_Rank>& _Lhs,
 typename _Tuple_type<_Rank>::value_type _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
class _Tuple_type> _Tuple_type<_Rank> operator+(
 typename _Tuple_type<_Rank>::value_type _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator-

_Lhs
One of the tuples to compare.

_Rhs
One of the tuples to compare.

true if the tuples are not equal; otherwise, false.

Computes the component-wise sum of the specified arguments.

_Rank
The rank of the tuple arguments.

_Lhs
One of the arguments to add.

_Rhs
One of the arguments to add.

The component-wise sum of the specified arguments.

Computes the component-wise difference between the specified arguments.

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator-(
 const _Tuple_type<_Rank>& _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator-(
 const _Tuple_type<_Rank>& _Lhs,
 typename _Tuple_type<_Rank>::value_type _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator-(
 typename _Tuple_type<_Rank>::value_type _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator*

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator*(
 const _Tuple_type<_Rank>& _Lhs,
 typename _Tuple_type<_Rank>::value_type _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator*(
 typename _Tuple_type<_Rank>::value_type _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp, cpu);

Parameters

_Rank
The rank of the tuple arguments.

_Lhs
The argument to be subtracted from.

_Rhs
The argument to subtract.

The component-wise difference between the specified arguments.

Computes the component-wise product of the specified arguments.

_Rank
The rank of the tuple arguments.

Return Value

operator/

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator/(
 const _Tuple_type<_Rank>& _Lhs,
 typename _Tuple_type<_Rank>::value_type _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator/(
 typename _Tuple_type<_Rank>::value_type _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator%

_Lhs
One of the tuples to multiply.

_Rhs
One of the tuples to multiply.

The component-wise product of the specified arguments.

Computes the component-wise quotient of the specified arguments.

_Rank
The rank of the tuple arguments.

_Lhs
The tuple to be divided.

_Rhs
The tuple to divide by.

The component-wise quotient of the specified arguments.

Computes the modulus of the first specified argument by the second specified argument.

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator%(
 const _Tuple_type<_Rank>& _Lhs,
 typename _Tuple_type<_Rank>::value_type _Rhs) restrict(amp,cpu);

template <
 int _Rank,
 template <int> class _Tuple_type
>
_Tuple_type<_Rank> operator%(
 typename _Tuple_type<_Rank>::value_type _Lhs,
 const _Tuple_type<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

See also

_Rank
The rank of the tuple arguments.

_Lhs
The tuple from which the modulo is calculated.

_Rhs
The tuple to modulo by.

The result of the first specified argument modulus the second specified argument.

Concurrency Namespace

Concurrency namespace constants (AMP)
3/4/2019 • 2 minutes to read • Edit Online

HLSL_MAX_NUM_BUFFERS MODULENAME_MAX_LENGTH

HLSL_MAX_NUM_BUFFERS Constant

static const UINT HLSL_MAX_NUM_BUFFERS = 64 + 128;

MODULENAME_MAX_LENGTH Constant

static const UINT MODULENAME_MAX_LENGTH = 1024;

See also

The maximum number of buffers allowed by DirectX.

Stores the maximum length of the module name. This value must be the same on the compiler and runtime.

Concurrency Namespace (C++ AMP)

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-namespace-constants-amp.md

accelerator Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class accelerator;

Members
Public Constructors

NAME DESCRIPTION

accelerator Constructor Initializes a new instance of the accelerator class.

~accelerator Destructor Destroys the accelerator object.

Public Methods

NAME DESCRIPTION

create_view Creates and returns an accelerator_view object on this
accelerator.

get_all Returns a vector of accelerator objects that represent all
the available accelerators.

get_auto_selection_view Returns the auto-selection accelerator_view .

get_dedicated_memory Returns the dedicated memory for the accelerator , in
kilobytes.

get_default_cpu_access_type Returns the default access_type for buffers created on this
accelerator.

get_default_view Returns the default accelerator_view object that is
associated with the accelerator .

get_description Returns a short description of the accelerator device.

get_device_path Returns the path of the device.

get_has_display Determines whether the accelerator is attached to a
display.

An accelerator is a hardware capability that is optimized for data-parallel computing. An accelerator may be a
device attached to a PCIe bus (such as a GPU), or it might be an extended instruction set on the main CPU.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/accelerator-class.md

get_is_debug Determines whether the accelerator has the DEBUG layer
enabled for extensive error reporting.

get_is_emulated Determines whether the accelerator is emulated.

get_supports_cpu_shared_memory Determines whether the accelerator supports shared
memory

get_supports_double_precision Determines whether the accelerator is attached to a
display.

get_supports_limited_double_precision Determines whether the accelerator has limited support
for double-precision math.

get_version Returns the version of the accelerator .

set_default Returns the path of the default accelerator.

set_default_cpu_access_type Sets the default CPU access_typefor arrays and implicit
memory allocations made on this accelerator .

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator!= Compares this accelerator object with another and returns
false if they are the same; otherwise, returns true.

operator= Copies the contents of the specified accelerator object to
this one.

operator== Compares this accelerator object with another and returns
true if they are the same; otherwise, returns false.

Public Data Members

NAME DESCRIPTION

cpu_accelerator Gets a string constant for the CPU accelerator .

dedicated_memory Gets the dedicated memory for the accelerator , in
kilobytes.

default_accelerator Gets a string constant for the default accelerator .

default_cpu_access_type Gets or sets the default CPU access_typefor arrays and implicit
memory allocations made on this accelerator .

default_view Gets the default accelerator_view object that is associated
with the accelerator .

description Gets a short description of the accelerator device.

device_path Gets the path of the device.

direct3d_ref Gets a string constant for a Direct3D reference accelerator .

direct3d_warp Gets the string constant for an accelerator object that you
can use for executing C++ AMP code on multi-core CPUs
that use Streaming SIMD Extensions (SSE).

has_display Gets a Boolean value that indicates whether the
accelerator is attached to a display.

is_debug Indicates whether the accelerator has the DEBUG layer
enabled for extensive error reporting.

is_emulated Indicates whether the accelerator is emulated.

supports_cpu_shared_memory Indicates whether the accelerator supports shared
memory.

supports_double_precision Indicates whether the accelerator supports double-precision
math.

supports_limited_double_precision Indicates whether the accelerator has limited support for
double-precision math.

version Gets the version of the accelerator .

NAME DESCRIPTION

Inheritance Hierarchy

Remarks

Requirements

~accelerator

accelerator

An accelerator is a hardware capability that is optimized for data-parallel computing. An accelerator is often a
discrete GPU, but it can also be a virtual host-side entity such as a DirectX REF device, a WARP (a CPU-side
device that is accelerated by means of SSE instructions), or the CPU itself.

You can construct an accelerator object by enumerating the available devices, or by getting the default device,
the reference device, or the WARP device.

Header: amprt.h

Namespace: Concurrency

Destroys the accelerator object.

~accelerator();

Return Value

accelerator

accelerator();

explicit accelerator(const std::wstring& _Device_path);

accelerator(const accelerator& _Other);

Parameters

cpu_accelerator

static const wchar_t cpu_accelerator[];

create_view

accelerator_view create_view(queuing_mode qmode = queuing_mode_automatic);

Parameters

Return Value

dedicated_memory

__declspec(property(get= get_dedicated_memory)) size_t dedicated_memory;

default_accelerator

Initializes a new instance of the accelerator class.

_Device_path
The path of the physical device.

_Other
The accelerator to copy.

Gets a string constant for the CPU accelerator.

Creates and returns an accelerator_view object on this accelerator, using the specified queuing mode. When the
queuing mode is not specified, the new accelerator_view uses the queuing_mode::immediate queuing mode.

qmode
The queuing mode.

A new accelerator_view object on this accelerator, using the specified queuing mode.

Gets the dedicated memory for the accelerator , in kilobytes.

Gets a string constant for the default accelerator .

static const wchar_t default_accelerator[];

default_cpu_access_type

__declspec(property(get= get_default_cpu_access_type)) access_type default_cpu_access_type;

default_view

__declspec(property(get= get_default_view)) accelerator_view default_view;

description

__declspec(property(get= get_description)) std::wstring description;

device_path

__declspec(property(get= get_device_path)) std::wstring device_path;

direct3d_ref

static const wchar_t direct3d_ref[];

direct3d_warp

static const wchar_t direct3d_warp[];

get_all

static inline std::vector<accelerator> get_all();

Return Value

The default cpu access_typefor arrays and implicit memory allocations made on this accelerator .

Gets the default accelerator view that is associated with the accelerator .

Gets a short description of the accelerator device.

Gets the path of the accelerator. The path is unique on the system.

Gets a string constant for a Direct3D reference accelerator.

Gets the string constant for an accelerator object that you can use for executing your C++ AMP code on multi-
core CPUs using Streaming SIMD Extensions (SSE).

Returns a vector of accelerator objects that represent all the available accelerators.

get_auto_selection_view

static accelerator_view __cdecl get_auto_selection_view();

Return Value

get_dedicated_memory

size_t get_dedicated_memory() const;

Return Value

get_default_cpu_access_type

access_type get_default_cpu_access_type() const;

Return Value

get_default_view

accelerator_view get_default_view() const;

Return Value

get_description

std::wstring get_description() const;

Return Value

The vector of available accelerators

Returns the auto selection accelerator_view, which when specified as the parallel_for_each target results in the
target accelerator_view for executing the parallel_for_each kernel to be automatically selected by the runtime. For
all other purposes, the accelerator_view returned by this method is the same as the default accelerator_view of the
default accelerator

The auto selection accelerator_view.

Returns the dedicated memory for the accelerator , in kilobytes.

The dedicated memory for the accelerator , in kilobytes.

Gets the default cpu access_type for buffers created on this accelerator

The default cpu access_type for buffers created on this accelerator.

Returns the default accelerator_view object that is associated with the accelerator .

The default accelerator_view object that is associated with the accelerator .

Returns a short description of the accelerator device.

A short description of the accelerator device.

get_device_path

std::wstring get_device_path() const;

Return Value

get_has_display

bool get_has_display() const;

Return Value

get_is_debug

bool get_is_debug() const;

Return Value

get_is_emulated

bool get_is_emulated() const;

Return Value

get_supports_cpu_shared_memory

bool get_supports_cpu_shared_memory() const;

Return Value

get_supports_double_precision

Returns the path of the accelerator. The path is unique on the system.

The system-wide unique device instance path.

Returns a Boolean value that indicates whether the accelerator can output to a display.

true if the accelerator can output to a display; otherwise, false.

Determines whether the accelerator has the DEBUG layer enabled for extensive error reporting.

true if the accelerator has the DEBUG layer enabled for extensive error reporting. Otherwise, false.

Determines whether the accelerator is emulated.

true if the accelerator is emulated. Otherwise, false.

Returns a boolean value indicating whether the accelerator supports memory accessible both by the accelerator
and the CPU.

true if the accelerator supports CPU shared memory; otherwise, false.

Returns a Boolean value that indicates whether the accelerator supports double precision math, including fused

bool get_supports_double_precision() const;

Return Value

get_supports_limited_double_precision

bool get_supports_limited_double_precision() const;

Return Value

get_version

unsigned int get_version() const;

Return Value

has_display

__declspec(property(get= get_has_display)) bool has_display;

is_debug

__declspec(property(get= get_is_debug)) bool is_debug;

is_emulated

__declspec(property(get= get_is_emulated)) bool is_emulated;

operator!=

multiply add (FMA), division, reciprocal, and casting between int and double

true if the accelerator supports double precision math; otherwise, false.

Returns a Boolean value that indicates whether the accelerator has limited support for double precision math. If
the accelerator has only limited support, then fused multiply add (FMA), division, reciprocal, and casting between
int and double are not supported.

true if the accelerator has limited support for double precision math; otherwise, false.

Returns the version of the accelerator .

The version of the accelerator .

Gets a Boolean value that indicates whether the accelerator can output to a display.

Gets a Boolean value that indicates whether the accelerator has the DEBUG layer enabled for extensive error
reporting.

Gets a Boolean value that indicates whether the accelerator is emulated.

bool operator!= (const accelerator& _Other) const;

Parameters

Return Value

operator=

accelerator& operator= (const accelerator& _Other);

Parameters

Return Value

operator==

bool operator== (const accelerator& _Other) const;

Parameters

Return Value

set_default

static inline bool set_default(std::wstring _Path);

Parameters

Return Value

Compares this accelerator object with another and returns false if they are the same; otherwise, returns true.

_Other
The accelerator object to compare with this one.

false if the two accelerator objects are the same; otherwise, true.

Copies the contents of the specified accelerator object to this one.

_Other
The accelerator object to copy from.

A reference to this accelerator object.

Compares this accelerator object with another and returns true if they are the same; otherwise, returns false.

_Other
The accelerator object to compare with this one.

true if the other accelerator object is same as this accelerator object; otherwise, false.

Sets the default accelerator to be used for any operation that implicitly uses the default accelerator. This method
only succeeds if the runtime selected default accelerator has not already been used in an operation that implicitly
uses the default accelerator

_Path
The path to the accelerator.

set_default_cpu_access_type

bool set_default_cpu_access_type(access_type _Default_cpu_access_type);

Parameters

Return Value

supports_cpu_shared_memory

__declspec(property(get= get_supports_cpu_shared_memory)) bool supports_cpu_shared_memory;

supports_double_precision

__declspec(property(get= get_supports_double_precision)) bool supports_double_precision;

supports_limited_double_precision

__declspec(property(get= get_supports_limited_double_precision)) bool supports_limited_double_precision;

version

__declspec(property(get= get_version)) unsigned int version;

~accelerator_view

true if the call succeeds at setting the default accelerator. Otherwise, false.

Set the default cpu access_type for arrays created on this accelerator or for implicit memory allocations as part of
array_views accessed on this accelerator. This method only succeeds if the default_cpu_access_type for the
accelerator has not already been overriden by a previous call to this method and the runtime selected
default_cpu_access_type for this accelerator has not yet been used for allocating an array or for an implicit
memory allocation backing an array_view accessed on this accelerator.

_Default_cpu_access_type
The default cpu access_type to be used for array/array_view memory allocations on this accelerator.

A boolean value indicating if the default cpu access_type for the accelerator was successfully set.

Gets a Boolean value indicating whether the accelerator supports shared memory.

Gets a Boolean value that indicates whether the accelerator supports double precision math.

Gets a Boolean value that indicates whether the accelerator has limited support for double precision math. If the
accelerator has only limited support, then fused multiply add (FMA), division, reciprocal, and casting between int

and double are not supported.

Gets the version of the accelerator .

Destroys the accelerator_view object.

~accelerator_view();

Return Value

accelerator

__declspec(property(get= get_accelerator)) Concurrency::accelerator accelerator;

accelerator_view

accelerator_view(const accelerator_view& _Other);

Parameters

create_marker

concurrency::completion_future create_marker();

Return Value

flush

void flush();

Return Value

get_accelerator

accelerator get_accelerator() const;

Return Value

get_is_auto_selection

Gets the accelerator object for the accelerator_view object.

Initializes a new instance of the accelerator_view class by copying an existing accelerator_view object.

_Other
The accelerator_view object to copy.

Returns a future to track the completion of all commands submitted so far to this accelerator_view object.

A future to track the completion of all commands submitted so far to this accelerator_view object.

Submits all pending commands queued to the accelerator_view object to the accelerator for execution.

Returns void .

Returns the accelerator object for the accelerator_view object.

The accelerator object for the accelerator_view object.

bool get_is_auto_selection() const;

Return Value

get_is_debug

bool get_is_debug() const;

Return Value

get_queuing_mode

queuing_mode get_queuing_mode() const;

Return Value

get_version

unsigned int get_version() const;

Return Value

is_auto_selection

__declspec(property(get= get_is_auto_selection)) bool is_auto_selection;

is_debug

Returns a Boolean value that indicates whether the runtime will automatically select an appropriate accelerator
when the accelerator_view is passed to a parallel_for_each.

true if the runtime will automatically select an appropriate accelerator ; otherwise, false.

Returns a Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled for
extensive error reporting.

A Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled for extensive
error reporting.

Returns the queuing mode for the accelerator_view object.

The queuing mode for the accelerator_view object.

Returns the version of the accelerator_view.

The version of the accelerator_view .

Gets a Boolean value that indicates whether the runtime will automatically select an appropriate accelerator when
the accelerator_view is passed to a parallel_for_each.

Gets a Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled for
extensive error reporting.

__declspec(property(get= get_is_debug)) bool is_debug;

operator!=

bool operator!= (const accelerator_view& _Other) const;

Parameters

Return Value

operator=

accelerator_view& operator= (const accelerator_view& _Other);

Parameters

Return Value

operator==

bool operator== (const accelerator_view& _Other) const;

Parameters

Return Value

queuing_mode

__declspec(property(get= get_queuing_mode)) Concurrency::queuing_mode queuing_mode;

Compares this accelerator_view object with another and returns false if they are the same; otherwise, returns
true .

_Other
The accelerator_view object to compare with this one.

false if the two objects are the same; otherwise, true.

Copies the contents of the specified accelerator_view object into this one.

_Other
The accelerator_view object to copy from.

A reference to the modified accelerator_view object.

Compares this accelerator_view object with another and returns true if they are the same; otherwise, returns
false.

_Other
The accelerator_view object to compare with this one.

true if the two objects are the same; otherwise, false.

Gets the queuing mode for the accelerator_view object.

version

__declspec(property(get= get_version)) unsigned int version;

wait

void wait();

Return Value

See also

Gets the version of the accelerator_view.

Waits for all commands submitted to the accelerator_view object to finish.

Returns void .

Concurrency Namespace (C++ AMP)

accelerator_view Class
5/10/2019 • 4 minutes to read • Edit Online

Syntax

class accelerator_view;

Members
Public Constructors

NAME DESCRIPTION

accelerator_view Constructor Initializes a new instance of the accelerator_view class.

~accelerator_view Destructor Destroys the accelerator_view object.

Public Methods

NAME DESCRIPTION

create_marker Returns a future to track the completion of all commands
submitted so far to this accelerator_view object.

flush Submits all pending commands queued to the
accelerator_view object to the accelerator for

execution.

get_accelerator Returns the accelerator object for the
accelerator_view object.

get_is_auto_selection Returns a Boolean value that indicates whether the
runtime will automatically select an appropriate
accelerator when the accelerator_view object is
passed to a parallel_for_each.

get_is_debug Returns a Boolean value that indicates whether the
accelerator_view object has the DEBUG layer enabled

for extensive error reporting.

get_queuing_mode Returns the queuing mode for the accelerator_view

object.

get_version Returns the version of the accelerator_view .

wait Waits for all commands submitted to the
accelerator_view object to finish.

Public Operators

Represents a virtual device abstraction on a C++ AMP data-parallel accelerator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/accelerator-view-class.md

NAME DESCRIPTION

operator!= Compares this accelerator_view object with another
and returns false if they are the same; otherwise, returns
true.

operator= Copies the contents of the specified accelerator_view

object into this one.

operator== Compares this accelerator_view object with another
and returns true if they are the same; otherwise, returns
false.

Public Data Members

NAME DESCRIPTION

accelerator Gets the accelerator object for the
accelerator_view object.

is_auto_selection Gets a Boolean value that indicates whether the runtime
will automatically select an appropriate accelerator when
the accelerator_view object is passed to a
parallel_for_each.

is_debug Gets a Boolean value that indicates whether the
accelerator_view object has the DEBUG layer enabled

for extensive error reporting.

queuing_mode Gets the queuing mode for the accelerator_view

object.

version Gets the version of the accelerator.

Inheritance Hierarchy

Remarks

Requirements

accelerator_view

An accelerator_view object represents a logical, isolated view of an accelerator. A single physical compute
device can have many logical, isolated accelerator_view objects. Each accelerator has a default
accelerator_view object. Additional accelerator_view objects can be created.

Physical devices can be shared among many client threads. Client threads can cooperatively use the same
accelerator_view object of an accelerator, or each client can communicate with a compute device via an

independent accelerator_view object for isolation from other client threads.

An accelerator_view object can have one of two queuing_mode Enumeration states. If the queuing mode
is immediate , commands like copy and parallel_for_each are sent to the corresponding accelerator
device as soon as they return to the caller. If the queuing mode is deferred , such commands are queued
up on a command queue that corresponds to the accelerator_view object. Commands are not actually
sent to the device until flush() is called.

accelerator

Syntax

__declspec(property(get= get_accelerator)) Concurrency::accelerator accelerator;

accelerator_view

Syntax

accelerator_view(const accelerator_view & other);

Parameters

create_marker

Syntax

concurrency::completion_future create_marker();

Return Value

flush

Syntax

void flush();

Return Value

get_accelerator

Syntax

Header: amprt.h

Namespace: Concurrency

Gets the accelerator object for the accelerator_view object.

Initializes a new instance of the accelerator_view class by copying an existing accelerator_view object.

other
The accelerator_view object to copy.

Returns a future to track the completion of all commands submitted so far to this accelerator_view object.

A future to track the completion of all commands submitted so far to this accelerator_view object.

Submits all pending commands queued to the accelerator_view object to the accelerator for execution.

Returns void .

Returns the accelerator object for the accelerator_view object.

accelerator get_accelerator() const;

Return Value

get_is_auto_selection

Syntax

bool get_is_auto_selection() const;

Return Value

get_is_debug

Syntax

bool get_is_debug() const;

Return Value

get_queuing_mode

Syntax

queuing_mode get_queuing_mode() const;

Return Value

get_version

Syntax

unsigned int get_version() const;

Return Value

The accelerator object for the accelerator_view object.

Returns a Boolean value that indicates whether the runtime will automatically select an appropriate
accelerator when the accelerator_view is passed to a parallel_for_each.

true if the runtime will automatically select an appropriate accelerator ; otherwise, false.

Returns a Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled
for extensive error reporting.

A Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled for
extensive error reporting.

Returns the queuing mode for the accelerator_view object.

The queuing mode for the accelerator_view object.

Returns the version of the accelerator_view.

The version of the accelerator_view .

is_auto_selection

Syntax

__declspec(property(get= get_is_auto_selection)) bool is_auto_selection;

is_debug

Syntax

__declspec(property(get= get_is_debug)) bool is_debug;

operator!=

Syntax

bool operator!= (const accelerator_view & other) const;

Parameters

Return Value

operator=

Syntax

accelerator_view & operator= (const accelerator_view & other);

Parameters

Return Value

operator==

Gets a Boolean value that indicates whether the runtime will automatically select an appropriate
accelerator when the accelerator_view is passed to a parallel_for_each.

Gets a Boolean value that indicates whether the accelerator_view object has the DEBUG layer enabled for
extensive error reporting.

Compares this accelerator_view object with another and returns false if they are the same; otherwise,
returns true.

other
The accelerator_view object to compare with this one.

false if the two objects are the same; otherwise, true.

Copies the contents of the specified accelerator_view object into this one.

other
The accelerator_view object to copy from.

A reference to the modified accelerator_view object.

Compares this accelerator_view object with another and returns true if they are the same; otherwise,
returns false.

Syntax

bool operator== (const accelerator_view & other) const;

Parameters

Return Value

queuing_mode

Syntax

__declspec(property(get= get_queuing_mode)) Concurrency::queuing_mode queuing_mode;

version

Syntax

__declspec(property(get= get_version)) unsigned int version;

wait

Syntax

void wait();

Return Value

Remarks

~accelerator_view

Syntax

~accelerator_view();

See also

other
The accelerator_view object to compare with this one.

true if the two objects are the same; otherwise, false.

Gets the queuing mode for the accelerator_view object.

Gets the version of the accelerator_view.

Waits for all commands submitted to the accelerator_view object to finish.

Returns void .

If the queuing_mode is immediate , this method returns immediately without blocking.

Destroys the accelerator_view object.

Concurrency Namespace (C++ AMP)

accelerator_view_removed Class
5/10/2019 • 2 minutes to read • Edit Online

Syntax
class accelerator_view_removed : public runtime_exception;

Members
Public Constructors

NAME DESCRIPTION

accelerator_view_removed Constructor Initializes a new instance of the accelerator_view_removed

class.

Public Methods

NAME DESCRIPTION

get_view_removed_reason Returns an HRESULT error code indicating the cause of the
accelerator_view object's removal.

Inheritance Hierarchy

Requirements

accelerator_view_removed

Syntax

The exception that is thrown when an underlying DirectX call fails due to the Windows timeout detection and
recovery mechanism.

exception

runtime_exception

out_of_memory

Header: amprt.h

Namespace: Concurrency

Initializes a new instance of the accelerator_view_removed class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/accelerator-view-removed-class.md

explicit accelerator_view_removed(
 const char * message,
 HRESULT view_removed_reason) throw();

explicit accelerator_view_removed(
 HRESULT view_removed_reason) throw();

Parameters

Return Value

get_view_removed_reason

Syntax

HRESULT get_view_removed_reason() const throw();

See also

message
A description of the error.

view_removed_reason
An HRESULT error code indicating the cause of removal of the accelerator_view object.

A new instance of the accelerator_view_removed class.

Returns an HRESULT error code indicating the cause of the accelerator_view object's removal.

Concurrency Namespace (C++ AMP)

array Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
template <typename value_type, int _Rank>
friend class array;

Parameters

Members
Public Constructors

NAME DESCRIPTION

array Constructor Initializes a new instance of the array class.

~array Destructor Destroys the array object.

Public Methods

NAME DESCRIPTION

copy_to Copies the contents of the array to another array.

data Returns a pointer to the raw data of the array.

get_accelerator_view Returns the accelerator_view object that represents the
location where the array is allocated. This property can be
accessed only on the CPU.

get_associated_accelerator_view Gets the second accelerator_view object that is passed as a
parameter when a staging constructor is called to instantiate
the array object.

get_cpu_access_type Returns the access_type of the array. This method can be
accessed only on the CPU.

get_extent Returns the extent object of the array.

reinterpret_as Returns a one-dimensional array that contains all the
elements in the array object.

Represents a data container used to move data to an accelerator.

value_type
The element type of the data.

_Rank
The rank of the array.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/array-class.md

section Returns a subsection of the array object that is at the
specified origin and, optionally, that has the specified extent.

view_as Returns an array_view object that is constructed from the
array object.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator std::vector<value_type> Uses copy(*this, vector) to implicitly convert the array
to a std::vector object.

operator() Returns the element value that is specified by the parameters.

operator[] Returns the element that is at the specified index.

operator= Copies the contents of the specified array object into this
one.

Public Constants

NAME DESCRIPTION

rank Constant Stores the rank of the array.

Public Data Members

NAME DESCRIPTION

accelerator_view Gets the accelerator_view object that represents the location
where the array is allocated. This property can be accessed
only on the CPU.

associated_accelerator_view Gets the second accelerator_view object that is passed as a
parameter when a staging constructor is called to instantiate
the array object.

cpu_access_type Gets the access_type that represents how the CPU can access
the storage of the array.

extent Gets the extent that defines the shape of the array.

Remarks
The type array<T,N> represents a dense and regular (not jagged) N-dimensional array that is located in a specific
location, such as an accelerator or the CPU. The data type of the elements in the array is T , which must be of a
type that is compatible with the target accelerator. Although the rank, N , (of the array is determined statically and
is part of the type, the extent of the array is determined by the runtime and is expressed by using class extent<N> .

An array can have any number of dimensions, although some functionality is specialized for array objects with
rank one, two, and three. If you omit the dimension argument, the default is 1.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

Inheritance Hierarchy

Requirements

~array

~array() restrict(cpu);

accelerator_view

__declspec(property(get= get_accelerator_view)) Concurrency::accelerator_view accelerator_view;

array

explicit array(
 const Concurrency::extent<_Rank>& _Extent) restrict(cpu);

explicit array(
 int _E0) restrict(cpu);

explicit array(
 int _E0,
 int _E1) restrict(cpu);

explicit array(
 int _E0,
 int _E1,
 int _E2) restrict(cpu);

array(

Array data is laid out contiguously in memory. Elements that differ by one in the least significant dimension are
adjacent in memory.

Arrays are logically considered to be value types, because when an array is copied to another array, a deep copy is
performed. Two arrays never point to the same data.

The array<T,N> type is used in several scenarios:

As a data container that can be used in computations on an accelerator.

As a data container to hold memory on the host CPU (that can be used to copy to and from other arrays).

As a staging object to act as a fast intermediary in host-to-device copies.

array

Header: amp.h

Namespace: Concurrency

Destroys the array object.

Gets the accelerator_view object that represents the location where the array is allocated. This property can be
accessed only on the CPU.

Initializes a new instance of the array class. There is no default constructor for array<T,N> . All constructors are
run on the CPU only. They cannot be executed on a Direct3D target.

array(
 const Concurrency::extent<_Rank>& _Extent,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

array(
 int _E0,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

array(
 int _E0,
 int _E1,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

array(
 int _E0,
 int _E1,
 int _E2,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

array(
 const Concurrency::extent<_Rank>& _Extent,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

array(
 int _E0,
 accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

array(
 int _E0,
 int _E1,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

array(
 int _E0,
 int _E1,
 int _E2,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first,
 _InputIterator _Src_last) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 _InputIterator _Src_first,
 _InputIterator _Src_last) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 _InputIterator _Src_first) restrict(cpu);

template <typename _InputIterator>

array(
 int _E0,
 int _E1,
 _InputIterator _Src_first,
 _InputIterator _Src_last) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 _InputIterator _Src_first) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 int _E2,
 _InputIterator _Src_first,
 _InputIterator _Src_last) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 int _E2,
 _InputIterator _Src_first) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 _InputIterator _Src_first,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,

 int _E1,
 _InputIterator _Src_first,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 int _E2,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av,
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 int _E2,
 _InputIterator _Src_first,
 Concurrency::accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 const Concurrency::extent<_Rank>& _Extent,
 _InputIterator _Src_first,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 _InputIterator _Src_first,
 _InputIterator _Src_last,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0, _InputIterator _Src_first,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1, _InputIterator _Src_first, _InputIterator _Src_last,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1, _InputIterator _Src_first,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(

array(
 int _E0,
 int _E1,
 int _E2, _InputIterator _Src_first, _InputIterator _Src_last,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

template <typename _InputIterator>
array(
 int _E0,
 int _E1,
 int _E2, _InputIterator _Src_first,
 Concurrency::accelerator_view _Av,
 Concurrency::accelerator_view _Associated_Av) restrict(cpu);

explicit array(
 const array_view<const value_type, _Rank>& _Src) restrict(cpu);

array(
 const array_view<const value_type, _Rank>& _Src,
 accelerator_view _Av
 access_type _Cpu_access_type = access_type_auto) restrict(cpu);

array(
 const array_view<const value_type, _Rank>& _Src,
 accelerator_view _Av,
 accelerator_view _Associated_Av) restrict(cpu);

array(const array& _Other) restrict(cpu);

array(array&& _Other) restrict(cpu);

Parameters
_Associated_Av
An accelerator_view which specifies the preferred target location of the array.

_Av
An accelerator_view object that specifies the location of the array.

_Cpu_access_type
The desired access_type for the array on the CPU. This parameter has a default value of access_type_auto leaving
the CPU access_type determination to the runtime. The actual CPU access_type for the array can be queried
using the get_cpu_access_type method.

_Extent
The extent in each dimension of the array.

_E0
The most significant component of the extent of this section.

_E1
The next-to-most-significant component of the extent of this section.

_E2
The least significant component of the extent of this section.

_InputIterator
The type of the input interator.

_Src
To object to copy.

_Src_first

associated_accelerator_view

__declspec(property(get= get_associated_accelerator_view)) Concurrency::accelerator_view
associated_accelerator_view;

copy_to

void copy_to(
 array<value_type, _Rank>& _Dest) const ;

void copy_to(
 array_view<value_type, _Rank>& _Dest) const ;

Parameters

cpu_access_type

__declspec(property(get= get_cpu_access_type)) access_type cpu_access_type;

data

value_type* data() restrict(amp, cpu);

const value_type* data() const restrict(amp, cpu);

Return Value

A beginning iterator into the source container.

_Src_last
An ending iterator into the source container.

_Other
Other data source.

_Rank
The rank of the section.

value_type
The data type of the elements that are copied.

Gets the second accelerator_view object that is passed as a parameter when a staging constructor is called to
instantiate the array object.

Copies the contents of the array to another array .

_Dest
The array_view object to copy to.

Gets the CPU access_type allowed for this array.

Returns a pointer to the raw data of the array .

A pointer to the raw data of the array.

extent

__declspec(property(get= get_extent)) Concurrency::extent<_Rank> extent;

get_accelerator_view

Concurrency::accelerator_view get_accelerator_view() const;

Return Value

get_associated_accelerator_view

Concurrency::accelerator_view get_associated_accelerator_view() const ;

Return Value

get_cpu_access_type

access_type get_cpu_access_type() const restrict(cpu);

Return Value

get_extent

Concurrency::extent<_Rank> get_extent() const restrict(amp,cpu);

Return Value

operator std::vector<value_type>

operator std::vector<value_type>() const restrict(cpu);

Gets the extent object that defines the shape of the array .

Returns the accelerator_view object that represents the location where the array object is allocated. This
property can be accessed only on the CPU.

The accelerator_view object that represents the location where the array object is allocated.

Gets the second accelerator_view object that is passed as a parameter when a staging constructor is called to
instantiate the array object.

The second accelerator_view object passed to the staging constructor.

Returns the CPU access_type that's allowed for this array.

Returns the extent object of the array .

The extent object of the array .

Uses copy(*this, vector) to implicitly convert the array to a std::vector object.

Parameters

Return Value

operator()

value_type& operator() (const index<_Rank>& _Index) restrict(amp,cpu);

const value_type& operator() (const index<_Rank>& _Index) cons t restrict(amp,cpu);

value_type& operator() (int _I0, int _I1) restrict(amp,cpu);

const value_type& operator() (int _I0, int _I1) const restrict(amp,cpu) ;

value_type& operator() (int _I0, int _I1, int _I2) restrict(amp,cpu);

const value_type& operator() (int _I0, int _I1, int _I2) const restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Result_type operator()(int _I)
restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Const_result_type operator()(int _I) const
restrict(amp,cpu);

Parameters

Return Value

operator[]

value_type
The data type of the elements of the vector.

An object of type vector<T> that contains a copy of the data that is contained in the array.

Returns the element value that is specified by the parameters.

_Index
The location of the element.

_I0
The most significant component of the origin of this section.

_I1
The next-to-most-significant component of the origin of this section.

_I2
The least significant component of the origin of this section.

_I
The location of the element.

The element value specified by the parameters.

Returns the element that is at the specified index.

value_type& operator[](const index<_Rank>& _Index) restrict(amp,cpu);

const value_type& operator[]
 (const index<_Rank>& _Index) const restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Result_type operator[](int _i)
restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Const_result_type operator[](int _i) const
restrict(amp,cpu);

Parameters

Return Value

operator=

array& operator= (const array& _Other) restrict(cpu);

array& operator= (array&& _Other) restrict(cpu);

array& operator= (
 const array_view<const value_type, _Rank>& _Src) restrict(cpu);

Parameters

Return Value

rank

static const int rank = _Rank;

reinterpret_as

Syntax

_Index
The index.

_I
The index.

The element that is at the specified index.

Copies the contents of the specified array object.

_Other
The array object to copy from.

_Src
The array object to copy from.

A reference to this array object.

Stores the rank of the array .

Reinterprets the array through a one-dimensional array_view, which optionally may have a different value type
than the source array.

template <typename _Value_type2>
array_view<_Value_type2,1> reinterpret_as() restrict(amp,cpu);

template <typename _Value_type2>
array_view<const _Value_type2, 1> reinterpret_as() const restrict(amp,cpu);

Parameters

Return Value

Remarks

struct RGB { float r; float g; float b; };

array<RGB,3> a = ...;
array_view<float,1> v = a.reinterpret_as<float>();

assert(v.extent == 3*a.extent);

section

_Value_type2
The data type of the returned data.

An array_view or const array_view object that is based on the array, with the element type reinterpreted from T to
ElementType and the rank reduced from N to 1.

Sometimes it is convenient to view a multi-dimensional array as if it is a linear, one-dimensional array, possibly
with a different value type than the source array. You can use this method to achieve this. Caution Reinterpreting
an array object by using a different value type is a potentially unsafe operation. We recommend that you use this
functionality carefully.

The following code provides an example.

Returns a subsection of the array object that is at the specified origin and, optionally, that has the specified
extent.

array_view<value_type,_Rank> section(
 const Concurrency::index<_Rank>& _Section_origin,
 const Concurrency::extent<_Rank>& _Section_extent) restrict(amp,cpu);

array_view<const value_type,_Rank> section(
 const Concurrency::index<_Rank>& _Section_origin,
 const Concurrency::extent<_Rank>& _Section_extent) const restrict(amp,cpu);

array_view<value_type,_Rank> section(
 const Concurrency::extent<_Rank>& _Ext) restrict(amp,cpu);

array_view<const value_type,_Rank> section(
 const Concurrency::extent<_Rank>& _Ext) const restrict(amp,cpu);

array_view<value_type,_Rank> section(
 const index<_Rank>& _Idx) restrict(amp,cpu);

array_view<const value_type,_Rank> section(
 const index<_Rank>& _Idx) const restrict(amp,cpu);

array_view<value_type,1> section(
 int _I0,
 int _E0) restrict(amp,cpu);

array_view<const value_type,1> section(
 int _I0,
 int _E0) const restrict(amp,cpu);

array_view<value_type,2> section(
 int _I0,
 int _I1,
 int _E0,
 int _E1) restrict(amp,cpu);

array_view<const value_type,2> section(
 int _I0,
 int _I1,
 int _E0,
 int _E1) const restrict(amp,cpu);

array_view<value_type,3> section(
 int _I0,
 int _I1,
 int _I2,
 int _E0,
 int _E1,
 int _E2) restrict(amp,cpu);

array_view<const value_type,3> section(
 int _I0,
 int _I1,
 int _I2,
 int _E0,
 int _E1,
 int _E2) const restrict(amp,cpu);

Parameters
_E0
The most significant component of the extent of this section.

_E1
The next-to-most-significant component of the extent of this section.

_E2
The least significant component of the extent of this section.

Return Value

view_as

template <int _New_rank>
array_view<value_type,_New_rank> view_as(
 const Concurrency::extent<_New_rank>& _View_extent) restrict(amp,cpu);

template <int _New_rank>
array_view<const value_type,_New_rank> view_as(
 const Concurrency::extent<_New_rank>& _View_extent) const restrict(amp,cpu);

Parameters

Return Value

_Ext
The extent object that specifies the extent of the section. The origin is 0.

_Idx
The index object that specifies the location of the origin. The subsection is the rest of the extent.

_I0
The most significant component of the origin of this section.

_I1
The next-to-most-significant component of the origin of this section.

_I2
The least significant component of the origin of this section.

_Rank
The rank of the section.

_Section_extent
The extent object that specifies the extent of the section.

_Section_origin
The index object that specifies the location of the origin.

value_type
The data type of the elements that are copied.

Returns a subsection of the array object that is at the specified origin and, optionally, that has the specified
extent. When only the index object is specified, the subsection contains all elements in the associated grid that
have indexes that are larger than the indexes of the elements in the index object.

Reinterprets this array as an array_view of a different rank.

_New_rank
The rank of the extent object passed as a parameter.

_View_extent
The extent that is used to construct the new array_view object.

value_type
The data type of the elements in both the original array object and the returned array_view object.

The array_view object that is constructed.

See also
Concurrency Namespace (C++ AMP)

array_view Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
template <
 typename value_type,
 int _Rank = 1
>
class array_view : public _Array_view_base<_Rank, sizeof(value_type)/sizeof(int)>;

template <
 typename value_type,
 int _Rank
>
class array_view<const value_type, _Rank> : public _Array_view_base<_Rank, sizeof(value_type)/sizeof(int)>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

array_view Constructor Initializes a new instance of the array_view class. There is
no default constructor for array<T,N> . All constructors are
restricted to run on the CPU only and cannot be executed
on a Direct3D target.

~array_view Destructor Destroys the array_view object.

Public Methods

NAME DESCRIPTION

copy_to Copies the contents of the array_view object to the
specified destination by calling copy(*this, dest) .

data Returns a pointer to the raw data of the array_view .

discard_data Discards the current data underlying this view.

get_extent Returns the extent object of the array_view object.

Represents an N-dimensional view over the data held in another container.

value_type
The data type of the elements in the array_view object.

_Rank
The rank of the array_view object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/array-view-class.md

get_ref Returns a reference to the indexed element.

get_source_accelerator_view Returns the accelerator_view where the data source of the
array_view is located.

refresh Notifies the array_view object that its bound memory has
been modified outside the array_view interface. A call to
this method renders all cached information stale.

reinterpret_as Returns a one-dimensional array that contains all the
elements in the array_view object.

section Returns a subsection of the array_view object that's at
the specified origin and, optionally, that has the specified
extent.

synchronize Synchronizes any modifications made to the array_view

object back to its source data.

synchronize_async Asynchronously synchronizes any modifications made to the
array_view object back to its source data.

synchronize_to Synchronizes any modifications made to the array_view

object to the specified accelerator_view.

synchronize_to_async Asynchronously synchronizes any modifications made to the
array_view object to the specified accelerator_view.

view_as Produces an array_view object of a different rank using
this array_view object’s data.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator() Returns the value of the element that is specified by the
parameter or parameters.

operator[] Returns the element that is specified by the parameters.

operator= Copies the contents of the specified array_view object
into this one.

Public Constants

NAME DESCRIPTION

rank Constant Stores the rank of the array_view object.

Data Members

NAME DESCRIPTION

extent Gets the extent object that defines the shape of the
array_view object.

source_accelerator_view Gets the accelerator_view where the data source of the
array_view is located

value_type The value type of the array_view and the bound array.

Remarks
The array_view class represents a view into the data that is contained in an array object or a subsection of an
array object.

You can access the array_view object where the source data is located (locally) or on a different accelerator or a
coherence domain (remotely). When you access the object remotely, views are copied and cached as necessary.
Except for the effects of automatic caching, array_view objects have a performance profile similar to that of
array objects. There is a small performance penalty when you access the data through views.

There are three remote usage scenarios:

A view to a system memory pointer is passed by means of a parallel_for_each call to an accelerator and
accessed on the accelerator.

A view to an array located on an accelerator is passed by means of a parallel_for_each call to another
accelerator and is accessed there.

A view to an array located on an accelerator is accessed on the CPU.

In any one of these scenarios, the referenced views are copied by the runtime to the remote location and, if
modified by the calls to the array_view object, are copied back to the local location. The runtime might
optimize the process of copying changes back, might copy only changed elements, or might copy unchanged
portions also. Overlapping array_view objects on one data source are not guaranteed to maintain referential
integrity in a remote location.

You must synchronize any multithreaded access to the same data source.

The runtime makes the following guarantees regarding the caching of data in array_view objects:

All well-synchronized accesses to an array object and an array_view object on it in program order
obey a serial happens-before relationship.

All well-synchronized accesses to overlapping array_view objects on the same accelerator on a single
array object are aliased through the array object. They induce a total occurs-before relationship which

obeys program order. There is no caching. If the array_view objects are executing on different
accelerators, the order of access is undefined, creating a race condition.

When you create an array_view object using a pointer in system memory, you must change the view
array_view object only through the array_view pointer. Alternatively, you must call refresh() on one of the
array_view objects that are attached to the system pointer, if the underlying native memory is changed directly,

instead of through the array_view object.

Either action notifies the array_view object that the underlying native memory is changed and that any copies
that are located on an accelerator are outdated. If you follow these guidelines, the pointer-based views are
identical to those provided to views of data-parallel arrays.

Inheritance Hierarchy

Requirements

~array_view

~array_view()restrict(amp,cpu);

array_view

array_view(
 array<value_type, _Rank>& _Src)restrict(amp,cpu);

array_view(
 const array_view& _Other)restrict(amp,cpu);

explicit array_view(
 const Concurrency::extent<_Rank>& _Extent) restrict(cpu);

template <
 typename _Container
>
array_view(
 const Concurrency::extent<_Rank>& _Extent,
 _Container& _Src) restrict(cpu);

array_view(
 const Concurrency::extent<_Rank>& _Extent,
 value_type* _Src)restrict(amp,cpu);

explicit array_view(
 int _E0) restrict(cpu);

template <
 typename _Container
>
explicit array_view(
 _Container& _Src,
 typename std::enable_if<details::_Is_container<_Container>::type::value, void **>::type = 0)
restrict(cpu);

template <
 typename _Container
>
explicit array_view(
 int _E0,
 _Container& _Src) restrict(cpu);

_Array_view_shape

_Array_view_base

array_view

Header: amp.h

Namespace: Concurrency

Destroys the array_view object.

Initializes a new instance of the array_view class.

explicit array_view(
 int _E0,
 int _E1) __CPU_ONLY;

template <
 typename _Container
>
explicit array_view(
 int _E0,
 int _E1,
 _Container& _Src) restrict(cpu);

explicit array_view(
 int _E0,
 int _E1,
 int _E2) __CPU_ONLY;

template <
 typename _Container
>
explicit array_view(
 int _E0,
 int _E1,
 int _E2,
 _Container& _Src);

explicit array_view(
 int _E0,
 In value_type* _Src)restrict(amp,cpu);

template <
 typename _Arr_type,
 int _Size
>
explicit array_view(
 In _Arr_type (& _Src) [_Size]) restrict(amp,cpu);

explicit array_view(
 int _E0,
 int _E1,
 In value_type* _Src)restrict(amp,cpu);

explicit array_view(
 int _E0,
 int _E1,
 int _E2,
 In value_type* _Src)restrict(amp,cpu);

array_view(
 const array<value_type, _Rank>& _Src)restrict(amp,cpu);

array_view(
 const array_view<value_type, _Rank>& _Src)restrict(amp,cpu);

array_view(
 const array_view<const value_type, _Rank>& _Src)restrict(amp,cpu);

template <
 typename _Container
>
array_view(
 const Concurrency::extent<_Rank>& _Extent,
 const _Container& _Src) restrict(cpu);

template <
 typename _Container
>
explicit array_view(
 const _Container& _Src,

 typename std::enable_if<details::_Is_container<_Container>::type::value, void **>::type = 0)
restrict(cpu);

array_view(
 const Concurrency::extent<_Rank>& _Extent,
 const value_type* _Src)restrict(amp,cpu);

template <
 typename _Arr_type,
 int _Size
>
explicit array_view(
 const _In_ _Arr_type (& _Src) [_Size]) restrict(amp,cpu);

template <
 typename _Container
>
array_view(
 int _E0,
 const _Container& _Src);

template <
 typename _Container
>
array_view(
 int _E0,
 int _E1,
 const _Container& _Src);

template <
 typename _Container
>
array_view(
 int _E0,
 int _E1,
 int _E2,
 const _Container& _Src);

array_view(
 int _E0,
 const value_type* _Src)restrict(amp,cpu);

array_view(
 int _E0,
 int _E1,
 const value_type* _Src) restrict(amp,cpu);

array_view(
 int _E0,
 int _E1,
 int _E2,
 const value_type* _Src) restrict(amp,cpu);

Parameters
_Arr_type
The element type of a C-style array from which data is supplied.

_Container
A template argument that must specify a linear container that supports data() and size() members.

_E0
The most significant component of the extent of this section.

_E1
The next-to-most-significant component of the extent of this section.

copy_to

void copy_to(
 array<value_type, _Rank>& _Dest) const;

void copy_to(
 array_view<value_type, _Rank>& _Dest) const;

Parameters

data

value_type* data() const restrict(amp,
 cpu);

const value_type* data() const restrict(amp,
 cpu);

Return Value

discard_data

void discard_data() const restrict(cpu);

extent

_E2
The least significant component of the extent of this section.

_Extent
The extent in each dimension of this array_view .

_Other
An object of type array_view<T,N> from which to initialize the new array_view .

_Size
The size of a C-style array from which data is supplied.

_Src
A pointer to the source data that will be copied into the new array.

Copies the contents of the array_view object to the specified destination object by calling copy(*this, dest) .

_Dest
The object to copy to.

Returns a pointer to the raw data of the array_view .

A pointer to the raw data of the array_view .

Discards the current data underlying this view. This is an optimization hint to the runtime used to avoid copying
the current contents of the view to a target accelerator_view that it is accessed on, and its use is recommended
if the existing content is not needed. This method is a no-op when used in a restrict(amp) context

Gets the extent object that defines the shape of the array_view object.

__declspec(property(get= get_extent)) Concurrency::extent<_Rank> extent;

get_extent

Concurrency::extent<_Rank> get_extent() const restrict(cpu, amp);

Return Value

get_ref

value_type& get_ref(
 const index<_Rank>& _Index) const restrict(amp, cpu);

Parameters

Return Value

get_source_accelerator_view

accelerator_view get_source_accelerator_view() const;

Return Value

operator()

Returns the extent object of the array_view object.

The extent object of the array_view object

Get a reference to the element indexed by _Index. Unlike the other indexing operators for accessing the
array_view on the CPU, this method does not implicitly synchronize this array_view's contents to the CPU.
After accessing the array_view on a remote location or performing a copy operation involving this array_view
users are responsible to explicitly synchronize the array_view to the CPU before calling this method. Failure to
do so results in undefined behavior.

_Index
The index.

Reference to the element indexed by _Index

Returns the accelerator_view where the data source of the array_view is located. If the array_view does not have
a data source, this API throws a runtime_exception

Returns the value of the element that is specified by the parameter or parameters.

value_type& operator() (
 const index<_Rank>& _Index) const restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Result_type operator() (
 int _I) const restrict(amp,cpu);

value_type& operator() (
 int _I0,
 int _I1) const restrict(amp,cpu);

value_type& operator() (
 int _I0,
 int _I1,
 int _I2) const restrict(amp,cpu);

typename details::_Projection_result_type<value_type,_Rank>::_Const_result_type operator() (
 int _I) const restrict(amp,cpu);

Parameters

Return Value

operator[]

typename details::_Projection_result_type<value_type,_Rank>::_Const_result_type operator[] (
 int _I) const restrict(amp,cpu);

value_type& operator[] (
 const index<_Rank>& _Index) const restrict(amp,cpu);

Parameters

Return Value

_Index
The location of the element.

_I0
The index in the first dimension.

_I1
The index in the second dimension.

_I2
The index in the third dimension.

_I
The location of the element.

The value of the element that is specified by the parameter or parameters.

Returns the element that is specified by the parameters.

_Index
The index.

_I
The index.

The value of the element at the index, or an array_view projected on the most-significant dimension.

operator=

array_view& operator= (
 const array_view& _Other) restrict(amp,cpu);

array_view& operator= (
 const array_view<value_type, _Rank>& _Other) restrict(amp,cpu);

Parameters

Return Value

rank

static const int rank = _Rank;

refresh

void refresh() const restrict(cpu);

reinterpret_as

Syntax

template <
 typename _Value_type2
>
array_view< _Value_type2, _Rank> reinterpret_as() const restrict(amp,cpu);

template <
 typename _Value_type2
>
array_view<const _Value_type2, _Rank> reinterpret_as() const restrict(amp,cpu);

Parameters

Return Value

Copies the contents of the specified array_view object to this one.

_Other
The array_view object to copy from.

A reference to this array_view object.

Stores the rank of the array_view object.

Notifies the array_view object that its bound memory has been modified outside the array_view interface. A
call to this method renders all cached information stale.

Reinterprets the array_view through a one-dimensional array_view, which as an option can have a different
value type than the source array_view.

_Value_type2
The data type of the new array_view object.

An array_view object or a const array_view object that is based on this array_view , with the element type

Remarks

struct RGB { float r; float g; float b; };

array<RGB,3> a = ...;
array_view<float,1> v = a.reinterpret_as<float>();

assert(v.extent == 3*a.extent);

section

array_view section(
 const Concurrency::index<_Rank>& _Section_origin,
 const Concurrency::extent<_Rank>& _Section_extent) const restrict(amp,cpu);

array_view section(
 const Concurrency::index<_Rank>& _Idx) const restrict(amp,cpu);

array_view section(
 const Concurrency::extent<_Rank>& _Ext) const restrict(amp,cpu);

array_view section(
 int _I0,
 int _E0) const restrict(amp,cpu);

array_view section(
 int _I0,
 int _I1,
 int _E0,
 int _E1) const restrict(amp,cpu);

array_view section(
 int _I0,
 int _I1,
 int _I2,
 int _E0,
 int _E1,
 int _E2) const restrict(amp,cpu);

Parameters

converted from T to _Value_type2 , and the rank reduced from N to 1.

Sometimes it is convenient to view a multi-dimensional array as a linear, one-dimensional array, which may
have a different value type than the source array. You can achieve this on an array_view by using this method.

Warning Reinterpeting an array_view object by using a different value type is a potentially unsafe operation.
This functionality should be used with care.

Here's an example:

Returns a subsection of the array_view object that's at the specified origin and, optionally, that has the
specified extent.

_E0
The most significant component of the extent of this section.

_E1
The next-to-most-significant component of the extent of this section.

_E2
The least significant component of the extent of this section.

Return Value

source_accelerator_view

__declspec(property(get= get_source_accelerator_view)) accelerator_view source_accelerator_view;

synchronize

void synchronize(access_type _Access_type = access_type_read) const restrict(cpu);

void synchronize() const restrict(cpu);

Parameters

synchronize_async

_Ext
The extent object that specifies the extent of the section. The origin is 0.

_Idx
The index object that specifies the location of the origin. The subsection is the rest of the extent.

_I0
The most significant component of the origin of this section.

_I1
The next-to-most-significant component of the origin of this section.

_I2
The least significant component of the origin of this section.

_Rank
The rank of the section.

_Section_extent
The extent object that specifies the extent of the section.

_Section_origin
The index object that specifies the location of the origin.

A subsection of the array_view object that's at the specified origin and, optionally, that has the specified extent.
When only the index object is specified, the subsection contains all elements in the associated extent that have
indexes that are larger than the indexes of the elements in the index object.

Gets the source accelerator_view that this array_view is associated with.

Synchronizes any modifications made to the array_view object back to its source data.

_Access_type
The intended access_type on the target accelerator_view. This parameter has a default value of
access_type_read .

Asynchronously synchronizes any modifications made to the array_view object back to its source data.

concurrency::completion_future synchronize_async(access_type _Access_type = access_type_read) const
restrict(cpu);

concurrency::completion_future synchronize_async() const restrict(cpu);

Parameters

Return Value

synchronize_to

void synchronize_to(
 const accelerator_view& _Accl_view,
 access_type _Access_type = access_type_read) const restrict(cpu);

void synchronize_to(
 const accelerator_view& _Accl_view) const restrict(cpu);

Parameters

synchronize_to_async

concurrency::completion_future synchronize_to_async(
 const accelerator_view& _Accl_view,
 access_type _Access_type = access_type_read) const restrict(cpu);

concurrency::completion_future synchronize_to_async(
 const accelerator_view& _Accl_view) const restrict(cpu);

Parameters

Return Value

value_type

_Access_type
The intended access_type on the target accelerator_view. This parameter has a default value of
access_type_read .

A future upon which to wait for the operation to complete.

Synchronizes any modifications made to this array_view to the specified accelerator_view.

_Accl_view
The target accelerator_view to synchronize to.

_Access_type
The desired access_type on the target accelerator_view. This parameter has a default value of access_type_read.

Asynchronously synchronizes any modifications made to this array_view to the specified accelerator_view.

_Accl_view
The target accelerator_view to synchronize to.

_Access_type
The desired access_type on the target accelerator_view. This parameter has a default value of access_type_read.

A future upon which to wait for the operation to complete.

typedef typenamevalue_type value_type;

view_as

template <
 int _New_rank
>
array_view<value_type,_New_rank> view_as(
 const Concurrency::extent<_New_rank>& _View_extent) const restrict(amp,cpu);

template <
 int _New_rank
>
array_view<const value_type,_New_rank> view_as(
 const Concurrency::extent<_New_rank> _View_extent) const restrict(amp,cpu);

Parameters

Return Value

See also

The value type of the array_view and the bound array.

Reinterprets this array_view as an array_view of a different rank.

_New_rank
The rank of the new array_view object.

_View_extent
The reshaping extent .

value_type
The data type of the elements in both the original array object and the returned array_view object.

The array_view object that is constructed.

Concurrency Namespace (C++ AMP)

completion_future Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax

class completion_future;

Members
Public Constructors

NAME DESCRIPTION

completion_future Constructor Initializes a new instance of the completion_future class.

~completion_future Destructor Destroys the completion_future object.

Public Methods

NAME DESCRIPTION

get Waits until the associated asynchronous operation completes.

then Chains a callback function object to the completion_future

object to be executed when the associated asynchronous
operation finishes execution.

to_task Returns a task object corresponding to the associated
asynchronous operation.

valid Gets a Boolean value that indicates whether the object is
associated with an asynchronous operation.

wait Blocks until the associated asynchronous operation
completes.

wait_for Blocks until the associated asynchronous operation completes
or the time specified by _Rel_time has elapsed.

wait_until Blocks until the associated asynchronous operation completes
or until the current time exceeds the value specified by
_Abs_time .

Public Operators

NAME DESCRIPTION

Represents a future corresponding to a C++ AMP asynchronous operation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/completion-future-class.md

operator std::shared_future<void> Implicitly converts the completion_future object to an
std::shared_future object.

operator= Copies the contents of the specified completion_future

object into this one.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

completion_future

Syntax

completion_future();

completion_future(
 const completion_future& _Other);

completion_future(
 completion_future&& _Other);

Parameters

Overloads List

NAME DESCRIPTION

completion_future(); Initializes a new instance of the completion_future Class

completion_future(const completion_future& _Other); Initializes a new instance of the completion_future class by
copying a constructor.

completion_future(completion_future&& _Other); Initializes a new instance of the completion_future class by
moving a constructor.

get

Syntax

completion_future

Header: amprt.h

Namespace: concurrency

Initializes a new instance of the completion_future class.

_Other
The completion_future object to copy or move.

Waits until the associated asynchronous operation completes. Throws the stored exception if one was encountered
during the asynchronous operation.

void get() const;

operator std::shared_future

Syntax

operator std::shared_future<void>() const;

Return Value

operator=

Syntax

completion_future& operator= (const completion_future& _Other);
completion_future& operator= (completion_future&& _Other);

Parameters

Return Value

Overloads List
NAME DESCRIPTION

completion_future& operator=(const
completion_future& _Other);

Copies the contents of the specified completion_future

object into this one, using a deep copy.

completion_future& operator=(completion_future&&
_Other);

Copies the contents of the specified completion_future

object into this one, using a move assignment.

then

Syntax

template <typename _Functor>
void then(const _Functor & _Func) const;

Parameters

Implicitly converts the completion_future object to an std::shared_future object.

An std::shared_future object.

Copies the contents of the specified completion_future object into this one.

_Other
The object to copy from.

A reference to this completion_future object.

Chains a callback function object to the completion_future object to be executed when the associated
asynchronous operation finishes execution.

_Functor

to_task

Syntax

concurrency::task<void> to_task() const;

Return Value

valid

Syntax

bool valid() const;

Return Value

wait

Syntax

void wait() const;

wait_for

Syntax

template <
 class _Rep,
 class _Period
>
std::future_status::future_status wait_for(
 const std::chrono::duration< _Rep, _Period>& _Rel_time) const;

Parameters

The callback functor.

_Func
The callback function object.

Returns a task object corresponding to the associated asynchronous operation.

A task object corresponding to the associated asynchronous operation.

Gets a Boolean value that indicates whether the object is associated with an asynchronous operation.

true if the object is associated with an asynchronous operation; otherwise, false.

Blocks until the associated asynchronous operation completes.

Blocks until the associated asynchronous operation completes or the time that's specified by _Rel_time has
elapsed.

_Rep
An arithmetic type that represents the number of ticks.

_Period

Return Value

wait_until

Syntax

template <
 class _Clock,
 class _Duration
>
std::future_status::future_status wait_until(
 const std::chrono::time_point< _Clock, _Duration>& _Abs_time) const;

Parameters

Return Value

~completion_future

Syntax

~completion_future();

See also

A std::ratio that represents the number of seconds that elapse per tick.

_Rel_time
The maximum amount of time to wait for the operation to complete.

Returns:

std::future_status::deferred if the associated asynchronous operation is not running.

std::future_status::ready if the associated asynchronous operation is finished.

std::future_status::timeout if the specified time period has elapsed.

Blocks until the associated asynchronous operation completes or until the current time exceeds the value specified
by _Abs_time .

_Clock
The clock on which this time point is measured.

_Duration
The time interval since the start of _Clock ’s epoch, after which the function will time out.

_Abs_time
The point in time after which the function will time out.

Returns:

1. std::future_status::deferred if the associated asynchronous operation is not running.

2. std::future_status::ready if the associated asynchronous operation is finished.

3. std::future_status::timeout if the time period specified has elapsed.

Destroys the completion_future object.

Concurrency Namespace (C++ AMP)

extent Class (C++ AMP)
3/28/2019 • 4 minutes to read • Edit Online

Syntax

template <int _Rank>
class extent;

Parameters

Requirements

Members
Public Constructors

NAME DESCRIPTION

extent Constructor Initializes a new instance of the extent class.

Public Methods

NAME DESCRIPTION

contains Verifies that the specified extent object has the specified
rank.

size Returns the total linear size of the extent (in units of
elements).

tile Produces a tiled_extent object with the tile extents given
by specified dimensions.

Public Operators

NAME DESCRIPTION

operator- Returns a new extent object that's created by subtracting
the index elements from the corresponding extent

elements.

operator-- Decrements each element of the extent object.

Represents a vector of N integer values that specify the bounds of an N-dimensional space that has an origin of
0. The values in the vector are ordered from most significant to least significant.

_Rank
The rank of the extent object.

Header: amp.h

Namespace: Concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/extent-class.md

operator%= Calculates the modulus (remainder) of each element in the
extent object when that element is divided by a number.

operator*= Multiplies each element of the extent object by a number.

operator/= Divides each element of the extent object by a number.

extent::operator[] Returns the element that's at the specified index.

operator+ Returns a new extent object that's created by adding the
corresponding index and extent elements.

operator++ Increments each element of the extent object.

operator+= Adds the specified number to each element of the extent

object.

operator= Copies the contents of another extent object into this
one.

operator-= Subtracts the specified number from each element of the
extent object.

NAME DESCRIPTION

Public Constants

NAME DESCRIPTION

rank Constant Gets the rank of the extent object.

Inheritance Hierarchy

contains

Syntax

bool contains(const index<rank>& _Index) const restrict(amp,cpu);

Parameters

Return Value

extent

Indicates whether the specified index value is contained within the `extent' object.

_Index
The index value to test.

true if the specified index value is contained in the extent object; otherwise, false.

extent

Syntax

extent() restrict(amp,cpu);
extent(const extent<_Rank>& _Other) restrict(amp,cpu);
explicit extent(int _I) restrict(amp,cpu);
extent(int _I0, int _I1) restrict(amp,cpu);
extent(int _I0, int _I1, int _I2) restrict(amp,cpu);
explicit extent(const int _Array[_Rank])restrict(amp,cpu);

Parameters

Remarks

operator%=

Syntax

extent<_Rank>& operator%=(int _Rhs) restrict(cpu, direct3d);

Parameters

Return Value

operator*=

Initializes a new instance of the `extent' class.

_Array
An array of _Rank integers that is used to create the new extent object.

_I
The length of the extent.

_I0
The length of the most significant dimension.

_I1
The length of the next-to-most-significant dimension.

_I2
The length of the least significant dimension.

_Other
An extent object on which the new extent object is based.

The parameterless constructor initializes an extent object that has a rank of three.

If an array is used to construct an extent object, the length of the array must match the rank of the extent

object.

Calculates the modulus (remainder) of each element in the `extent' when that element is divided by a number.

_Rhs
The number to find the modulus of.

The extent object.

Syntax

extent<_Rank>& operator*=(int _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator+

Syntax

extent<_Rank> operator+(const index<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator++

Syntax

extent<_Rank>& operator++() restrict(amp,cpu);
extent<_Rank> operator++(int)restrict(amp,cpu);

Return Value

operator+=

Syntax

extent<_Rank>& operator+=(const extent<_Rank>& _Rhs) restrict(amp,cpu);
extent<_Rank>& operator+=(const index<_Rank>& _Rhs) restrict(amp,cpu);
extent<_Rank>& operator+=(int _Rhs) restrict(amp,cpu);

Parameters

Multiplies each element in the `extent' object by the specified number.

_Rhs
The number to multiply.

The extent object.

Returns a new extent object created by adding the corresponding index and extent elements.

_Rhs
The index object that contains the elements to add.

The new extent object.

Increments each element of the `extent' object.

For the prefix operator, the extent object (*this). For the suffix operator, a new extent object.

Adds the specified number to each element of the `extent' object.

_Rhs
The number, index, or extent to add.

Return Value

operator-

Syntax

extent<_Rank> operator-(const index<_Rank>& _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator--

Syntax

extent<_Rank>& operator--() restrict(amp,cpu);
extent<_Rank> operator--(int)restrict(amp,cpu);

Return Value

operator/=

Syntax

extent<_Rank>& operator/=(int _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator-=

Syntax

The resulting extent object.

Creates a new extent object by subtracting each element in the specified index object from the corresponding
element in this extent object.

_Rhs
The index object that contains the elements to subtract.

The new extent object.

Decrements each element in the `extent' object.

For the prefix operator, the extent object (*this). For the suffix operator, a new extent object.

Divides each element in the `extent' object by the specified number.

_Rhs
The number to divide by.

The extent object.

Subtracts the specified number from each element of the `extent' object.

extent<_Rank>& operator-=(const extent<_Rank>& _Rhs) restrict(amp,cpu);
extent<_Rank>& operator-=(const index<_Rank>& _Rhs) restrict(amp,cpu);
extent<_Rank>& operator-=(int _Rhs) restrict(amp,cpu);

Parameters

Return Value

operator=

Syntax

extent<_Rank>& operator=(const extent<_Rank>& _Other) restrict(amp,cpu);

Parameters

Return Value

extent::operator []

Syntax

int operator[](unsigned int _Index) const restrict(amp,cpu);
int& operator[](unsigned int _Index) restrict(amp,cpu);

Parameters

Return Value

rank

Syntax

static const int rank = _Rank;

size

_Rhs
The number to subtract.

The resulting extent object.

Copies the contents of another `extent' object into this one.

_Other
The extent object to copy from.

A reference to this extent object.

Returns the element that's at the specified index.

_Index
An integer from 0 through the rank minus 1.

The element that's at the specified index.

Stores the rank of the `extent' object.

Syntax

unsigned int size() const restrict(amp,cpu);

tile

template <int _Dim0>
tiled_extent<_Dim0> tile() const ;

template <int _Dim0, int _Dim1>
tiled_extent<_Dim0, _Dim1> tile() const ;

template <int _Dim0, int _Dim1, int _Dim2>
tiled_extent<_Dim0, _Dim1, _Dim2> tile() const ;

Parameters

See also

Returns the total linear size of the extent object (in units of elements).

Produces a tiled_extent object with the specified tile dimensions.

_Dim0
The most significant component of the tiled extent. _Dim1
The next-to-most-significant component of the tiled extent. _Dim2
The least significant component of the tiled extent.

Concurrency Namespace (C++ AMP)

index Class
3/28/2019 • 3 minutes to read • Edit Online

Syntax
template <int _Rank>
class index;

Parameters

Members
Public Constructors

NAME DESCRIPTION

index Constructor Initializes a new instance of the index class.

Public Operators

NAME DESCRIPTION

operator-- Decrements each element of the index object.

operator%= Calculates the modulus (remainder) of each element in the
index object when that element is divided by a number.

operator*= Multiplies each element of the index object by a number.

operator/= Divides each element of the index object by a number.

index::operator[] Returns the element that's at the specified index.

operator++ Increments each element of the index object.

operator+= Adds the specified number to each element of the index

object.

operator= Copies the contents of the specified index object into this
one.

operator-= Subtracts the specified number from each element of the
index object.

Public Constants

Defines an N-dimensional index pographics-cpp-amp.md.

_Rank
The rank, or number of dimensions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/index-class.md

NAME DESCRIPTION

rank Constant Stores the rank of the index object.

Inheritance Hierarchy

Remarks

Requirements

index Constructor

index() restrict(amp,cpu);

index(
 const index<_Rank>& _Other
) restrict(amp,cpu);

explicit index(
 int _I
) restrict(amp,cpu);

index(
 int _I0,
 int _I1
) restrict(amp,cpu);

index(
 int _I0,
 int _I1,
 int _I2
) restrict(amp,cpu);

explicit index(
 const int _Array[_Rank]
) restrict(amp,cpu);

Parameters

index

The index structure represents a coordinate vector of N integers that specifies a unique position in an N-
dimensional space. The values in the vector are ordered from most significant to least significant. You can
retrieve the values of the components using operator=.

Header: amp.h

Namespace: Concurrency

Initializes a new instance of the index class.

_Array
A one-dimensional array with the rank values.

_I
The index location in a one-dimensional index.

_I0
The length of the most significant dimension.

operator--

index<_Rank>& operator--() restrict(amp,cpu);

index operator--(
 int
) restrict(amp,cpu);

Return values

operator%=

index<_Rank>& operator%=(
 int _Rhs
) restrict(cpu, amp);

Parameters

Return Value

operator*=

index<_Rank>& operator*=(
 int _Rhs
) restrict(amp,cpu);

Parameters

operator/=

_I1
The length of the next-to-most-significant dimension.

_I2
The length of the least significant dimension.

_Other
An index object on which the new index object is based.

Decrements each element of the index object.

For the prefix operator, the index object (*this). For the suffix operator, a new index object.

Calculates the modulus (remainder) of each element in the index object when that element is divided by the
specified number.

_Rhs
The number to divide by to find the modulus.

The index object.

Multiplies each element in the index object by the specified number.

_Rhs
The number to multiply.

Divides each element in the index object by the specified number.

index<_Rank>& operator/=(
 int _Rhs
) restrict(amp,cpu);

Parameters

operator[]

int operator[] (
 unsigned _Index
) const restrict(amp,cpu);

int& operator[] (
 unsigned _Index
) restrict(amp,cpu);

Parameters

Return Value

Remarks

// Prints 1 2 3.
concurrency::index<3> idx(1, 2, 3);
std::cout << idx[0] << "\n";
std::cout << idx[1] << "\n";
std::cout << idx[2] << "\n";

operator++

index<_Rank>& operator++() restrict(amp,cpu);

index<_Rank> operator++(
 int
) restrict(amp,cpu);

Return Value

operator+=

_Rhs
The number to divide by.

Returns the component of the index at the specified location.

_Index
An integer from 0 through the rank minus 1.

The element that's at the specified index.

This following example displays the component values of the index.

Increments each element of the index object.

For the prefix operator, the index object (*this). For the suffix operator, a new index object.

Adds the specified number to each element of the index object.

index<_Rank>& operator+=(
 const index<_Rank>& _Rhs
) restrict(amp,cpu);

index<_Rank>& operator+=(
 int _Rhs
) restrict(amp,cpu);

Parameters

Return Value

operator=

index<_Rank>& operator=(
 const index<_Rank>& _Other
) restrict(amp,cpu);

Parameters

Return Value

operator-=

index<_Rank>& operator-=(
 const index<_Rank>& _Rhs
) restrict(amp,cpu);

index<_Rank>& operator-=(
 int _Rhs
) restrict(amp,cpu);

Parameters

Return Value

Rank

_Rhs
The number to add.

The index object.

Copies the contents of the specified index object into this one.

_Other
The index object to copy from.

A reference to this index object.

Subtracts the specified number from each element of the index object.

_Rhs
The number to subtract.

The index object.

Gets the rank of the index object.

static const int rank = _Rank;

See also
Concurrency Namespace (C++ AMP)

invalid_compute_domain Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_compute_domain : public runtime_exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_compute_domain Constructor Initializes a new instance of the invalid_compute_domain

class.

Inheritance Hierarchy

Requirements

invalid_compute_domain

Syntax
explicit invalid_compute_domain(
 const char * _Message) throw();

invalid_compute_domain() throw();

Parameters

Return Value

The exception that's thrown when the runtime can't start a kernel by using the compute domain specified at the
parallel_for_each call site.

exception

runtime_exception

invalid_compute_domain

Header: amprt.h

Namespace: Concurrency

Initializes a new instance of the class.

_Message
A description of the error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/invalid-compute-domain-class.md

See also

An instance of the invalid_compute_domain class

Concurrency Namespace (C++ AMP)

out_of_memory Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class out_of_memory : public runtime_exception;

Members
Public Constructors

NAME DESCRIPTION

out_of_memory Constructor Initializes a new instance of the out_of_memory class.

Inheritance Hierarchy

Requirements

out_of_memory

Syntax

explicit out_of_memory(
 const char * _Message) throw();

out_of_memory () throw();

Parameters

Return Value

The exception that is thrown when a method fails because of a lack of system or device memory.

exception

runtime_exception

out_of_memory

Header: amprt.h

Namespace: Concurrency

Initializes a new instance of the class.

_Message
A description of the error.

A new instance of the out_of_memory class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/out-of-memory-class.md

See also
Concurrency Namespace (C++ AMP)

runtime_exception Class
5/21/2019 • 2 minutes to read • Edit Online

Syntax

class runtime_exception : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

runtime_exception Constructor Initializes a new instance of the runtime_exception class.

~runtime_exception Destructor Destroys the runtime_exception object.

Public Methods

NAME DESCRIPTION

get_error_code Returns the error code that caused the exception.

Public Operators

NAME DESCRIPTION

operator= Copies the contents of the specified runtime_exception

object into this one.

Inheritance Hierarchy

Requirements

runtime_exception Constructor

Syntax

The base type for exceptions in the C++ Accelerated Massive Parallelism (AMP) library.

exception

runtime_exception

Header: amprt.h

Namespace: Concurrency

Initializes a new instance of the class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/runtime-exception-class.md

runtime_exception(
 const char * _Message,
 HRESULT _Hresult) throw();

explicit runtime_exception(
 HRESULT _Hresult) throw();

runtime_exception(
 const runtime_exception & _Other) throw();

Parameters

Return Value

~runtime_exception Destructor

Syntax

virtual ~runtime_exception() throw();

get_error_code

Syntax

HRESULT get_error_code() const throw();

Return Value

operator=

Syntax

runtime_exception & operator= (const runtime_exception & _Other) throw();

Parameters

_Message
A description of the error that caused the exception.

_Hresult
The HRESULT of error that caused the exception.

_Other
The runtime_exception object to copy.

The runtime_exception object.

Destroys the object.

Returns the error code that caused the exception.

The HRESULT of error that caused the exception.

Copies the contents of the specified runtime_exception object into this one.

_Other
The runtime_exception object to copy.

Return Value

See also

A reference to this runtime_exception object.

Concurrency Namespace (C++ AMP)

tile_barrier Class
5/21/2019 • 2 minutes to read • Edit Online

Syntax

class tile_barrier;

Members
Public Constructors

NAME DESCRIPTION

tile_barrier Constructor Initializes a new instance of the tile_barrier class.

Public Methods

NAME DESCRIPTION

wait Instructs all threads in the thread group (tile) to stop
executing until all threads in the tile have finished waiting.

wait_with_all_memory_fence Blocks execution of all threads in a tile until all memory
accesses have been completed and all threads in the tile have
reached this call.

wait_with_global_memory_fence Blocks execution of all threads in a tile until all global memory
accesses have been completed and all threads in the tile have
reached this call.

wait_with_tile_static_memory_fence Blocks execution of all threads in a tile until all tile_static

memory accesses have been completed and all threads in the
tile have reached this call.

Inheritance Hierarchy

Requirements

tile_barrier Constructor

Synchronizes the execution of threads that are running in the thread group (the tile) by using wait methods. Only
the runtime can instantiate this class.

tile_barrier

Header: amp.h

Namespace: Concurrency

Initializes a new instance of the class by copying an existing one.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/tile-barrier-class.md

Syntax

tile_barrier(
 const tile_barrier& _Other) restrict(amp,cpu);

Parameters

wait

Syntax

void wait() const restrict(amp);

wait_with_all_memory_fence

Syntax

void wait_with_all_memory_fence() const restrict(amp);

wait_with_global_memory_fence

Syntax

void wait_with_global_memory_fence() const restrict(amp);

wait_with_tile_static_memory_fence

Syntax

void wait_with_tile_static_memory_fence() const restrict(amp);

See also

_Other
The tile_barrier object to copy.

Instructs all threads in the thread group (tile) to stop execution until all threads in the tile have finished waiting.

Blocks execution of all threads in a tile until all threads in a tile have reached this call. This ensures that all memory
accesses are visible to other threads in the thread tile, and have been executed in program order.

Blocks execution of all threads in a tile until all threads in a tile have reached this call. This ensures that all global
memory accesses are visible to other threads in the thread tile, and have been executed in program order.

Blocks execution of all threads in a tile until all threads in a tile have reached this call. This ensures that
tile_static memory accesses are visible to other threads in the thread tile, and have been executed in program

order.

Concurrency Namespace (C++ AMP)

tiled_extent Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax

template <
 int _Dim0,
 int _Dim1,
 int _Dim2
>
class tiled_extent : public Concurrency::extent<3>;

template <
 int _Dim0,
 int _Dim1
>
class tiled_extent<_Dim0, _Dim1, 0> : public Concurrency::extent<2>;

template <
 int _Dim0
>
class tiled_extent<_Dim0, 0, 0> : public Concurrency::extent<1>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

tiled_extent Constructor Initializes a new instance of the tiled_extent class.

Public Methods

NAME DESCRIPTION

get_tile_extent Returns an extent object that captures the values of the
tiled_extent template arguments _Dim0 , _Dim1 , and
_Dim2 .

pad Returns a new tiled_extent object with extents adjusted
up to be evenly divisible by the tile dimensions.

A tiled_extent object is an extent object of one to three dimensions that subdivides the extent space into one-,
two-, or three-dimensional tiles.

_Dim0
The length of the most significant dimension.

_Dim1
The length of the next-to-most significant dimension.

_Dim2
The length of the least significant dimension.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/tiled-extent-class.md

truncate Returns a new tiled_extent object with extents adjusted
down to be evenly divisible by the tile dimensions.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator= Copies the contents of the specified tiled_index object
into this one.

Public Constants

NAME DESCRIPTION

tile_dim0 Constant Stores the length of the most significant dimension.

tile_dim1 Constant Stores the length of the next-to-most significant dimension.

tile_dim2 Constant Stores the length of the least significant dimension.

Public Data Members

NAME DESCRIPTION

tile_extent Gets an extent object that captures the values of the
tiled_extent template arguments _Dim0 , _Dim1 , and
_Dim2 .

Inheritance Hierarchy

Requirements

tiled_extent Constructor

Syntax

tiled_extent();

tiled_extent(
 const Concurrency::extent<rank>& _Other);

tiled_extent(
 const tiled_extent& _Other);

extent

tiled_extent

Header: amp.h

Namespace: Concurrency

Initializes a new instance of the tiled_extent class.

Parameters

get_tile_extent

Syntax

Concurrency::extent<rank> get_tile_extent() const restrict(amp,cpu);

Return Value

pad

Syntax

tiled_extent pad() const;

Return Value

truncate

Syntax

tiled_extent truncate() const;

Return Value

operator=

Syntax

tiled_extent& operator= (
 const tiled_extent& _Other) restrict (amp, cpu);

Parameters

Return Value

_Other
The extent or tiled_extent object to copy.

Returns an extent object that captures the values of the tiled_extent template arguments _Dim0 , _Dim1 , and
_Dim2 .

An extent object that captures the dimensions of this tiled_extent instance.

Returns a new tiled_extent object with extents adjusted up to be evenly divisible by the tile dimensions.

The new tiled_extent object, by value.

Returns a new tiled_extent object with extents adjusted down to be evenly divisible by the tile dimensions.

Returns a new tiled_extent object with extents adjusted down to be evenly divisible by the tile dimensions.

Copies the contents of the specified tiled_index object into this one.

_Other
The tiled_index object to copy from.

tile_dim0

Syntax

static const int tile_dim0 = _Dim0;

tile_dim1

Syntax

static const int tile_dim1 = _Dim1;

tile_dim2

Syntax

static const int tile_dim2 = _Dim2;

tile_extent

Syntax

__declspec(property(get= get_tile_extent)) Concurrency::extent<rank> tile_extent;

See also

A reference to this tiled_index instance.

Stores the length of the most significant dimension.

Stores the length of the next-to-most significant dimension.

Stores the length of the least significant dimension.

Gets an extent object that captures the values of the tiled_extent template arguments _Dim0 , _Dim1 , and
_Dim2 .

Concurrency Namespace (C++ AMP)

tiled_index Class
3/28/2019 • 3 minutes to read • Edit Online

Syntax
template <
 int _Dim0,
 int _Dim1 = 0,
 int _Dim2 = 0
>
class tiled_index : public _Tiled_index_base<3>;

template <
 int _Dim0,
 int _Dim1
>
class tiled_index<_Dim0, _Dim1, 0> : public _Tiled_index_base<2>;

template <
 int _Dim0
>
class tiled_index<_Dim0, 0, 0> : public _Tiled_index_base<1>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

tiled_index Constructor Initializes a new instance of the tile_index class.

Public Methods

NAME DESCRIPTION

get_tile_extent Returns an extent object that has the values of the
tiled_index template arguments _Dim0 , _Dim1 , and
_Dim2 .

Public Constants

Provides an index into a tiled_extent object. This class has properties to access elements relative to the local tile
origin and relative to the global origin. For more information about tiled spaces, see Using Tiles.

_Dim0
The length of the most significant dimension.

_Dim1
The length of the next-to-most significant dimension.

_Dim2
The length of the least significant dimension.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/tiled-index-class.md

NAME DESCRIPTION

barrier Constant Stores a tile_barrier object that represents a barrier in the
current tile of threads.

global Constant Stores an index object of rank 1, 2, or 3 that represents the
global index in a grid object.

local Constant Stores an index object of rank 1, 2, or 3 that represents the
relative index in the current tile of a tiled_extent object.

rank Constant Stores the rank of the tiled_index object.

tile Constant Stores an index object of rank 1, 2, or 3 that represents the
coordinates of the current tile of a tiled_extent object.

tile_dim0 Constant Stores the length of the most significant dimension.

tile_dim1 Constant Stores the length of the next-to-most significant dimension.

tile_dim2 Constant Stores the length of the least significant dimension.

tile_origin Constant Stores an index object of rank 1, 2, or 3 that represents the
global coordinates of the origin of the current tile in a
tiled_extent object.

Public Data Members

NAME DESCRIPTION

tile_extent Gets an extent object that has the values of the
tiled_index template arguments tiled_index template

arguments _Dim0 , _Dim1 , and _Dim2 .

Inheritance Hierarchy

Requirements

tiled_index Constructor

Syntax

_Tiled_index_base

tiled_index

Header: amp.h

Namespace: Concurrency

Initializes a new instance of the tiled_index class.

tiled_index(
 const index<rank>& _Global,
 const index<rank>& _Local,
 const index<rank>& _Tile,
 const index<rank>& _Tile_origin,
 const tile_barrier& _Barrier) restrict(amp,cpu);

tiled_index(
 const tiled_index& _Other) restrict(amp,cpu);

Parameters

Overloads

Name Description

tiled_index(const index<rank>& _Global, const
index<rank>& _Local, const index<rank>& _Tile, const
index<rank>& _Tile_origin, const tile_barrier&
_Barrier restrict(amp,cpu);

Initializes a new instance of the tile_index class from the
index of the tile in global coordinates and the relative position
in the tile in local coordinates. The _Global and
_Tile_origin parameters are computed.

tiled_index(const tiled_index& _Other)
restrict(amp,cpu);

Initializes a new instance of the tile_index class by copying
the specified tiled_index object.

get_tile_extent

Syntax
extent<rank> get_tile_extent()restrict(amp,cpu);

Return Value

_Global
The global index of the constructed tiled_index .

_Local
The local index of the constructed tiled_index

_Tile
The tile index of the constructed tiled_index

_Tile_origin
The tile origin index of the constructed tiled_index

_Barrier
The tile_barrier object of the constructed tiled_index .

_Other
The tile_index object to be copied to the constructed tiled_index .

Returns an extent object that has the values of the tiled_index template arguments _Dim0 , _Dim1 , and _Dim2 .

An extent object that has the values of the tiled_index template arguments _Dim0 , _Dim1 , and _Dim2 .

barrier

Syntax
const tile_barrier barrier;

global

Syntax
const index<rank> global;

local

Syntax
const index<rank> local;

rank

Syntax
static const int rank = _Rank;

tile

Syntax
const index<rank> tile;

tile_dim0

Syntax

Stores a tile_barrier object that represents a barrier in the current tile of threads.

Stores an index object of rank 1, 2, or 3 that represents the global index of an object.

Stores an index object of rank 1, 2, or 3 that represents the relative index in the current tile of a tiled_extent object.

Stores the rank of the tiled_index object.

Stores an index object of rank 1, 2, or 3 that represents the coordinates of the current tile of a tiled_extent object.

Stores the length of the most significant dimension.

static const int tile_dim0 = _Dim0;

tile_dim1

Syntax
static const int tile_dim1 = _Dim1;

tile_dim2

Syntax
static const int tile_dim2 = _Dim2;

tile_origin

Syntax
const index<rank> tile_origin

tile_extent

Syntax
__declspec(property(get= get_tile_extent)) extent<rank> tile_extent;

See also

Stores the length of the next-to-most significant dimension.

Stores the length of the least significant dimension.

Stores an index object of rank 1, 2, or 3 that represents the global coordinates of the origin of the current tile
within a tiled_extent object.

Gets an extent object that has the values of the tiled_index template arguments tiled_index template
arguments _Dim0 , _Dim1 , and _Dim2 .

Concurrency Namespace (C++ AMP)

uninitialized_object Class
5/21/2019 • 2 minutes to read • Edit Online

Syntax
class uninitialized_object : public runtime_exception;

Members
Public Constructors

NAME DESCRIPTION

uninitialized_object Constructor Initializes a new instance of the uninitialized_object class.

Inheritance Hierarchy

Requirements

uninitialized_object

Syntax

explicit uninitialized_object(
 const char * _Message) throw();

uninitialized_object() throw();

Parameters

Return Value

The exception that is thrown when an uninitialized object is used.

exception

runtime_exception

uninitialized_object

Header: amprt.h

Namespace: Concurrency

Constructs a new instance of the uninitialized_object exception.

_Message
A description of the error.

The uninitialized_object exception object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/uninitialized-object-class.md

See also
Concurrency Namespace (C++ AMP)

unsupported_feature Class
5/10/2019 • 2 minutes to read • Edit Online

Syntax
class unsupported_feature : public runtime_exception;

Members
Public Constructors

NAME DESCRIPTION

unsupported_feature Constructor Constructs a new instance of the unsupported_feature

exception.

Inheritance Hierarchy

unsupported_feature

Syntax

explicit unsupported_feature(
 const char * _Message) throw();

unsupported_feature() throw();

Parameters

Return Value

Requirements

The exception that is thrown when an unsupported feature is used.

exception

runtime_exception

unsupported_feature

Constructs a new instance of the unsupported_feature exception.

_Message
A description of the error.

The unsupported_feature object.

Header: amprt.h

Namespace: Concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/unsupported-feature-class.md

See also
Concurrency Namespace (C++ AMP)

Concurrency::direct3d Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace direct3d;

Members
Classes

NAME DESCRIPTION

scoped_d3d_access_lock Class An RAII wrapper for a D3D access lock on an
accelerator_view object.

Structures

NAME DESCRIPTION

adopt_d3d_access_lock_t Structure Tag type to indicate the D3D access lock should be adopted
rather than acquired.

Functions

NAME DESCRIPTION

abs Returns the absolute value of the argument

clamp Overloaded. Clamps _X to the specified _Min and _Max range

countbits Counts the number of set bits in _X

create_accelerator_view Creates an accelerator_view Class from a pointer to a
Direct3D device interface

d3d_access_lock Acquires a lock on an accelerator_view for the purpose of
safely performing D3D operations on resources shared with
the accelerator_view

d3d_access_try_lock Attempt to acquire the D3D access lock on an
accelerator_view without blocking.

d3d_access_unlock Release the D3D access lock on the given accelerator_view.

The direct3d namespace provides functions that support D3D interoperability. It enables seamless use of D3D
resources for compute in AMP code as well as allow use of resources created in AMP in D3D code, without
creating redundant intermediate copies. You can incrementally accelerate the compute intensive sections of your
DirectX applications by using C++ AMP and use the D3D API on data produced from AMP computations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-direct3d-namespace.md

firstbithigh Gets the location of the first set bit in _X, starting from the
highest order bit and working downward

firstbitlow Gets the location of the first set bit in _X, starting from the
lowest order bit and working upward

get_buffer Get the D3D buffer interface underlying an array.

imax Compares two values, returning the value which is greater.

imin Compares two values, returning the value which is smaller.

is_timeout_disabled Returns a boolean flag indicating if timeout is disabled for the
specified accelerator_view.

mad Overloaded. Performs an arithmetic multiply/add operation
on three arguments: _X * _Y + _Z

make_array Create an array from a D3D buffer interface pointer.

noise Generates a random value by using the Perlin noise algorithm

radians Converts _X from degrees to radians

rcp Calculates a fast, approximate reciprocal of the argument

reversebits Reverses the order of the bits in _X

saturate Clamps _X within the range of 0 to 1

sign Overloaded. Returns the sign of the argument

smoothstep Returns a smooth Hermite interpolation between 0 and 1, if
_X is in the range [_Min, _Max].

step Compares two values, returning 0 or 1 based on which value
is greater

umax Compares two unsigned values, returning the value which is
greater.

umin Compares two unsigned values, returning the value which is
smaller.

NAME DESCRIPTION

Requirements

See also

Header: amp.h

Namespace: Concurrency

Concurrency Namespace (C++ AMP)

Concurrency::direct3d namespace functions (AMP)
3/4/2019 • 7 minutes to read • Edit Online

abs clamp countbits

create_accelerator_view d3d_access_lock

d3d_access_try_lock d3d_access_unlock firstbithigh

firstbitlow get_buffer get_device

imax imin is_timeout_disabled

mad make_array noise

radians rcp reversebits

saturate sign smoothstep

step umax umin

Requirements

abs

inline int abs(int _X) restrict(amp);

Parameters

Return Value

clamp

Header: amp.h Namespace: Concurrency

Returns the absolute value of the argument

_X
Integer value

Returns the absolute value of the argument.

Computes the value of the first specified argument clamped to a range defined by the second and third specified
arguments.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-direct3d-namespace-functions-amp.md

inline float clamp(
 float _X,
 float _Min,
 float _Max) restrict(amp);

inline int clamp(
 int _X,
 int _Min,
 int _Max) restrict(amp);

Parameters

Return Value

countbits

inline unsigned int countbits(unsigned int _X) restrict(amp);

Parameters

Return Value

create_accelerator_view

Syntax
accelerator_view create_accelerator_view(
 IUnknown * _D3D_device
 queuing_mode _Qmode = queuing_mode_automatic);

accelerator_view create_accelerator_view(
 accelerator& _Accelerator,
 bool _Disable_timeout
 queuing_mode _Qmode = queuing_mode_automatic);

Parameters

_X
The value to be clamped

_Min
The lower bound of the clamping range.

_Max
The upper bound of the clamping range.

The clamped value of _X .

Counts the number of set bits in _X

_X
Unsigned integer value

Returns the number of set bits in _X

Creates an accelerator_view object from a pointer to a Direct3D device interface.

_Accelerator
The accelerator on which the new accelerator_view is to be created.

Return Value

Remarks

d3d_access_lock

void __cdecl d3d_access_lock(accelerator_view& _Av);

Parameters

d3d_access_try_lock

bool __cdecl d3d_access_try_lock(accelerator_view& _Av);

_D3D_device
The pointer to the Direct3D device interface.

_Disable_timeout
A Boolean parameter that specifies whether timeout should be disabled for the newly created accelerator_view.
This corresponds to the D3D11_CREATE_DEVICE_DISABLE_GPU_TIMEOUT flag for Direct3D device creation
and is used to indicate if the operating system should allow workloads that take more than 2 seconds to execute
without resetting the device per the Windows timeout detection and recovery mechanism. Use of this flag is
recommended if you need to perform time consuming tasks on the accelerator_view.

_Qmode
The queuing_mode to be used for the newly created accelerator_view. This parameter has a default value of
queuing_mode_automatic .

The accelerator_view object created from the passed Direct3D device interface.

This function creates a new accelerator_view object from an existing pointer to a Direct3D device interface. If the
function call succeeds, the reference count of the parameter is incremented by means of an AddRef call to the
interface. You can safely release the object when it is no longer required in your DirectX code. If the method call
fails, a runtime_exception is thrown.

The accelerator_view object that you create by using this function is thread safe. You must synchronize concurrent
use of the accelerator_view object. Unsynchronized concurrent usage of the accelerator_view object and the raw
ID3D11Device interface causes undefined behavior.

The C++ AMP runtime provides detailed error information in debug mode by using the D3D Debug layer if you
use the D3D11_CREATE_DEVICE_DEBUG flag.

Acquire a lock on an accelerator_view for the purpose of safely performing D3D operations on resources shared
with the accelerator_view. The accelerator_view and all C++ AMP resources associated with this accelerator_view
internally take this lock when performing operations and will block while another thread holds the D3D access
lock. This lock is non-recursive: It is undefined behavior to call this function from a thread that already holds the
lock. It is undefined behavior to perform operations on the accelerator_view or any data container associated with
the accelerator_view from the thread that holds the D3D access lock. See also scoped_d3d_access_lock, a RAII-
style class for a scope-based D3D access lock.

_Av
The accelerator_view to lock.

Attempt to acquire the D3D access lock on an accelerator_view without blocking.

Parameters

Return Value

d3d_access_unlock

void __cdecl d3d_access_unlock(accelerator_view& _Av);

Parameters

firstbithigh

inline int firstbithigh(int _X) restrict(amp);

Parameters

Return Value

firstbitlow

inline int firstbitlow(int _X) restrict(amp);

Parameters

Return Value

get_buffer

_Av
The accelerator_view to lock.

true if the lock was acquired, or false if it is currently held by another thread.

Release the D3D access lock on the given accelerator_view. If the calling thread does not hold the lock on the
accelerator_view the results are undefined.

_Av
The accelerator_view for which the lock is to be released.

Gets the location of the first set bit in _X, beginning with the highest-order bit and moving towards the lowest-
order bit.

_X
Integer value

The location of the first set bit

Gets the location of the first set bit in _X, beginning with the lowest-order bit and working toward the highest-order
bit.

_X
Integer value

Returns The location of the first set bit

Get the Direct3D buffer interface underlying the specified array.

template<
 typename value_type,
 int _Rank
>
IUnknown *get_buffer(
 const array<value_type, _Rank>& _Array) ;

Parameters

Return Value

get_device

IUnknown* get_device(const accelerator_view Av);

Parameters

Return value

imax

inline int imax(
 int _X,
 int _Y) restrict(amp);

Parameters

Return Value

imin

value_type
The type of elements in the array.

_Rank
The rank of the array.

_Array
An array on a Direct3D accelerator_view for which the underlying Direct3D buffer interface is returned.

The IUnknown interface pointer corresponding to the Direct3D buffer underlying the array.

Get the D3D device interface underlying a accelerator_view.

Av
The D3D accelerator_view for which the underlying D3D device interface is returned.

The IUnknown interface pointer of the D3D device underlying the accelerator_view.

Determine the maximum numeric value of the arguments

_X
Integer value

_Y
Integer value

Return the maximum numeric value of the arguments

Determine the minimum numeric value of the arguments

inline int imin(
 int _X,
 int _Y) restrict(amp);

Parameters

Return Value

is_timeout_disabled

bool __cdecl is_timeout_disabled(const accelerator_view& _Accelerator_view);

Parameters

Return Value

mad

inline float mad(
 float _X,
 float _Y,
 float _Z) restrict(amp);

inline double mad(
 double _X,
 double _Y,
 double _Z) restrict(amp);

inline int mad(
 int _X,
 int _Y,
 int _Z) restrict(amp);

inline unsigned int mad(
 unsigned int _X,
 unsigned int _Y,
 unsigned int _Z) restrict(amp);

Parameters

_X
Integer value

_Y
Integer value

Return the minimum numeric value of the arguments

Returns a boolean flag indicating if timeout is disabled for the specified accelerator_view. This corresponds to the
D3D11_CREATE_DEVICE_DISABLE_GPU_TIMEOUT flag for Direct3D device creation.

_Accelerator_view
The accelerator_view for which the timeout disabled setting is to be queried.

A boolean flag indicating if timeout is disabled for the specified accelerator_view.

Computes the product of the first and second specified argument, then adds the third specified argument.

_X
The first specified argument.

Return Value

make_array

template<
 typename value_type,
 int _Rank
>
array<value_type, _Rank> make_array(
 const extent<_Rank>& _Extent,
 const Concurrency::accelerator_view& _Rv,
 IUnknown* _D3D_buffer) ;

Parameters

Return Value

noise

inline float noise(float _X) restrict(amp);

Parameters

Return Value

radians

_Y
The second specified argument.

_Z
The third specified argument.

The result of _X * _Y + _Z .

Create an array from a Direct3D buffer interface pointer.

value_type
The element type of the array to be created.

_Rank
The rank of the array to be created.

_Extent
An extent that describes the shape of the array aggregate.

_Rv
A D3D accelerator view on which the array is to be created.

_D3D_buffer
IUnknown interface pointer of the D3D buffer to create the array from.

An array created using the provided Direct3D buffer.

Generates a random value using the Perlin noise algorithm

_X
Floating-point value from which to generate Perlin noise

Returns The Perlin noise value within a range between -1 and 1

inline float radians(float _X) restrict(amp);

Parameters

Return Value

rcp

inline float rcp(float _X) restrict(amp);

inline double rcp(double _X) restrict(amp);

Parameters

Return Value

reversebits

inline unsigned int reversebits(unsigned int _X) restrict(amp);

Parameters

Return Value

saturate

inline float saturate(float _X) restrict(amp);

Parameters

Return Value

Converts _X from degrees to radians

_X
Floating-point value

Returns _X converted from degrees to radians

Computes the reciprocal of the specified argument by using a fast approximation.

_X
The value for which to compute the reciprocal.

The reciprocal of the specified argument.

Reverses the order of the bits in _X

_X
Unsigned integer value

Returns the value with the bit order reversed in _X

Clamps _X within the range of 0 to 1

_X
Floating-point value

Returns _X clamped within the range of 0 to 1

sign

inline int sign(int _X) restrict(amp);

Parameters

Return Value

smoothstep

inline float smoothstep(
 float _Min,
 float _Max,
 float _X) restrict(amp);

Parameters

Return Value

step

inline float step(
 float _Y,
 float _X) restrict(amp);

Parameters

Return Value

Determines the sign of the specified argument.

_X
Integer value

The sign of the argument.

Returns a smooth Hermite interpolation between 0 and 1, if _X is in the range [_Min, _Max].

_Min
Floating-point value

_Max
Floating-point value

_X
Floating-point value

Returns 0 if _X is less than _Min; 1 if _X is greater than _Max; otherwise, a value between 0 and 1 if _X is in the
range [_Min, _Max]

Compares two values, returning 0 or 1 based on which value is greater

_Y
Floating-point value

_X
Floating-point value

Returns 1 if the _X is greater than or equal to _Y; otherwise, 0

umax

inline unsigned int umax(
 unsigned int _X,
 unsigned int _Y) restrict(amp);

Parameters

Return Value

umin

inline unsigned int umin(
 unsigned int _X,
 unsigned int _Y) restrict(amp);

Parameters

Return Value

See also

Determine the maximum numeric value of the arguments

_X
Integer value

_Y
Integer value

Return the maximum numeric value of the arguments

Determine the minimum numeric value of the arguments

_X
Integer value

_Y
Integer value

Return the minimum numeric value of the arguments

Concurrency::direct3d Namespace

adopt_d3d_access_lock_t Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct adopt_d3d_access_lock_t;

Members

Inheritance Hierarchy

Requirements

See also

Tag type to indicate the D3D access lock should be adopted rather than acquired.

adopt_d3d_access_lock_t

Header: amprt.h

Namespace: concurrency::direct3d

Concurrency::direct3d Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/adopt-d3d-access-lock-t-structure.md

scoped_d3d_access_lock Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax

class scoped_d3d_access_lock;

Members
Public Constructors

NAME DESCRIPTION

scoped_d3d_access_lock Constructor Overloaded. Constructs a scoped_d3d_access_lock object.
The lock is released when this object goes out of scope.

~scoped_d3d_access_lock Destructor Releases the D3D access lock on the associated
accelerator_view object.

Public Operators

NAME DESCRIPTION

operator= Takes ownership of a lock from another
scoped_d3d_access_lock .

Inheritance Hierarchy

Requirements

scoped_d3d_access_lock

explicit scoped_d3d_access_lock(// [1] constructor
 accelerator_view& _Av);

explicit scoped_d3d_access_lock(// [2] constructor
 accelerator_view& _Av,
 adopt_d3d_access_lock_t _T);

scoped_d3d_access_lock(// [3] move constructor
 scoped_d3d_access_lock&& _Other);

RAII wrapper for a D3D access lock on an accelerator_view object.

scoped_d3d_access_lock

Header: amprt.h

Namespace: concurrency::direct3d

Constructs a scoped_d3d_access_lock object. The lock is released when this object goes out of scope.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/scoped-d3d-access-lock-class.md

Parameters

Construction

~scoped_d3d_access_lock

~scoped_d3d_access_lock();

operator=

scoped_d3d_access_lock& operator= (scoped_d3d_access_lock&& _Other);

Parameters

Return Value

See also

_Av
The accelerator_view for the lock to adopt.

_T
The adopt_d3d_access_lock_t object.

_Other
The scoped_d3d_access_lock object from which to move an existing lock.

[1] Constructor Acquires a D3D access lock on the given accelerator_view object. Construction blocks until the lock
is acquired.

[2] Constructor Adopt a D3D access lock from the given accelerator_view object.

[3] Move Constructor Takes an existing D3D access lock from another scoped_d3d_access_lock object.
Construction does not block.

Releases the D3D access lock on the associated accelerator_view object.

Takes ownership of a D3D access lock from another scoped_d3d_access_lock object, releasing the previous lock.

_Other
The accelerator_view from which to move the D3D access lock.

A reference to this scoped_accelerator_view_lock .

Concurrency::direct3d Namespace

Concurrency::fast_math Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace fast_math;

Members
Functions

NAME DESCRIPTION

cos Calculates the arccosine of the argument

cosf Calculates the arccosine of the argument

asin Calculates the arcsine of the argument

asinf Calculates the arcsine of the argument

atan Calculates the arctangent of the argument

atan2 Calculates the arctangent of _Y/_X

atan2f Calculates the arctangent of _Y/_X

atanf Calculates the arctangent of the argument

ceil Calculates the ceiling of the argument

ceilf Calculates the ceiling of the argument

cos Calculates the cosine of the argument

cosf Calculates the cosine of the argument

cosh Calculates the hyperbolic cosine value of the argument

coshf Calculates the hyperbolic cosine value of the argument

exp Calculates the base-e exponential of the argument

exp2 Calculates the base-2 exponential of the argument

Functions in the fast_math namespace have lower accuracy, support only single-precision (float), and call the
DirectX intrinsics. There are two versions of each function, for example cos and cosf . Both versions take and
return a float , but each calls the same DirectX intrinsic.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-fast-math-namespace.md

exp2f Calculates the base-2 exponential of the argument

expf Calculates the base-e exponential of the argument

fabs Returns the absolute value of the argument

fabsf Returns the absolute value of the argument

floor Calculates the floor of the argument

floorf Calculates the floor of the argument

fmax Determine the maximum numeric value of the arguments

fmaxf Determine the maximum numeric value of the arguments

fmin Determine the minimum numeric value of the arguments

fminf Determine the minimum numeric value of the arguments

fmod Calculates the floating-point remainder of _X/_Y

fmodf Calculates the floating-point remainder of _X/_Y

frexp Gets the mantissa and exponent of _X

frexpf Gets the mantissa and exponent of _X

isfinite Determines whether the argument has a finite value

isinf Determines whether the argument is an infinity

isnan Determines whether the argument is a NaN

ldexp Computes a real number from the mantissa and exponent

ldexpf Computes a real number from the mantissa and exponent

log Calculates the base-e logarithm of the argument

log10 Calculates the base-10 logarithm of the argument

log10f Calculates the base-10 logarithm of the argument

log2 Calculates the base-2 logarithm of the argument

log2f Calculates the base-2 logarithm of the argument

logf Calculates the base-e logarithm of the argument

NAME DESCRIPTION

modf Splits _X into fractional and integer parts.

modff Splits _X into fractional and integer parts.

pow Calculates _X raised to the power of _Y

powf Calculates _X raised to the power of _Y

round Rounds _X to the nearest integer

roundf Rounds _X to the nearest integer

rsqrt Returns the reciprocal of the square root of the argument

rsqrtf Returns the reciprocal of the square root of the argument

signbit Returns the sign of the argument

signbitf Returns the sign of the argument

sin Calculates the sine value of the argument

sincos Calculates sine and cosine value of _X

sincosf Calculates sine and cosine value of _X

sinf Calculates the sine value of the argument

sinh Calculates the hyperbolic sine value of the argument

sinhf Calculates the hyperbolic sine value of the argument

sqrt Calculates the square root of the argument

sqrtf Calculates the square root of the argument

tan Calculates the tangent value of the argument

tanf Calculates the tangent value of the argument

tanh Calculates the hyperbolic tangent value of the argument

tanhf Calculates the hyperbolic tangent value of the argument

trunc Truncates the argument to the integer component

truncf Truncates the argument to the integer component

NAME DESCRIPTION

Requirements

See also

Header: amp_math.h

Namespace: Concurrency::fast_math

Concurrency Namespace (C++ AMP)

Concurrency::fast_math namespace functions
3/4/2019 • 9 minutes to read • Edit Online

acos acosf asin

asinf atan atan2

atan2f atanf ceil

ceilf cos cosf

cosh coshf exp

exp2 exp2f expf

fabs fabsf floor

floorf fmax fmaxf

fmin fminf fmod

fmodf frexp frexpf

isfinite isinf isnan

ldexp ldexpf log

log10 log10f log2

log2f logf modf

modff pow powf

round roundf rsqrt

rsqrtf signbit signbitf

sin sincos sincosf

sinf sinh sinhf

sqrt sqrtf tan

tanf tanh tanhf

trunc truncf

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-fast-math-namespace-functions.md

acos

inline float acos(float _X) restrict(amp);

Parameters

Return Value

acosf

inline float acosf(float _X) restrict(amp);

Parameters

Return Value

asin

inline float asin(float _X) restrict(amp);

Parameters

Return Value

asinf

inline float asinf(float _X) restrict(amp);

Parameters

Return Value

Calculates the arccosine of the argument

_X
Floating-point value

Returns the arccosine value of the argument

Calculates the arccosine of the argument

_X
Floating-point value

Returns the arccosine value of the argument

Calculates the arcsine of the argument

_X
Floating-point value

Returns the arcsine value of the argument

Calculates the arcsine of the argument

_X
Floating-point value

Returns the arcsine value of the argument

atan

inline float atan(float _X) restrict(amp);

Parameters

Return Value

atan2

inline float atan2(
 float _Y,
 float _X) restrict(amp);

Parameters

Return Value

atan2f

inline float atan2f(
 float _Y,
 float _X) restrict(amp);

Parameters

Return Value

atanf

Calculates the arctangent of the argument

_X
Floating-point value

Returns the arctangent value of the argument

Calculates the arctangent of _Y/_X

_Y
Floating-point value

_X
Floating-point value

Returns the arctangent value of _Y/_X

Calculates the arctangent of _Y/_X

_Y
Floating-point value

_X
Floating-point value

Returns the arctangent value of _Y/_X

Calculates the arctangent of the argument

inline float atanf(float _X) restrict(amp);

Parameters

Return Value

ceil

inline float ceil(float _X) restrict(amp);

Parameters

Return Value

ceilf

inline float ceilf(float _X) restrict(amp);

Parameters

Return Value

cosf

inline float cosf(float _X) restrict(amp);

Parameters

Return Value

coshf

_X
Floating-point value

Returns the arctangent value of the argument

Calculates the ceiling of the argument

_X
Floating-point value

Returns the ceiling of the argument

Calculates the ceiling of the argument

_X
Floating-point value

Returns the ceiling of the argument

Calculates the cosine of the argument

_X
Floating-point value

Returns the cosine value of the argument

Calculates the hyperbolic cosine value of the argument

inline float coshf(float _X) restrict(amp);

Parameters

Return Value

cos

inline float cos(float _X) restrict(amp);

Parameters

Return Value

cosh

inline float cosh(float _X) restrict(amp);

Parameters

Return Value

exp

inline float exp(float _X) restrict(amp);

Parameters

Return Value

exp2

_X
Floating-point value

Returns the hyperbolic cosine value of the argument

Calculates the cosine of the argument

_X
Floating-point value

Returns the cosine value of the argument

Calculates the hyperbolic cosine value of the argument

_X
Floating-point value

Returns the hyperbolic cosine value of the argument

Calculates the base-e exponential of the argument

_X
Floating-point value

Returns the base-e exponential of the argument

inline float exp2(float _X) restrict(amp);

Parameters

Return Value

exp2f

inline float exp2f(float _X) restrict(amp);

Parameters

Return Value

expf

inline float expf(float _X) restrict(amp);

Parameters

Return Value

fabs

inline float fabs(float _X) restrict(amp);

Parameters

Return Value

Calculates the base-2 exponential of the argument

_X
Floating-point value

Returns the base-2 exponential of the argument

Calculates the base-2 exponential of the argument

_X
Floating-point value

Returns the base-2 exponential of the argument

Calculates the base-e exponential of the argument

_X
Floating-point value

Returns the base-e exponential of the argument

Returns the absolute value of the argument

_X
Integer value

Returns the absolute value of the argument

fabsf

inline float fabsf(float _X) restrict(amp);

Parameters

Return Value

floor

inline float floor(float _X) restrict(amp);

Parameters

Return Value

floorf

inline float floorf(float _X) restrict(amp);

Parameters

Return Value

fmax

inline float max(
 float _X,
 float _Y) restrict(amp);

Parameters

Returns the absolute value of the argument

_X
Floating-point value

Returns the absolute value of the argument

Calculates the floor of the argument

_X
Floating-point value

Returns the floor of the argument

Calculates the floor of the argument

_X
Floating-point value

Returns the floor of the argument

Determine the maximum numeric value of the arguments

_X
Integer value

_Y

Return Value

fmaxf

inline float fmaxf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fmin

inline float min(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fminf

inline float fminf(
 float _X,
 float _Y) restrict(amp);

Parameters

Integer value

Return the maximum numeric value of the arguments

Determine the maximum numeric value of the arguments

_X
Floating-point value

_Y
Floating-point value

Return the maximum numeric value of the arguments

Determine the minimum numeric value of the arguments

_X
Integer value

_Y
Integer value

Return the minimum numeric value of the arguments

Determine the minimum numeric value of the arguments

_X
Floating-point value

_Y

Return Value

fmod

inline float fmod(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fmodf

inline float fmodf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

frexp

inline float frexp(
 float _X,
 Out int* _Exp) restrict(amp);

Parameters

Floating-point value

Return the minimum numeric value of the arguments

Calculates the floating-point remainder of _X/_Y

_X
Floating-point value

_Y
Floating-point value

Returns the floating-point remainder of _X/_Y

Calculates the floating-point remainder of _X/_Y.

_X
Floating-point value

_Y
Floating-point value

Returns the floating-point remainder of _X/_Y

Gets the mantissa and exponent of _X

_X
Floating-point value

_Exp

Return Value

frexpf

inline float frexpf(
 float _X,
 Out int* _Exp) restrict(amp);

Parameters

Return Value

isfinite

inline int isfinite(float _X) restrict(amp);

Parameters

Return Value

isinf

inline int isinf(float _X) restrict(amp);

Parameters

Return Value

isnan

Returns the integer exponent of _X in floating-point value

Returns the mantissa _X

Gets the mantissa and exponent of _X

_X
Floating-point value

_Exp
Returns the integer exponent of _X in floating-point value

Returns the mantissa _X

Determines whether the argument has a finite value

_X
Floating-point value

Returns a nonzero value if and only if the argument has a finite value

Determines whether the argument is an infinity

_X
Floating-point value

Returns a nonzero value if and only if the argument has an infinite value

Determines whether the argument is a NaN

inline int isnan(float _X) restrict(amp);

Parameters

Return Value

ldexp

inline float ldexp(
 float _X,
 int _Exp) restrict(amp);

Parameters

Return Value

ldexpf

inline float ldexpf(
 float _X,
 int _Exp) restrict(amp);

Parameters

Return Value

log

inline float log(float _X) restrict(amp);

Parameters

_X
Floating-point value

Returns a nonzero value if and only if the argument has a NaN value

Computes a real number from the mantissa and exponent

_X
Floating-point value, mentissa

_Exp
Integer exponent

Returns _X * 2^_Exp

Computes a real number from the mantissa and exponent

_X
Floating-point value, mentissa

_Exp
Integer exponent

Returns _X * 2^_Exp

Calculates the base-e logarithm of the argument

Return Value

log10

inline float log10(float _X) restrict(amp);

Parameters

Return Value

log10f

inline float log10f(float _X) restrict(amp);

Parameters

Return Value

log2

inline float log2(float _X) restrict(amp);

Parameters

Return Value

log2f

inline float log2f(float _X) restrict(amp);

_X
Floating-point value

Returns the base-e logarithm of the argument

Calculates the base-10 logarithm of the argument

_X
Floating-point value

Returns the base-10 logarithm of the argument

Calculates the base-10 logarithm of the argument

_X
Floating-point value

Returns the base-10 logarithm of the argument

Calculates the base-2 logarithm of the argument

_X
Floating-point value

Returns the base-2 logarithm of the argument

Calculates the base-2 logarithm of the argument

Parameters

Return Value

logf

inline float logf(float _X) restrict(amp);

Parameters

Return Value

modf

inline float modf(
 float _X,
 float* _Ip) restrict(amp);

Parameters

Return Value

modff

inline float modff(
 float _X,
 float* _Ip) restrict(amp);

Parameters

_X
Floating-point value

Returns the base-10 logarithm of the argument

Calculates the base-e logarithm of the argument

_X
Floating-point value

Returns the base-e logarithm of the argument

Splits _X into fractional and integer parts.

_X
Floating-point value

_Ip
Receives integer part of the value

Returns the signed fractional portion of _X

Splits _X into fractional and integer parts.

_X
Floating-point value

_Ip
Receives integer part of the value

Return Value

pow

inline float pow(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

powf

inline float powf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

round

inline float round(float _X) restrict(amp);

Parameters

Return Value

roundf

Returns the signed fractional portion of _X

Calculates _X raised to the power of _Y

_X
Floating-point value, base

_Y
Floating-point value, exponent

Returns the value of _X raised to the power of _Y

Calculates _X raised to the power of _Y

_X
Floating-point value, base

_Y
Floating-point value, exponent

Rounds _X to the nearest integer

_X
Floating-point value

Returns the nearest integer of _X

inline float roundf(float _X) restrict(amp);

Parameters

Return Value

rsqrt

inline float rsqrt(float _X) restrict(amp);

Parameters

Return Value

rsqrtf

inline float rsqrtf(float _X) restrict(amp);

Parameters

Return Value

signbit

inline int signbit(float _X) restrict(amp);

Parameters

Return Value

Rounds _X to the nearest integer

_X
Floating-point value

Returns the nearest integer of _X

Returns the reciprocal of the square root of the argument

_X
Floating-point value

Returns the reciprocal of the square root of the argument

Returns the reciprocal of the square root of the argument

_X
Floating-point value

Returns the reciprocal of the square root of the argument

Determines whether the sign of _X is negative

_X
Floating-point value

Returns a nonzero value if and only if the sign of _X is negative

signbitf

inline int signbitf(float _X) restrict(amp);

Parameters

Return Value

sin

inline float sin(float _X) restrict(amp);

Parameters

Return Value

sinf

inline float sinf(float _X) restrict(amp);

Parameters

Return Value

sincos

inline void sincos(
 float _X,
 float* _S,
 float* _C) restrict(amp);

Parameters

Determines whether the sign of _X is negative

_X
Floating-point value

Returns a nonzero value if and only if the sign of _X is negative

Calculates the sine value of the argument

_X
Floating-point value

Returns the sine value of the argument

Calculates the sine value of the argument

_X
Floating-point value

Returns the sine value of the argument

Calculates sine and cosine value of _X

_X
Floating-point value

sincosf

inline void sincosf(
 float _X,
 float* _S,
 float* _C) restrict(amp);

Parameters

sinh

inline float sinh(float _X) restrict(amp);

Parameters

Return Value

sinhf

inline float sinhf(float _X) restrict(amp);

Parameters

Return Value

sqrt

_S
Returns the sine value of _X

_C
Returns the cosine value of _X

Calculates sine and cosine value of _X

_X
Floating-point value

_S
Returns the sine value of _X

_C
Returns the cosine value of _X

Calculates the hyperbolic sine value of the argument

_X
Floating-point value

Returns the hyperbolic sine value of the argument

Calculates the hyperbolic sine value of the argument

_X
Floating-point value

Returns the hyperbolic sine value of the argument

inline float sqrt(float _X) restrict(amp);

Parameters

Return Value

sqrtf

inline float sqrtf(float _X) restrict(amp);

Parameters

Return Value

tan

inline float tan(float _X) restrict(amp);

Parameters

Return Value

tanf

inline float tanf(float _X) restrict(amp);

Parameters

Return Value

Calculates the squre root of the argument

_X
Floating-point value

Returns the squre root of the argument

Calculates the squre root of the argument

_X
Floating-point value

Returns the squre root of the argument

Calculates the tangent value of the argument

_X
Floating-point value

Returns the tangent value of the argument

Calculates the tangent value of the argument

_X
Floating-point value

Returns the tangent value of the argument

tanh

inline float tanh(float _X) restrict(amp);

Parameters

Return Value

tanhf

inline float tanhf(float _X) restrict(amp);

Parameters

Return Value

trunc

inline float trunc(float _X) restrict(amp);

Parameters

Return Value

truncf

inline float truncf(float _X) restrict(amp);

Parameters

Return Value

Calculates the hyperbolic tangent value of the argument

_X
Floating-point value

Returns the hyperbolic tangent value of the argument

Calculates the hyperbolic tangent value of the argument

_X
Floating-point value

Returns the hyperbolic tangent value of the argument

Truncates the argument to the integer component

_X
Floating-point value

Returns the integer component of the argument

Truncates the argument to the integer component

_X
Floating-point value

Returns the integer component of the argument

Requirements

See also

Header: amp_math.h Namespace: Concurrency::fast_math

Concurrency::fast_math Namespace

Concurrency::graphics Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace graphics;

Members
Namespaces

NAME DESCRIPTION

Concurrency::graphics::direct3d Namespace Provides functions for Direct3D interop.

Typedefs

NAME DESCRIPTION

uint The element type for uint_2 Class, uint_3 Class, and uint_4
Class. Defined as typedef unsigned int uint; .

Enumerations

NAME DESCRIPTION

address_mode Enumeration. Specifies address modes supported for texture sampling.

filter_mode Enumeration Specifies filter modes supported for texture sampling.

Classes

NAME DESCRIPTION

texture Class A texture is a data aggregate on an accelerator_view in the
extent domain. It is a collection of variables, one for each
element in an extent domain. Each variable holds a value
corresponding to C++ primitive type (unsigned int, int,
float, double), or scalar type norm, or unorm (defined in
concurrency::graphics), or eligible short vector types
defined in concurrency::graphics.

writeonly_texture_view Class A writeonly_texture_view provides writeonly access to a
texture.

double_2 Class Represents a short vector of 2 double values.

double_3 Class Represents a short vector of 3 double values.

The graphics namespace provides types and functions that are designed for graphics programming.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-graphics-namespace.md

double_4 Class Represents a short vector of 4 double values.

float_2 Class Represents a short vector of 2 float values.

float_3 Class Represents a short vector of 3 float values.

float_4 Class Represents a short vector of 4 float values.

int_2 Class Represents a short vector of 2 int values.

int_3 Class Represents a short vector of 3 int values.

int_4 Class Represents a short vector of 4 int values.

norm_2 Class Represents a short vector of 2 norm values.

norm_3 Class Represents a short vector of 3 norm values.

norm_4 Class Represents a short vector of 4 norm values.

uint_2 Class Represents a short vector of 2 uint values.

uint_3 Class Represents a short vector of 3 uint values.

uint_4 Class Represents a short vector of 4 uint values.

unorm_2 Class Represents a short vector of 2 unorm values.

unorm_3 Class Represents a short vector of 3 unorm values.

unorm_4 Class Represents a short vector of 4 unorm values.

sampler Class Represents the sampler configuration used for texture
sampling.

short_vector Structure Provides a basic implementation of a short vector of values.

short_vector_traits Structure Provides for retrieval of the length and type of a short
vector.

texture_view Class Provides read access and write access to a texture.

NAME DESCRIPTION

Functions

NAME DESCRIPTION

copy Overloaded. Copies the contents of the source texture into
the destination host buffer.

copy_async Overloaded. Asynchronously copies the contents of the
source texture into the destination host buffer.

NAME DESCRIPTION

Requirements

See also

Header: amp_graphics.h

Namespace: Concurrency

Concurrency Namespace (C++ AMP)

Concurrency::graphics::direct3d Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace direct3d;

Members
Functions

NAME

DESCRIPTION

get_sampler

Get the Direct3D sampler state interface on the given accelerator view that represents the specified sampler object.

get_texture

Gets the Direct3D texture interface underlying the specified texture object.

make_sampler

Create a sampler from a Direct3D sampler state interface pointer.

make_texture

Creates a texture object by using the specified parameters.

msad4

Compares a 4-byte reference value and an 8-byte source value and accumulates a vector of 4 sums.

Requirements

See also

Provides the get_texture and make_texture methods.

Header: amp_graphics.h

Namespace: Concurrency::graphics

Concurrency::graphics Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-graphics-direct3d-namespace.md

Concurrency::graphics::direct3d namespace functions
3/4/2019 • 2 minutes to read • Edit Online

get_sampler get_texture make_sampler

make_texture msad4

get_sampler

IUnknown* get_sampler(
 const Concurrency::accelerator_view& _Av,
 const sampler& _Sampler) restrict(amp);

Parameters

Return Value

get_texture

template<
 typename value_type,
 int _Rank
>
Ret IUnknown *get_texture(
 const texture<value_type, _Rank>& _Texture) restrict(cpu);

template<
 typename value_type,
 int _Rank
>
Ret IUnknown *get_texture(
 const writeonly_texture_view<value_type, _Rank>& _Texture) restrict(cpu);

template<
 typename value_type,
 int _Rank
>
Ret IUnknown *get_texture(
 const texture_view<value_type, _Rank>& _Texture) restrict(cpu);

Parameters

Get the D3D sampler state interface on the given accelerator view that represents the specified sampler object.

_Av
A D3D accelerator view on which the D3D sampler state is to be created.

_Sampler
A sampler object for which the underlying D3D sampler state interface is created.

The IUnknown interface pointer corresponding to the D3D sampler state that represents the given sampler.

Gets the Direct3D texture interface underlying the specified texture object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-graphics-direct3d-namespace-functions.md

Return Value

make_sampler

sampler make_sampler(_In_ IUnknown* _D3D_sampler) restrict(amp);

Parameters

Return Value

make_texture

template<
 typename value_type,
 int _Rank
>
texture<value_type, _Rank> make_texture(
 const Concurrency::accelerator_view& _Av,
 In IUnknown* _D3D_texture,
 DXGI_FORMAT _View_format = DXGI_FORMAT_UNKNOWN) restrict(cpu);

Parameters

value_type
The element type of the texture.

_Rank
The rank of the texture.

_Texture
A texture or texture view associated with the accelerator_view for which the underlying Direct3D texture interface is
returned.

The IUnknown interface pointer corresponding to the Direct3D texture underlying the texture.

Create a sampler from a D3D sampler state interface pointer.

_D3D_sampler
IUnknown interface pointer of the D3D sampler state to create the sampler from.

A sampler represents the provided D3D sampler state.

Creates a texture object by using the specified parameters.

value_type
The type of the elements in the texture.

_Rank
The rank of the texture.

_Av
A D3D accelerator view on which the texture is to be created.

_D3D_texture
IUnknown interface pointer of the D3D texture to create the texture from.

_View_format
The DXGI format to use for views created from this texture. Pass DXGI_FORMAT_UNKNOWN (the default) to
derive the format from the underlying format of _D3D_texture and the value_type of this template. The provided
format must be compatible with the underlying format of _D3D_texture.

Return Value

msad4

inline uint4 msad4(
 uint _Reference,
 uint2 _Source,
 uint4 _Accum) restrict(amp);

Parameters

Return Value

Requirements

See also

A texture using the provided D3D texture.

Compares a 4-byte reference value and an 8-byte source value and accumulates a vector of 4 sums. Each sum
corresponds to the masked sum of absolute differences of different byte alignments between the reference value
and the source value.

_Reference
The reference array of 4 bytes in one uint value

_Source
The source array of 8 bytes in a vector of two uint values.

_Accum
A vector of 4 values to be added to the masked sum of absolute differences of the different byte alignments
between the reference value and the source value.

Returns a vector of 4 sums. Each sum corresponds to the masked sum of absolute differences of different byte
alignments between the reference value and the source value.

Header: amp_graphics.h

Namespace: Concurrency::graphics::direct3d

Concurrency::graphics::direct3d Namespace

Concurrency::graphics namespace functions
3/4/2019 • 3 minutes to read • Edit Online

copy copy_async

copy Function (Concurrency::graphics Namespace)

template <
 typename _Src_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture, void>::type>
>
void copy (
 const _Src_type& _Src,
 Out void* _Dst,
 unsigned int _Dst_byte_size);

template <
 typename _Src_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture, void>::type
>
void copy(
 const _Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset,
 const extent<_Src_type::rank>& _Copy_extent,
 Out void* _Dst,
 unsigned int _Dst_byte_size);

template <
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
void copy(
 const void* _Src,
 unsigned int _Src_byte_size, _Dst_type& _Dst);

template <
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
void copy(
 const void* _Src,
 unsigned int _Src_byte_size,
 _Dst_type& _Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Dst_type::rank>& _Copy_extent);

template <
 typename InputIterator,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
void copy(InputIterator first, InputIterator last, _Dst_type& _Dst);

template <
 typename InputIterator,

Copies a source texture into a destination buffer, or copies a source buffer into a destination buffer. The general
form of this function is copy(src, dest) .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-graphics-namespace-functions.md

 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>void copy(InputIterator first, InputIterator last, _Dst_type& _Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Dst_type::rank>& _Copy_extent);

template <
 typename _Src_type,
 typename OutputIterator,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
!details::texture_traits<OutputIterator>::is_texture, void>::type
>
void copy(
 const _Src_type& _Src, OutputIterator _Dst);

template <
 typename _Src_type,
 typename OutputIterator,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
!details::texture_traits<OutputIterator>::is_texture, void>::type
>
void copy (
 const _Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset,
 const extent<_Src_type::rank>& _Copy_extent, OutputIterator _Dst);

template <
 typename _Src_type,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
details::texture_traits<_Dst_type>::is_texture, void>::type
>
void copy (
 const _Src_type& _Src, _Dst_type& _Dst);

template <
 typename _Src_type,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
details::texture_traits<_Dst_type>::is_texture,
 void>::type
>
void copy (
 const _Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset, _Dst_type& _Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Src_type::rank>& _Copy_extent);

Parameters
_Copy_extent
The extent of the texture section to be copied.

_Dst
The object to copy to.

_Dst_byte_size
The number of bytes in the destination.

_Dst_type
The type of the destination object.

_Dst_offset
The offset into the destination at which to begin copying.

InputIterator

 copy_async Function (Concurrency::graphics Namespace)

template<
 typename _Src_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(
 const _Src_type& _Src,
 Out void* _Dst,
 unsigned int _Dst_byte_size);

template<
 typename _Src_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(
 const _Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset,
 const extent<_Src_type::rank>& _Copy_extent,
 Out void* _Dst,
 unsigned int _Dst_byte_size);

template <
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(
 const void* _Src,
 unsigned int _Src_byte_size, _Dst_type& _Dst);

template <
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(
 const void* _Src,
 unsigned int _Src_byte_size, _Dst_type& _Dst,

The type of the input interator.

OutputIterator
The type of the output iterator.

_Src
To object to copy.

_Src_byte_size
The number of bytes in the source.

_Src_type
The type of the source object.

_Src_offset
The offset into the source from which to begin copying.

first
A beginning iterator into the source container.

last
An ending iterator into the source container.

Asynchronously copies a source texture into a destination buffer, or copies a source buffer into a destination buffer,
and then returns a completion_future object that can be waited on. Data can't be copied when code is running on
an accelerator. The general form of this function is copy(src, dest) .

 unsigned int _Src_byte_size, _Dst_type& _Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Dst_type::rank>& _Copy_extent);

template <
 typename InputIterator,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(InputIterator first, InputIterator last, _Dst_type& _Dst);

template <
 typename InputIterator,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(InputIterator first, InputIterator last, _Dst_type& _Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Dst_type::rank>& _Copy_extent);

template <
 typename _Src_type,
 typename OutputIterator,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
!details::texture_traits<OutputIterator>::is_texture, void>::type
>
concurrency::completion_future copy_async(_Src_type& _Src, OutputIterator _Dst);

template <
 typename _Src_type,
 typename OutputIterator,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
!details::texture_traits<OutputIterator>::is_texture, void>::type
>
concurrency::completion_future copy_async(_Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset,
 const extent<_Src_type::rank>& _Copy_extent,
 OutputIterator _Dst);

template <
 typename _Src_type,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(_Src_type& _Src, _Dst_type& _Dst);

template <
 typename _Src_type,
 typename _Dst_type,
 typename = typename std::enable_if<details::texture_traits<_Src_type>::is_texture&&
details::texture_traits<_Dst_type>::is_texture, void>::type
>
concurrency::completion_future copy_async(_Src_type& _Src,
 const index<_Src_type::rank>& _Src_offset, _Dst_type &_Dst,
 const index<_Dst_type::rank>& _Dst_offset,
 const extent<_Src_type::rank>& _Copy_extent);

Parameters
_Copy_extent
The extent of the texture section to be copied.

_Dst
The object to copy to.

_Dst_byte_size

Requirements

See also

The number of bytes in the destination.

_Dst_type
The type of the destination object.

_Dst_offset
The offset into the destination at which to begin copying.

InputIterator
The type of the input interator.

OutputIterator
The type of the output iterator.

_Src
To object to copy.

_Src_byte_size
The number of bytes in the source.

_Src_type
The type of the source object.

_Src_offset
The offset into the source from which to begin copying.

first
A beginning iterator into the source container.

last
An ending iterator into the source container.

Header: amp_graphics.h

Namespace: Concurrency::graphics

Concurrency::graphics Namespace

Concurrency::graphics namespace enums
3/4/2019 • 2 minutes to read • Edit Online

_mode Enumeration filter_mode Enumeration

address_mode Enumeration

enum address_mode;

filter_mode Enumeration

enum filter_mode;

Requirements

See also

Enumeration type use to denote address modes supported for texture sampling.

Enumeration type use to denote filter modes supported for texture sampling.

Header: amp_graphics.h Namespace: Concurrency::graphics

Concurrency::graphics Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-graphics-namespace-enums.md

double_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class double_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

double_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

double_2::get_x

double_2::get_xy

double_2::get_y

double_2::get_yx

double_2::ref_g

double_2::ref_r

double_2::ref_x

double_2::ref_y

double_2::set_x

double_2::set_xy

double_2::set_y

Represent a short vector of 2 double's.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/double-2-class.md

double_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

double_2::operator-

double_2::operator--

double_2::operator*=

double_2::operator/=

double_2::operator++

double_2::operator+=

double_2::operator=

double_2::operator-=

Public Constants

NAME DESCRIPTION

double_2::size Constant

Public Data Members

NAME DESCRIPTION

double_2::g

double_2::gr

double_2::r

double_2::rg

double_2::x

double_2::xy

double_2::y

double_2::yx

Inheritance Hierarchy
double_2

Requirements

double_2

double_2() restrict(amp,
 cpu);

double_2(
 double _V0,
 double _V1) restrict(amp,
 cpu);

double_2(
 double _V) restrict(amp,
 cpu);

double_2(
 const double_2& _Other) restrict(amp,
 cpu);

explicit inline double_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline double_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline double_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline double_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline double_2(
 const norm_2& _Other) restrict(amp,
 cpu);

Parameters

size

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V
The value for initialization.

_Other
The object used to initialize.

static const int size = 2;

See also
Concurrency::graphics Namespace

double_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class double_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

double_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

double_3::get_x

double_3::get_xy

double_3::get_xyz

double_3::get_xz

double_3::get_xzy

double_3::get_y

double_3::get_yx

double_3::get_yxz

double_3::get_yz

double_3::get_yzx

double_3::get_z

Represents a short vector of three doubles.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/double-3-class.md

double_3::get_zx

double_3::get_zxy

double_3::get_zy

double_3::get_zyx

double_3::ref_b

double_3::ref_g

double_3::ref_r

double_3::ref_x

double_3::ref_y

double_3::ref_z

double_3::set_x

double_3::set_xy

double_3::set_xyz

double_3::set_xz

double_3::set_xzy

double_3::set_y

double_3::set_yx

double_3::set_yxz

double_3::set_yz

double_3::set_yzx

double_3::set_z

double_3::set_zx

double_3::set_zxy

double_3::set_zy

double_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

double_3::operator-

double_3::operator--

double_3::operator*=

double_3::operator/=

double_3::operator++

double_3::operator+=

double_3::operator=

double_3::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

double_3::b

double_3::bg

double_3::bgr

double_3::br

double_3::brg

double_3::g

double_3::gb

double_3::gbr

double_3::gr

double_3::grb

double_3::r

double_3::rb

double_3::rbg

double_3::rg

double_3::rgb

double_3::x

double_3::xy

double_3::xyz

double_3::xz

double_3::xzy

double_3::y

double_3::yx

double_3::yxz

double_3::yz

double_3::yzx

double_3::z

double_3::zx

double_3::zxy

double_3::zy

double_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

double_3

double_3

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

double_3() restrict(amp,
 cpu);

double_3(
 double _V0,
 double _V1,
 double _V2) restrict(amp,
 cpu);

double_3(
 double _V) restrict(amp,
 cpu);

double_3(
 const double_3& _Other) restrict(amp,
 cpu);

explicit inline double_3(
 const uint_3& _Other) restrict(amp,
 cpu);

explicit inline double_3(
 const int_3& _Other) restrict(amp,
 cpu);

explicit inline double_3(
 const float_3& _Other) restrict(amp,
 cpu);

explicit inline double_3(
 const unorm_3& _Other) restrict(amp,
 cpu);

explicit inline double_3(
 const norm_3& _Other) restrict(amp,
 cpu);

Parameters

size
static const int size = 3;

See also

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

double_4 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class double_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

double_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

double_4::get_w

double_4::get_wx

double_4::get_wxy

double_4::get_wxyz

double_4::get_wxz

double_4::get_wxzy

double_4::get_wy

double_4::get_wyx

double_4::get_wyxz

double_4::get_wyz

double_4::get_wyzx

Represents a short vector of four doubles.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/double-4-class.md

double_4::get_wz

double_4::get_wzx

double_4::get_wzxy

double_4::get_wzy

double_4::get_wzyx

double_4::get_x

double_4::get_xw

double_4::get_xwy

double_4::get_xwyz

double_4::get_xwz

double_4::get_xwzy

double_4::get_xy

double_4::get_xyw

double_4::get_xywz

double_4::get_xyz

double_4::get_xyzw

double_4::get_xz

double_4::get_xzw

double_4::get_xzwy

double_4::get_xzy

double_4::get_xzyw

double_4::get_y

double_4::get_yw

double_4::get_ywx

double_4::get_ywxz

NAME DESCRIPTION

double_4::get_ywz

double_4::get_ywzx

double_4::get_yx

double_4::get_yxw

double_4::get_yxwz

double_4::get_yxz

double_4::get_yxzw

double_4::get_yz

double_4::get_yzw

double_4::get_yzwx

double_4::get_yzx

double_4::get_yzxw

double_4::get_z

double_4::get_zw

double_4::get_zwx

double_4::get_zwxy

double_4::get_zwy

double_4::get_zwyx

double_4::get_zx

double_4::get_zxw

double_4::get_zxwy

double_4::get_zxy

double_4::get_zxyw

double_4::get_zy

double_4::get_zyw

NAME DESCRIPTION

double_4::get_zywx

double_4::get_zyx

double_4::get_zyxw

double_4::ref_a

double_4::ref_b

double_4::ref_g

double_4::ref_r

double_4::ref_w

double_4::ref_x

double_4::ref_y

double_4::ref_z

double_4::set_w

double_4::set_wx

double_4::set_wxy

double_4::set_wxyz

double_4::set_wxz

double_4::set_wxzy

double_4::set_wy

double_4::set_wyx

double_4::set_wyxz

double_4::set_wyz

double_4::set_wyzx

double_4::set_wz

double_4::set_wzx

double_4::set_wzxy

NAME DESCRIPTION

double_4::set_wzy

double_4::set_wzyx

double_4::set_x

double_4::set_xw

double_4::set_xwy

double_4::set_xwyz

double_4::set_xwz

double_4::set_xwzy

double_4::set_xy

double_4::set_xyw

double_4::set_xywz

double_4::set_xyz

double_4::set_xyzw

double_4::set_xz

double_4::set_xzw

double_4::set_xzwy

double_4::set_xzy

double_4::set_xzyw

double_4::set_y

double_4::set_yw

double_4::set_ywx

double_4::set_ywxz

double_4::set_ywz

double_4::set_ywzx

double_4::set_yx

NAME DESCRIPTION

double_4::set_yxw

double_4::set_yxwz

double_4::set_yxz

double_4::set_yxzw

double_4::set_yz

double_4::set_yzw

double_4::set_yzwx

double_4::set_yzx

double_4::set_yzxw

double_4::set_z

double_4::set_zw

double_4::set_zwx

double_4::set_zwxy

double_4::set_zwy

double_4::set_zwyx

double_4::set_zx

double_4::set_zxw

double_4::set_zxwy

double_4::set_zxy

double_4::set_zxyw

double_4::set_zy

double_4::set_zyw

double_4::set_zywx

double_4::set_zyx

double_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

double_4::operator-

double_4::operator--

double_4::operator*=

double_4::operator/=

double_4::operator++

double_4::operator+=

double_4::operator=

double_4::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

double_4::a

double_4::ab

double_4::abg

double_4::abgr

double_4::abr

double_4::abrg

double_4::ag

double_4::agb

double_4::agbr

double_4::agr

double_4::agrb

double_4::ar

double_4::arb

double_4::arbg

double_4::arg

double_4::argb

double_4::b

double_4::ba

double_4::bag

double_4::bagr

double_4::bar

double_4::barg

double_4::bg

double_4::bga

double_4::bgar

double_4::bgr

double_4::bgra

double_4::br

double_4::bra

double_4::brag

double_4::brg

double_4::brga

double_4::g

double_4::ga

double_4::gab

double_4::gabr

double_4::gar

double_4::garb

NAME DESCRIPTION

double_4::gb

double_4::gba

double_4::gbar

double_4::gbr

double_4::gbra

double_4::gr

double_4::gra

double_4::grab

double_4::grb

double_4::grba

double_4::r

double_4::ra

double_4::rab

double_4::rabg

double_4::rag

double_4::ragb

double_4::rb

double_4::rba

double_4::rbag

double_4::rbg

double_4::rbga

double_4::rg

double_4::rga

double_4::rgab

double_4::rgb

NAME DESCRIPTION

double_4::rgba

double_4::w

double_4::wx

double_4::wxy

double_4::wxyz

double_4::wxz

double_4::wxzy

double_4::wy

double_4::wyx

double_4::wyxz

double_4::wyz

double_4::wyzx

double_4::wz

double_4::wzx

double_4::wzxy

double_4::wzy

double_4::wzyx

double_4::x

double_4::xw

double_4::xwy

double_4::xwyz

double_4::xwz

double_4::xwzy

double_4::xy

double_4::xyw

NAME DESCRIPTION

double_4::xywz

double_4::xyz

double_4::xyzw

double_4::xz

double_4::xzw

double_4::xzwy

double_4::xzy

double_4::xzyw

double_4::y

double_4::yw

double_4::ywx

double_4::ywxz

double_4::ywz

double_4::ywzx

double_4::yx

double_4::yxw

double_4::yxwz

double_4::yxz

double_4::yxzw

double_4::yz

double_4::yzw

double_4::yzwx

double_4::yzx

double_4::yzxw

double_4::z

NAME DESCRIPTION

double_4::zw

double_4::zwx

double_4::zwxy

double_4::zwy

double_4::zwyx

double_4::zx

double_4::zxw

double_4::zxwy

double_4::zxy

double_4::zxyw

double_4::zy

double_4::zyw

double_4::zywx

double_4::zyx

double_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

double_4

double_4

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

double_4() restrict(amp,
 cpu);

double_4(
 double _V0,
 double _V1,
 double _V2,
 double _V3) restrict(amp,
 cpu);

double_4(
 double _V) restrict(amp,
 cpu);

double_4(
 const double_4& _Other) restrict(amp,
 cpu);

explicit inline double_4(
 const uint_4& _Other) restrict(amp,
 cpu);

explicit inline double_4(
 const int_4& _Other) restrict(amp,
 cpu);

explicit inline double_4(
 const float_4& _Other) restrict(amp,
 cpu);

explicit inline double_4(
 const unorm_4& _Other) restrict(amp,
 cpu);

explicit inline double_4(
 const norm_4& _Other) restrict(amp,
 cpu);

Parameters

size
static const int size = 4;

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V3
The value to initialize element 3.

_V
The value for initialization.

_Other
The object used to initialize.

See also
Concurrency::graphics Namespace

float_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class float_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

float_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

float_2::get_x

float_2::get_xy

float_2::get_y

float_2::get_yx

float_2::ref_g

float_2::ref_r

float_2::ref_x

float_2::ref_y

float_2::set_x

float_2::set_xy

float_2::set_y

Represents a short vector of two floats.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/float-2-class.md

float_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

float_2::operator-

float_2::operator--

float_2::operator*=

float_2::operator/=

float_2::operator++

float_2::operator+=

float_2::operator=

float_2::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

float_2::g

float_2::gr

float_2::r

float_2::rg

float_2::x

float_2::xy

float_2::y

float_2::yx

Inheritance Hierarchy
float_2

Requirements

float_2

float_2() restrict(amp,
 cpu);

float_2(
 float _V0,
 float _V1) restrict(amp,
 cpu);

float_2(
 float _V) restrict(amp,
 cpu);

float_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline float_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline float_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline float_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline float_2(
 const norm_2& _Other) restrict(amp,
 cpu);

explicit inline float_2(
 const double_2& _Other) restrict(amp,
 cpu);

Parameters

size

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V
The value for initialization.

_Other
The object used to initialize.

static const int size = 2;

See also
Concurrency::graphics Namespace

float_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class float_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

float_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

float_3::get_x

float_3::get_xy

float_3::get_xyz

float_3::get_xz

float_3::get_xzy

float_3::get_y

float_3::get_yx

float_3::get_yxz

float_3::get_yz

float_3::get_yzx

float_3::get_z

Represents a short vector of three floats.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/float-3-class.md

float_3::get_zx

float_3::get_zxy

float_3::get_zy

float_3::get_zyx

float_3::ref_b

float_3::ref_g

float_3::ref_r

float_3::ref_x

float_3::ref_y

float_3::ref_z

float_3::set_x

float_3::set_xy

float_3::set_xyz

float_3::set_xz

float_3::set_xzy

float_3::set_y

float_3::set_yx

float_3::set_yxz

float_3::set_yz

float_3::set_yzx

float_3::set_z

float_3::set_zx

float_3::set_zxy

float_3::set_zy

float_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

float_3::operator-

float_3::operator--

float_3::operator*=

float_3::operator/=

float_3::operator++

float_3::operator+=

float_3::operator=

float_3::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

float_3::b

float_3::bg

float_3::bgr

float_3::br

float_3::brg

float_3::g

float_3::gb

float_3::gbr

float_3::gr

float_3::grb

float_3::r

float_3::rb

float_3::rbg

float_3::rg

float_3::rgb

float_3::x

float_3::xy

float_3::xyz

float_3::xz

float_3::xzy

float_3::y

float_3::yx

float_3::yxz

float_3::yz

float_3::yzx

float_3::z

float_3::zx

float_3::zxy

float_3::zy

float_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

float_3

float_3

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

float_3() restrict(amp,
 cpu);

float_3(
 float _V0,
 float _V1,
 float _V2) restrict(amp,
 cpu);

float_3(
 float _V) restrict(amp,
 cpu);

float_3(
 const float_3& _Other) restrict(amp,
 cpu);

explicit inline float_3(
 const uint_3& _Other) restrict(amp,
 cpu);

explicit inline float_3(
 const int_3& _Other) restrict(amp,
 cpu);

explicit inline float_3(
 const unorm_3& _Other) restrict(amp,
 cpu);

explicit inline float_3(
 const norm_3& _Other) restrict(amp,
 cpu);

explicit inline float_3(
 const double_3& _Other) restrict(amp,
 cpu);

Parameters

size
static const int size = 3;

See also

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

float_4 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class float_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

float_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

float_4::get_w

float_4::get_wx

float_4::get_wxy

float_4::get_wxyz

float_4::get_wxz

float_4::get_wxzy

float_4::get_wy

float_4::get_wyx

float_4::get_wyxz

float_4::get_wyz

float_4::get_wyzx

Represents a short vector of four floats.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/float-4-class.md

float_4::get_wz

float_4::get_wzx

float_4::get_wzxy

float_4::get_wzy

float_4::get_wzyx

float_4::get_x

float_4::get_xw

float_4::get_xwy

float_4::get_xwyz

float_4::get_xwz

float_4::get_xwzy

float_4::get_xy

float_4::get_xyw

float_4::get_xywz

float_4::get_xyz

float_4::get_xyzw

float_4::get_xz

float_4::get_xzw

float_4::get_xzwy

float_4::get_xzy

float_4::get_xzyw

float_4::get_y

float_4::get_yw

float_4::get_ywx

float_4::get_ywxz

NAME DESCRIPTION

float_4::get_ywz

float_4::get_ywzx

float_4::get_yx

float_4::get_yxw

float_4::get_yxwz

float_4::get_yxz

float_4::get_yxzw

float_4::get_yz

float_4::get_yzw

float_4::get_yzwx

float_4::get_yzx

float_4::get_yzxw

float_4::get_z

float_4::get_zw

float_4::get_zwx

float_4::get_zwxy

float_4::get_zwy

float_4::get_zwyx

float_4::get_zx

float_4::get_zxw

float_4::get_zxwy

float_4::get_zxy

float_4::get_zxyw

float_4::get_zy

float_4::get_zyw

NAME DESCRIPTION

float_4::get_zywx

float_4::get_zyx

float_4::get_zyxw

float_4::ref_a

float_4::ref_b

float_4::ref_g

float_4::ref_r

float_4::ref_w

float_4::ref_x

float_4::ref_y

float_4::ref_z

float_4::set_w

float_4::set_wx

float_4::set_wxy

float_4::set_wxyz

float_4::set_wxz

float_4::set_wxzy

float_4::set_wy

float_4::set_wyx

float_4::set_wyxz

float_4::set_wyz

float_4::set_wyzx

float_4::set_wz

float_4::set_wzx

float_4::set_wzxy

NAME DESCRIPTION

float_4::set_wzy

float_4::set_wzyx

float_4::set_x

float_4::set_xw

float_4::set_xwy

float_4::set_xwyz

float_4::set_xwz

float_4::set_xwzy

float_4::set_xy

float_4::set_xyw

float_4::set_xywz

float_4::set_xyz

float_4::set_xyzw

float_4::set_xz

float_4::set_xzw

float_4::set_xzwy

float_4::set_xzy

float_4::set_xzyw

float_4::set_y

float_4::set_yw

float_4::set_ywx

float_4::set_ywxz

float_4::set_ywz

float_4::set_ywzx

float_4::set_yx

NAME DESCRIPTION

float_4::set_yxw

float_4::set_yxwz

float_4::set_yxz

float_4::set_yxzw

float_4::set_yz

float_4::set_yzw

float_4::set_yzwx

float_4::set_yzx

float_4::set_yzxw

float_4::set_z

float_4::set_zw

float_4::set_zwx

float_4::set_zwxy

float_4::set_zwy

float_4::set_zwyx

float_4::set_zx

float_4::set_zxw

float_4::set_zxwy

float_4::set_zxy

float_4::set_zxyw

float_4::set_zy

float_4::set_zyw

float_4::set_zywx

float_4::set_zyx

float_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

float_4::operator-

float_4::operator--

float_4::operator*=

float_4::operator/=

float_4::operator++

float_4::operator+=

float_4::operator=

float_4::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

float_4::a

float_4::ab

float_4::abg

float_4::abgr

float_4::abr

float_4::abrg

float_4::ag

float_4::agb

float_4::agbr

float_4::agr

float_4::agrb

float_4::ar

float_4::arb

float_4::arbg

float_4::arg

float_4::argb

float_4::b

float_4::ba

float_4::bag

float_4::bagr

float_4::bar

float_4::barg

float_4::bg

float_4::bga

float_4::bgar

float_4::bgr

float_4::bgra

float_4::br

float_4::bra

float_4::brag

float_4::brg

float_4::brga

float_4::g

float_4::ga

float_4::gab

float_4::gabr

float_4::gar

float_4::garb

NAME DESCRIPTION

float_4::gb

float_4::gba

float_4::gbar

float_4::gbr

float_4::gbra

float_4::gr

float_4::gra

float_4::grab

float_4::grb

float_4::grba

float_4::r

float_4::ra

float_4::rab

float_4::rabg

float_4::rag

float_4::ragb

float_4::rb

float_4::rba

float_4::rbag

float_4::rbg

float_4::rbga

float_4::rg

float_4::rga

float_4::rgab

float_4::rgb

NAME DESCRIPTION

float_4::rgba

float_4::w

float_4::wx

float_4::wxy

float_4::wxyz

float_4::wxz

float_4::wxzy

float_4::wy

float_4::wyx

float_4::wyxz

float_4::wyz

float_4::wyzx

float_4::wz

float_4::wzx

float_4::wzxy

float_4::wzy

float_4::wzyx

float_4::x

float_4::xw

float_4::xwy

float_4::xwyz

float_4::xwz

float_4::xwzy

float_4::xy

float_4::xyw

NAME DESCRIPTION

float_4::xywz

float_4::xyz

float_4::xyzw

float_4::xz

float_4::xzw

float_4::xzwy

float_4::xzy

float_4::xzyw

float_4::y

float_4::yw

float_4::ywx

float_4::ywxz

float_4::ywz

float_4::ywzx

float_4::yx

float_4::yxw

float_4::yxwz

float_4::yxz

float_4::yxzw

float_4::yz

float_4::yzw

float_4::yzwx

float_4::yzx

float_4::yzxw

float_4::z

NAME DESCRIPTION

float_4::zw

float_4::zwx

float_4::zwxy

float_4::zwy

float_4::zwyx

float_4::zx

float_4::zxw

float_4::zxwy

float_4::zxy

float_4::zxyw

float_4::zy

float_4::zyw

float_4::zywx

float_4::zyx

float_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

float_4

float_4

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

float_4() restrict(amp,
 cpu);

float_4(
 float _V0,
 float _V1,
 float _V2,
 float _V3) restrict(amp,
 cpu);

float_4(
 float _V) restrict(amp,
 cpu);

float_4(
 const float_4& _Other) restrict(amp,
 cpu);

explicit inline float_4(
 const uint_4& _Other) restrict(amp,
 cpu);

explicit inline float_4(
 const int_4& _Other) restrict(amp,
 cpu);

explicit inline float_4(
 const unorm_4& _Other) restrict(amp,
 cpu);

explicit inline float_4(
 const norm_4& _Other) restrict(amp,
 cpu);

explicit inline float_4(
 const double_4& _Other) restrict(amp,
 cpu);

Parameters

size
static const int size = 4;

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V3
The value to initialize element 3.

_V
The value for initialization.

_Other
The object used to initialize.

See also
Concurrency::graphics Namespace

int_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class int_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

int_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

int_2::get_x

int_2::get_xy

int_2::get_y

int_2::get_yx

int_2::ref_g

int_2::ref_r

int_2::ref_x

int_2::ref_y

int_2::set_x

int_2::set_xy

int_2::set_y

Represents a short vector of two integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/int-2-class.md

int_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

int_2::operator-

int_2::operator--

int_2::operator%=

int_2::operator&=

int_2::operator*=

int_2::operator/=

int_2::operator^=

int_2::operator|=

int_2::operator~

int_2::operator++

int_2::operator+=

int_2::operator<<=

int_2::operator=

int_2::operator-=

int_2::operator>>=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

int_2::g

int_2::gr

int_2::r

int_2::rg

int_2::x

int_2::xy

int_2::y

int_2::yx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

int_2

int_2

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

int_2() restrict(amp,
 cpu);

int_2(
 int _V0,
 int _V1) restrict(amp,
 cpu);

int_2(
 int _V) restrict(amp,
 cpu);

int_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline int_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline int_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline int_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline int_2(
 const norm_2& _Other) restrict(amp,
 cpu);

explicit inline int_2(
 const double_2& _Other) restrict(amp,
 cpu);

Parameters

size
static const int size = 2;

See also

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

int_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class int_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

int_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

int_3::get_x

int_3::get_xy

int_3::get_xyz

int_3::get_xz

int_3::get_xzy

int_3::get_y

int_3::get_yx

int_3::get_yxz

int_3::get_yz

int_3::get_yzx

int_3::get_z

Represents a short vector of three integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/int-3-class.md

int_3::get_zx

int_3::get_zxy

int_3::get_zy

int_3::get_zyx

int_3::ref_b

int_3::ref_g

int_3::ref_r

int_3::ref_x

int_3::ref_y

int_3::ref_z

int_3::set_x

int_3::set_xy

int_3::set_xyz

int_3::set_xz

int_3::set_xzy

int_3::set_y

int_3::set_yx

int_3::set_yxz

int_3::set_yz

int_3::set_yzx

int_3::set_z

int_3::set_zx

int_3::set_zxy

int_3::set_zy

int_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

int_3::operator-

int_3::operator--

int_3::operator%=

int_3::operator&=

int_3::operator*=

int_3::operator/=

int_3::operator^=

int_3::operator|=

int_3::operator~

int_3::operator++

int_3::operator+=

int_3::operator<<=

int_3::operator=

int_3::operator-=

int_3::operator>>=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

int_3::b

int_3::bg

int_3::bgr

int_3::br

int_3::brg

int_3::g

int_3::gb

int_3::gbr

int_3::gr

int_3::grb

int_3::r

int_3::rb

int_3::rbg

int_3::rg

int_3::rgb

int_3::x

int_3::xy

int_3::xyz

int_3::xz

int_3::xzy

int_3::y

int_3::yx

int_3::yxz

int_3::yz

int_3::yzx

int_3::z

int_3::zx

int_3::zxy

int_3::zy

int_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

int_3

Syntax
int_3() restrict(amp,cpu);
int_3(
 int _V0,
 int _V1,
 int _V2
) restrict(amp,cpu);
int_3(
 int _V
) restrict(amp,cpu);
int_3(
 const int_3& _Other
) restrict(amp,cpu);
explicit inline int_3(
 const uint_3& _Other
) restrict(amp,cpu);
explicit inline int_3(
 const float_3& _Other
) restrict(amp,cpu);
explicit inline int_3(
 const unorm_3& _Other
) restrict(amp,cpu);
explicit inline int_3(
 const norm_3& _Other
) restrict(amp,cpu);
explicit inline int_3(
 const double_3& _Other
) restrict(amp,cpu);

Parameters

size

int_3

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

Syntax
static const int size = 3;

See also
Concurrency::graphics Namespace

int_4 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class int_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

int_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

int_4::get_w

int_4::get_wx

int_4::get_wxy

int_4::get_wxyz

int_4::get_wxz

int_4::get_wxzy

int_4::get_wy

int_4::get_wyx

int_4::get_wyxz

int_4::get_wyz

int_4::get_wyzx

Represents a short vector of four integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/int-4-class.md

int_4::get_wz

int_4::get_wzx

int_4::get_wzxy

int_4::get_wzy

int_4::get_wzyx

int_4::get_x

int_4::get_xw

int_4::get_xwy

int_4::get_xwyz

int_4::get_xwz

int_4::get_xwzy

int_4::get_xy

int_4::get_xyw

int_4::get_xywz

int_4::get_xyz

int_4::get_xyzw

int_4::get_xz

int_4::get_xzw

int_4::get_xzwy

int_4::get_xzy

int_4::get_xzyw

int_4::get_y

int_4::get_yw

int_4::get_ywx

int_4::get_ywxz

NAME DESCRIPTION

int_4::get_ywz

int_4::get_ywzx

int_4::get_yx

int_4::get_yxw

int_4::get_yxwz

int_4::get_yxz

int_4::get_yxzw

int_4::get_yz

int_4::get_yzw

int_4::get_yzwx

int_4::get_yzx

int_4::get_yzxw

int_4::get_z

int_4::get_zw

int_4::get_zwx

int_4::get_zwxy

int_4::get_zwy

int_4::get_zwyx

int_4::get_zx

int_4::get_zxw

int_4::get_zxwy

int_4::get_zxy

int_4::get_zxyw

int_4::get_zy

int_4::get_zyw

NAME DESCRIPTION

int_4::get_zywx

int_4::get_zyx

int_4::get_zyxw

int_4::ref_a

int_4::ref_b

int_4::ref_g

int_4::ref_r

int_4::ref_w

int_4::ref_x

int_4::ref_y

int_4::ref_z

int_4::set_w

int_4::set_wx

int_4::set_wxy

int_4::set_wxyz

int_4::set_wxz

int_4::set_wxzy

int_4::set_wy

int_4::set_wyx

int_4::set_wyxz

int_4::set_wyz

int_4::set_wyzx

int_4::set_wz

int_4::set_wzx

int_4::set_wzxy

NAME DESCRIPTION

int_4::set_wzy

int_4::set_wzyx

int_4::set_x

int_4::set_xw

int_4::set_xwy

int_4::set_xwyz

int_4::set_xwz

int_4::set_xwzy

int_4::set_xy

int_4::set_xyw

int_4::set_xywz

int_4::set_xyz

int_4::set_xyzw

int_4::set_xz

int_4::set_xzw

int_4::set_xzwy

int_4::set_xzy

int_4::set_xzyw

int_4::set_y

int_4::set_yw

int_4::set_ywx

int_4::set_ywxz

int_4::set_ywz

int_4::set_ywzx

int_4::set_yx

NAME DESCRIPTION

int_4::set_yxw

int_4::set_yxwz

int_4::set_yxz

int_4::set_yxzw

int_4::set_yz

int_4::set_yzw

int_4::set_yzwx

int_4::set_yzx

int_4::set_yzxw

int_4::set_z

int_4::set_zw

int_4::set_zwx

int_4::set_zwxy

int_4::set_zwy

int_4::set_zwyx

int_4::set_zx

int_4::set_zxw

int_4::set_zxwy

int_4::set_zxy

int_4::set_zxyw

int_4::set_zy

int_4::set_zyw

int_4::set_zywx

int_4::set_zyx

int_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

int_4::operator-

int_4::operator--

int_4::operator%=

int_4::operator&=

int_4::operator*=

int_4::operator/=

int_4::operator^=

int_4::operator|=

int_4::operator~

int_4::operator++

int_4::operator+=

int_4::operator<<=

int_4::operator=

int_4::operator-=

int_4::operator>>=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

int_4::a

int_4::ab

int_4::abg

int_4::abgr

int_4::abr

int_4::abrg

int_4::ag

int_4::agb

int_4::agbr

int_4::agr

int_4::agrb

int_4::ar

int_4::arb

int_4::arbg

int_4::arg

int_4::argb

int_4::b

int_4::ba

int_4::bag

int_4::bagr

int_4::bar

int_4::barg

int_4::bg

int_4::bga

int_4::bgar

int_4::bgr

int_4::bgra

int_4::br

int_4::bra

int_4::brag

int_4::brg

NAME DESCRIPTION

int_4::brga

int_4::g

int_4::ga

int_4::gab

int_4::gabr

int_4::gar

int_4::garb

int_4::gb

int_4::gba

int_4::gbar

int_4::gbr

int_4::gbra

int_4::gr

int_4::gra

int_4::grab

int_4::grb

int_4::grba

int_4::r

int_4::ra

int_4::rab

int_4::rabg

int_4::rag

int_4::ragb

int_4::rb

int_4::rba

NAME DESCRIPTION

int_4::rbag

int_4::rbg

int_4::rbga

int_4::rg

int_4::rga

int_4::rgab

int_4::rgb

int_4::rgba

int_4::w

int_4::wx

int_4::wxy

int_4::wxyz

int_4::wxz

int_4::wxzy

int_4::wy

int_4::wyx

int_4::wyxz

int_4::wyz

int_4::wyzx

int_4::wz

int_4::wzx

int_4::wzxy

int_4::wzy

int_4::wzyx

int_4::x

NAME DESCRIPTION

int_4::xw

int_4::xwy

int_4::xwyz

int_4::xwz

int_4::xwzy

int_4::xy

int_4::xyw

int_4::xywz

int_4::xyz

int_4::xyzw

int_4::xz

int_4::xzw

int_4::xzwy

int_4::xzy

int_4::xzyw

int_4::y

int_4::yw

int_4::ywx

int_4::ywxz

int_4::ywz

int_4::ywzx

int_4::yx

int_4::yxw

int_4::yxwz

int_4::yxz

NAME DESCRIPTION

int_4::yxzw

int_4::yz

int_4::yzw

int_4::yzwx

int_4::yzx

int_4::yzxw

int_4::z

int_4::zw

int_4::zwx

int_4::zwxy

int_4::zwy

int_4::zwyx

int_4::zx

int_4::zxw

int_4::zxwy

int_4::zxy

int_4::zxyw

int_4::zy

int_4::zyw

int_4::zywx

int_4::zyx

int_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

int_4

 int_4

int_4() restrict(amp,
 cpu);

int_4(
 int _V0,
 int _V1,
 int _V2,
 int _V3) restrict(amp,
 cpu);

int_4(
 int _V) restrict(amp,
 cpu);

int_4(
 const int_4& _Other) restrict(amp,
 cpu);

explicit inline int_4(
 const uint_4& _Other) restrict(amp,
 cpu);

explicit inline int_4(
 const float_4& _Other) restrict(amp,
 cpu);

explicit inline int_4(
 const unorm_4& _Other) restrict(amp,
 cpu);

explicit inline int_4(
 const norm_4& _Other) restrict(amp,
 cpu);

explicit inline int_4(
 const double_4& _Other) restrict(amp,
 cpu);

Parameters

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V3
The value to initialize element 3.

_V
The value for initialization.

_Other

 size
static const int size = 4;

See also

The object used to initialize.

Concurrency::graphics Namespace

norm Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class norm;

Members
Public Constructors

NAME DESCRIPTION

norm Constructor Overloaded. Default constructor. Initialize to 0.0f.

Public Operators

NAME DESCRIPTION

norm::operator-

norm::operator--

norm::operator float Conversion operator. Convert the norm number to a floating
point value.

norm::operator*=

norm::operator/=

norm::operator++

norm::operator+=

norm::operator=

norm::operator-=

Inheritance Hierarchy

Requirements

Represent a norm number. Each element is a floating point number in the range of [-1.0f, 1.0f].

norm

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/norm-class.md

 norm

norm(
 void) restrict(amp,
 cpu);

explicit norm(
 float _V) restrict(amp,
 cpu);

explicit norm(
 unsigned int _V) restrict(amp,
 cpu);

explicit norm(
 int _V) restrict(amp,
 cpu);

explicit norm(
 double _V) restrict(amp,
 cpu);

norm(
 const norm& _Other) restrict(amp,
 cpu);

norm(
 const unorm& _Other) restrict(amp,
 cpu);

Parameters

See also

Default constructor. Initialize to 0.0f.

_V
The value used to initialize.

_Other
The object used to initialize.

Concurrency::graphics Namespace

norm_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class norm_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

norm_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

norm_2::get_x

norm_2::get_xy

norm_2::get_y

norm_2::get_yx

norm_2::ref_g

norm_2::ref_r

norm_2::ref_x

norm_2::ref_y

norm_2::set_x

norm_2::set_xy

norm_2::set_y

Represents a short vector of two normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/norm-2-class.md

norm_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

norm_2::operator-

norm_2::operator--

norm_2::operator*=

norm_2::operator/=

norm_2::operator++

norm_2::operator+=

norm_2::operator=

norm_2::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

norm_2::g

norm_2::gr

norm_2::r

norm_2::rg

norm_2::x

norm_2::xy

norm_2::y

norm_2::yx

Inheritance Hierarchy
norm_2

Requirements

norm_2

norm_2() restrict(amp,
 cpu);

norm_2(
 norm _V0,
 norm _V1) restrict(amp,
 cpu);

norm_2(
 float _V0,
 float _V1) restrict(amp,
 cpu);

norm_2(
 unorm _V0,
 unorm _V1) restrict(amp,
 cpu);

norm_2(
 norm _V) restrict(amp,
 cpu);

explicit norm_2(
 float _V) restrict(amp,
 cpu);

norm_2(
 const norm_2& _Other) restrict(amp,
 cpu);

explicit inline norm_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline norm_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline norm_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline norm_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline norm_2(
 const double_2& _Other) restrict(amp,
 cpu);

Parameters

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

 size
static const int size = 2;

See also

_V1
The value to initialize element 1.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

norm_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class norm_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

norm_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

norm_3::get_x

norm_3::get_xy

norm_3::get_xyz

norm_3::get_xz

norm_3::get_xzy

norm_3::get_y

norm_3::get_yx

norm_3::get_yxz

norm_3::get_yz

norm_3::get_yzx

norm_3::get_z

Represents a short vector of three normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/norm-3-class.md

norm_3::get_zx

norm_3::get_zxy

norm_3::get_zy

norm_3::get_zyx

norm_3::ref_b

norm_3::ref_g

norm_3::ref_r

norm_3::ref_x

norm_3::ref_y

norm_3::ref_z

norm_3::set_x

norm_3::set_xy

norm_3::set_xyz

norm_3::set_xz

norm_3::set_xzy

norm_3::set_y

norm_3::set_yx

norm_3::set_yxz

norm_3::set_yz

norm_3::set_yzx

norm_3::set_z

norm_3::set_zx

norm_3::set_zxy

norm_3::set_zy

norm_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

norm_3::operator-

norm_3::operator--

norm_3::operator*=

norm_3::operator/=

norm_3::operator++

norm_3::operator+=

norm_3::operator=

norm_3::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

norm_3::b

norm_3::bg

norm_3::bgr

norm_3::br

norm_3::brg

norm_3::g

norm_3::gb

norm_3::gbr

norm_3::gr

norm_3::grb

norm_3::r

norm_3::rb

norm_3::rbg

norm_3::rg

norm_3::rgb

norm_3::x

norm_3::xy

norm_3::xyz

norm_3::xz

norm_3::xzy

norm_3::y

norm_3::yx

norm_3::yxz

norm_3::yz

norm_3::yzx

norm_3::z

norm_3::zx

norm_3::zxy

norm_3::zy

norm_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

norm_3 Constructor

Syntax

norm_3

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

norm_3() restrict(amp,cpu);
norm_3(
 norm _V0,
 norm _V1,
 norm _V2
) restrict(amp,cpu);
norm_3(
 float _V0,
 float _V1,
 float _V2
) restrict(amp,cpu);
norm_3(
 unorm _V0,
 unorm _V1,
 unorm _V2
) restrict(amp,cpu);
norm_3(
 norm _V
) restrict(amp,cpu);
explicit norm_3(
 float _V
) restrict(amp,cpu);
norm_3(
 const norm_3& _Other
) restrict(amp,cpu);
explicit inline norm_3(
 const uint_3& _Other
) restrict(amp,cpu);
explicit inline norm_3(
 const int_3& _Other
) restrict(amp,cpu);
explicit inline norm_3(
 const float_3& _Other
) restrict(amp,cpu);
explicit inline norm_3(
 const unorm_3& _Other
) restrict(amp,cpu);
explicit inline norm_3(
 const double_3& _Other
) restrict(amp,cpu);

Parameters

size Constant
Syntax

static const int size = 3;

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

See also
Concurrency::graphics Namespace

norm_4 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class norm_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

norm_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

norm_4::get_w

norm_4::get_wx

norm_4::get_wxy

norm_4::get_wxyz

norm_4::get_wxz

norm_4::get_wxzy

norm_4::get_wy

norm_4::get_wyx

norm_4::get_wyxz

norm_4::get_wyz

norm_4::get_wyzx

Represents a short vector of four normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/norm-4-class.md

norm_4::get_wz

norm_4::get_wzx

norm_4::get_wzxy

norm_4::get_wzy

norm_4::get_wzyx

norm_4::get_x

norm_4::get_xw

norm_4::get_xwy

norm_4::get_xwyz

norm_4::get_xwz

norm_4::get_xwzy

norm_4::get_xy

norm_4::get_xyw

norm_4::get_xywz

norm_4::get_xyz

norm_4::get_xyzw

norm_4::get_xz

norm_4::get_xzw

norm_4::get_xzwy

norm_4::get_xzy

norm_4::get_xzyw

norm_4::get_y

norm_4::get_yw

norm_4::get_ywx

norm_4::get_ywxz

NAME DESCRIPTION

norm_4::get_ywz

norm_4::get_ywzx

norm_4::get_yx

norm_4::get_yxw

norm_4::get_yxwz

norm_4::get_yxz

norm_4::get_yxzw

norm_4::get_yz

norm_4::get_yzw

norm_4::get_yzwx

norm_4::get_yzx

norm_4::get_yzxw

norm_4::get_z

norm_4::get_zw

norm_4::get_zwx

norm_4::get_zwxy

norm_4::get_zwy

norm_4::get_zwyx

norm_4::get_zx

norm_4::get_zxw

norm_4::get_zxwy

norm_4::get_zxy

norm_4::get_zxyw

norm_4::get_zy

norm_4::get_zyw

NAME DESCRIPTION

norm_4::get_zywx

norm_4::get_zyx

norm_4::get_zyxw

norm_4::ref_a

norm_4::ref_b

norm_4::ref_g

norm_4::ref_r

norm_4::ref_w

norm_4::ref_x

norm_4::ref_y

norm_4::ref_z

norm_4::set_w

norm_4::set_wx

norm_4::set_wxy

norm_4::set_wxyz

norm_4::set_wxz

norm_4::set_wxzy

norm_4::set_wy

norm_4::set_wyx

norm_4::set_wyxz

norm_4::set_wyz

norm_4::set_wyzx

norm_4::set_wz

norm_4::set_wzx

norm_4::set_wzxy

NAME DESCRIPTION

norm_4::set_wzy

norm_4::set_wzyx

norm_4::set_x

norm_4::set_xw

norm_4::set_xwy

norm_4::set_xwyz

norm_4::set_xwz

norm_4::set_xwzy

norm_4::set_xy

norm_4::set_xyw

norm_4::set_xywz

norm_4::set_xyz

norm_4::set_xyzw

norm_4::set_xz

norm_4::set_xzw

norm_4::set_xzwy

norm_4::set_xzy

norm_4::set_xzyw

norm_4::set_y

norm_4::set_yw

norm_4::set_ywx

norm_4::set_ywxz

norm_4::set_ywz

norm_4::set_ywzx

norm_4::set_yx

NAME DESCRIPTION

norm_4::set_yxw

norm_4::set_yxwz

norm_4::set_yxz

norm_4::set_yxzw

norm_4::set_yz

norm_4::set_yzw

norm_4::set_yzwx

norm_4::set_yzx

norm_4::set_yzxw

norm_4::set_z

norm_4::set_zw

norm_4::set_zwx

norm_4::set_zwxy

norm_4::set_zwy

norm_4::set_zwyx

norm_4::set_zx

norm_4::set_zxw

norm_4::set_zxwy

norm_4::set_zxy

norm_4::set_zxyw

norm_4::set_zy

norm_4::set_zyw

norm_4::set_zywx

norm_4::set_zyx

norm_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

norm_4::operator-

norm_4::operator--

norm_4::operator*=

norm_4::operator/=

norm_4::operator++

norm_4::operator+=

norm_4::operator=

norm_4::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

norm_4::a

norm_4::ab

norm_4::abg

norm_4::abgr

norm_4::abr

norm_4::abrg

norm_4::ag

norm_4::agb

norm_4::agbr

norm_4::agr

norm_4::agrb

norm_4::ar

norm_4::arb

norm_4::arbg

norm_4::arg

norm_4::argb

norm_4::b

norm_4::ba

norm_4::bag

norm_4::bagr

norm_4::bar

norm_4::barg

norm_4::bg

norm_4::bga

norm_4::bgar

norm_4::bgr

norm_4::bgra

norm_4::br

norm_4::bra

norm_4::brag

norm_4::brg

norm_4::brga

norm_4::g

norm_4::ga

norm_4::gab

norm_4::gabr

norm_4::gar

norm_4::garb

NAME DESCRIPTION

norm_4::gb

norm_4::gba

norm_4::gbar

norm_4::gbr

norm_4::gbra

norm_4::gr

norm_4::gra

norm_4::grab

norm_4::grb

norm_4::grba

norm_4::r

norm_4::ra

norm_4::rab

norm_4::rabg

norm_4::rag

norm_4::ragb

norm_4::rb

norm_4::rba

norm_4::rbag

norm_4::rbg

norm_4::rbga

norm_4::rg

norm_4::rga

norm_4::rgab

norm_4::rgb

NAME DESCRIPTION

norm_4::rgba

norm_4::w

norm_4::wx

norm_4::wxy

norm_4::wxyz

norm_4::wxz

norm_4::wxzy

norm_4::wy

norm_4::wyx

norm_4::wyxz

norm_4::wyz

norm_4::wyzx

norm_4::wz

norm_4::wzx

norm_4::wzxy

norm_4::wzy

norm_4::wzyx

norm_4::x

norm_4::xw

norm_4::xwy

norm_4::xwyz

norm_4::xwz

norm_4::xwzy

norm_4::xy

norm_4::xyw

NAME DESCRIPTION

norm_4::xywz

norm_4::xyz

norm_4::xyzw

norm_4::xz

norm_4::xzw

norm_4::xzwy

norm_4::xzy

norm_4::xzyw

norm_4::y

norm_4::yw

norm_4::ywx

norm_4::ywxz

norm_4::ywz

norm_4::ywzx

norm_4::yx

norm_4::yxw

norm_4::yxwz

norm_4::yxz

norm_4::yxzw

norm_4::yz

norm_4::yzw

norm_4::yzwx

norm_4::yzx

norm_4::yzxw

norm_4::z

NAME DESCRIPTION

norm_4::zw

norm_4::zwx

norm_4::zwxy

norm_4::zwy

norm_4::zwyx

norm_4::zx

norm_4::zxw

norm_4::zxwy

norm_4::zxy

norm_4::zxyw

norm_4::zy

norm_4::zyw

norm_4::zywx

norm_4::zyx

norm_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

norm_4

norm_4

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

norm_4() restrict(amp,
 cpu);

norm_4(
 norm _V0,
 norm _V1,
 norm _V2,
 norm _V3) restrict(amp,
 cpu);

norm_4(
 float _V0,
 float _V1,
 float _V2,
 float _V3) restrict(amp,
 cpu);

norm_4(
 unorm _V0,
 unorm _V1,
 unorm _V2,
 unorm _V3) restrict(amp,
 cpu);

norm_4(
 norm _V) restrict(amp,
 cpu);

explicit norm_4(
 float _V) restrict(amp,
 cpu);

norm_4(
 const norm_4& _Other) restrict(amp,
 cpu);

explicit inline norm_4(
 const uint_4& _Other) restrict(amp,
 cpu);

explicit inline norm_4(
 const int_4& _Other) restrict(amp,
 cpu);

explicit inline norm_4(
 const float_4& _Other) restrict(amp,
 cpu);

explicit inline norm_4(
 const unorm_4& _Other) restrict(amp,
 cpu);

explicit inline norm_4(
 const double_4& _Other) restrict(amp,
 cpu);

Parameters
_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

 size
static const int size = 4;

See also

_V3
The value to initialize element 3.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

sampler Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
class sampler;

Members
Public Constructors

NAME DESCRIPTION

sampler Constructor Overloaded. Constructs a sampler instance.

Public Methods

NAME DESCRIPTION

get_address_mode Returns the address_mode that’s associated with the sampler
object.

get_border_color Returns the border color that’s associated with the sampler
object.

get_filter_mode Returns the filter_mode that’s associated with the sampler
object.

Public Operators

NAME DESCRIPTION

operator= Overloaded. Assignment operator.

Public Data Members

NAME DESCRIPTION

address_mode Gets the address mode of the sampler object.

border_color Gets the border color of the sampler object.

filter_mode Gets the filter mode of the sampler object.

Inheritance Hierarchy

The sampler class aggregates sampling configuration information to be used for texture sampling.

sampler

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/sampler-class.md

Requirements

sampler

sampler() restrict(cpu); // [1] default constructor

sampler(// [2] constructor
 filter_mode _Filter_mode) restrict(cpu);

sampler(// [3] constructor
 address_mode _Address_mode,
 float_4 _Border_color = float_4(0.0f,
 0.0f,
 0.0f,
 0.0f)) restrict(cpu);

sampler(// [4] constructor
 filter_mode _Filter_mode,
 address_mode _Address_mode,
 float_4 _Border_color = float_4(0.0f,
 0.0f,
 0.0f,
 0.0f)) restrict(cpu);

sampler(// [5] copy constructor
 const sampler& _Other) restrict(amp,
 cpu);

sampler(// [6] move constructor
 sampler&& _Other) restrict(amp,
 cpu);

Parameters

address_mode

__declspec(property(get= get_address_mode)) Concurrency::graphics::address_mode address_mode;

Header: amp_graphics.h

Namespace: concurrency::graphics

Constructs an instance of the sampler Class.

_Filter_mode
The filter mode to be used in sampling.

_Address_mode
The addressing mode to be used in sampling for all dimensions.

_Border_color
The border color to be used if the address mode is address_border. The default value is
float_4(0.0f, 0.0f, 0.0f, 0.0f) .

_Other
[5] Copy Constructor The sampler object to copy into the new sampler instance.

[6] Move Constructor The sampler object to move into the new sampler instance.

Gets the address mode of the sampler object.

border_color

__declspec(property(get= get_border_color)) Concurrency::graphics::float_4 border_color;

filter_mode

__declspec(property(get= get_filter_mode)) Concurrency::graphics::filter_mode filter_mode;

get_address_mode

Concurrency::graphics::address_mode get_address_mode() const __GPU;

Return Value

get_border_color

Concurrency::graphics::float_4 get_border_color() const restrict(amp, cpu);

Return Value

get_filter_mode

Concurrency::graphics::filter_mode get_filter_mode() const restrict(amp, cpu);

Return Value

operator=

sampler& operator= (// [1] copy assignment operator
 const sampler& _Other) restrict(amp, cpu);

sampler& operator= (// [2] move assignment operator
 sampler&& _Other) restrict(amp, cpu);

Gets the border color of the sampler object.

Gets the filter mode of the sampler object.

Returns the filter mode that’s configured for this sampler .

The address mode that’s configured for the sampler.

Returns the border color that’s configured for this sampler .

A float_4 that contains the border color.

Returns the filter mode that’s configured for this sampler .

The filter mode that’s configured for the sampler.

Assigns the value of another sampler object to an existing sampler.

Parameters

Return Value

See also

_Other
[1] Copy Assignment Operator The sampler object to copy into this sampler .

[2] Move Assignment Operator The sampler object to move into this sampler .

A reference to this sampler instance.

Concurrency::graphics Namespace

short_vector Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<
 typename _Scalar_type,
 int _Size
>
struct short_vector;
template<>
struct short_vector<unsigned int, 1>;
template<>
struct short_vector<unsigned int, 2>;
template<>
struct short_vector<unsigned int, 3>;
template<>
struct short_vector<unsigned int, 4>;
template<>
struct short_vector<int, 1>;
template<>
struct short_vector<int, 2>;
template<>
struct short_vector<int, 3>;
template<>
struct short_vector<int, 4>;
template<>
struct short_vector<float, 1>;
template<>
struct short_vector<float, 2>;
template<>
struct short_vector<float, 3>;
template<>
struct short_vector<float, 4>;
template<>
struct short_vector<unorm, 1>;
template<>
struct short_vector<unorm, 2>;
template<>
struct short_vector<unorm, 3>;
template<>
struct short_vector<unorm, 4>;
template<>
struct short_vector<norm, 1>;
template<>
struct short_vector<norm, 2>;
template<>
struct short_vector<norm, 3>;
template<>
struct short_vector<norm, 4>;
template<>
struct short_vector<double, 1>;
template<>
struct short_vector<double, 2>;
template<>
struct short_vector<double, 3>;
template<>
struct short_vector<double, 4>;

short_vector provides metaprogramming definitions which are useful for programming short vectors generically.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/short-vector-structure.md

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type

Public Constructors

NAME DESCRIPTION

short_vector::short_vector Constructor

Inheritance Hierarchy

Requirements

short_vector::short_vector Constructor
short_vector();

See also

_Scalar_type

_Size

short_vector

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Concurrency::graphics Namespace

short_vector_traits Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax

short_vector_traits allows retrival of the underlying vector length and scalar type of a short vector type or a scalar
type

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/short-vector-traits-structure.md

template<
 typename T
>
struct short_vector_traits;
template<>
struct short_vector_traits<unsigned int>;
template<>
struct short_vector_traits<uint_2>;
template<>
struct short_vector_traits<uint_3>;
template<>
struct short_vector_traits<uint_4>;
template<>
struct short_vector_traits<int>;
template<>
struct short_vector_traits<int_2>;
template<>
struct short_vector_traits<int_3>;
template<>
struct short_vector_traits<int_4>;
template<>
struct short_vector_traits<float>;
template<>
struct short_vector_traits<float_2>;
template<>
struct short_vector_traits<float_3>;
template<>
struct short_vector_traits<float_4>;
template<>
struct short_vector_traits<unorm>;
template<>
struct short_vector_traits<unorm_2>;
template<>
struct short_vector_traits<unorm_3>;
template<>
struct short_vector_traits<unorm_4>;
template<>
struct short_vector_traits<norm>;
template<>
struct short_vector_traits<norm_2>;
template<>
struct short_vector_traits<norm_3>;
template<>
struct short_vector_traits<norm_4>;
template<>
struct short_vector_traits<double>;
template<>
struct short_vector_traits<double_2>;
template<>
struct short_vector_traits<double_3>;
template<>
struct short_vector_traits<double_4>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

value_type

T

Public Constructors

NAME DESCRIPTION

short_vector_traits::short_vector_traits Constructor

Public Constants

NAME DESCRIPTION

short_vector_traits::size Constant

Inheritance Hierarchy

Requirements

short_vector_traits::short_vector_traits Constructor
short_vector_traits();

short_vector_traits::size Constant
static int const size = 1;

See also

short_vector_traits

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Concurrency::graphics Namespace

texture Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
template <typename value_type, int _Rank>
class texture;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

scalar_type Scalar types.

value_type Value types.

Public Constructors

NAME DESCRIPTION

texture Constructor Initializes a new instance of the texture class.

~texture Destructor Destroys the texture object.

Public Methods

NAME DESCRIPTION

copy_to Copies the texture object to the destination, by doing a
deep copy.

data Returns a CPU pointer to the raw data of this texture.

get Returns the value of the element at the specified index.

A texture is a data aggregate on an accelerator_view in the extent domain. It is a collection of variables, one for
each element in an extent domain. Each variable holds a value corresponding to C++ primitive type (
unsigned int , int , float , double), a scalar type (norm , or unorm), or a short vector type.

value_type
The type of the elements in the texture.

_Rank
The rank of the texture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/texture-class.md

get_associated_accelerator_view Returns the accelerator_view that is the preferred target for
this texture to be copied to.

get_depth_pitch Returns the number of bytes between each depth slice in a
3D staging texture on the CPU.

get_row_pitch Returns the number of bytes between each row in a 2D or
3D staging texture on the CPU.

set Sets the value of the element at the specified index.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator() Returns the element value that is specified by the
parameters.

operator[] Returns the element that is at the specified index.

operator= Copies the specified texture object to this one.

Public Constants

NAME DESCRIPTION

rank Constant Gets the rank of the texture object.

Public Data Members

NAME DESCRIPTION

associated_accelerator_view Gets the accelerator_view that is the preferred target for this
texture to be copied to.

depth_pitch Gets the number of bytes between each depth slice in a 3D
staging texture on the CPU.

row_pitch Gets the number of bytes between each row in a 2D or 3D
staging texture on the CPU.

Inheritance Hierarchy

Requirements

_Texture_base

texture

Header: amp_graphics.h

Namespace: Concurrency::graphics

~texture

~texture() restrict(cpu);

associated_accelerator_view

__declspec(property(get= get_associated_accelerator_view)) Concurrency::accelerator_view
associated_accelerator_view;

copy_to

void copy_to(texture& _Dest) const;
void copy_to(writeonly_texture_view<value_type, _Rank>& _Dest) const;

Parameters

data

void* data() restrict(cpu);

const void* data() const restrict(cpu);

Return Value

depth_pitch

__declspec(property(get= get_depth_pitch)) unsigned int depth_pitch;

get

Destroys the texture object.

Gets the accelerator_view that is the preferred target for this texture to be copied to.

Copies the texture object to the destination, by doing a deep copy.

_Dest
The object to copy to.

_Rank
The rank of the texture.

value_type
The type of the elements in the texture.

Returns a CPU pointer to the raw data of this texture.

A pointer to the raw data of the texture.

Gets the number of bytes between each depth slice in a 3D staging texture on the CPU.

Returns the value of the element at the specified index.

const value_type get(const index<_Rank>& _Index) const restrict(amp);

Parameters

Return Value

get_associated_accelerator_view

Concurrency::accelerator_view get_associated_accelerator_view() const restrict(cpu);

Return Value

get_depth_pitch

unsigned int get_depth_pitch() const restrict(cpu);

Return Value

get_row_pitch

unsigned int get_row_pitch() const restrict(cpu);

Return Value

operator()

_Index
The index of the element.

The value of the element at the specified index.

Returns the accelerator_view that is the preferred target for this texture to be copied to.

The accelerator_view that is the preferred target for this texture to be copied to.

Returns the number of bytes between each depth slice in a 3D staging texture on the CPU.

The number of bytes between each depth slice in a 3D staging texture on the CPU.

Returns the number of bytes between each row in a 2-dimensional staging texture, or between each row of a
depth slice in 3-dimensional staging texture.

The number of bytes between each row in a 2-dimensional staging texture, or between each row of a depth slice
in 3-dimensional staging texture.

Returns the element value that is specified by the parameters.

const value_type operator() (
 const index<_Rank>& _Index) const restrict(amp);

const value_type operator() (
 int _I0) const restrict(amp);

const value_type operator() (
 int _I0,
 int _I1) const restrict(amp);

const value_type operator() (
 int _I0,
 int _I1,
 int _I2) const restrict(amp);

Parameters

Return Value

operator[]

const value_type operator[] (const index<_Rank>& _Index) const restrict(amp);

const value_type operator[] (int _I0) const restrict(amp);

Parameters

Return Value

operator=

_Index
The index.

_I0
The most-significant component of the index.

_I1
The next-to-most-significant component of the index.

_I2
The least-significant component of the index.

_Rank
The rank of the index.

The element value that is specified by the parameters.

Returns the element that is at the specified index.

_Index
The index.

_I0
The index.

The element that is at the specified index.

Copies the specified texture object to this one.

texture& operator= (
 const texture& _Other);

texture& operator= (
 texture<value_type, _Rank>&& _Other);

Parameters

Return Value

rank

static const int rank = _Rank;

row_pitch

__declspec(property(get= get_row_pitch)) unsigned int row_pitch;

set

void set(
 const index<_Rank>& _Index,
 const value_type& value) restrict(amp);

Parameters

texture

texture(const Concurrency::extent<_Rank>& _Ext) restrict(cpu);

texture(int _E0) restrict(cpu);

texture(int _E0, int _E1) restrict(cpu);

_Other
The texture object to copy from.

A reference to this texture object.

Gets the rank of the texture object.

Gets the number of bytes between each row in a 2D or 3D staging texture on the CPU.

Sets the value of the element at the specified index.

_Index
The index of the element.

_Rank
The rank of the index.

value
The new value of the element.

Initializes a new instance of the texture class.

texture(int _E0, int _E1, int _E2) restrict(cpu);

texture(
 const Concurrency::extent<_Rank>& _Ext,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 int _E1,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 int _E1,
 int _E2,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

template<typename _Input_iterator>
texture(
 const Concurrency::extent<_Rank>& _Ext,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last) restrict(cpu);

template<typename _Input_iterator>
texture(
 int _E0, _Input_iterator _Src_first, _Input_iterator _Src_last) restrict(cpu);

template<typename _Input_iterator>
texture(
 int _E0,
 int _E1,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last) restrict(cpu);

template<typename _Input_iterator>
texture(
 int _E0,
 int _E1,
 int _E2,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last) restrict(cpu);

template<typename _Input_iterator>
texture(
 const Concurrency::extent<_Rank>& _Ext,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

template<typename _Input_iterator>
texture(
 int _E0,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

template<typename _Input_iterator>
texture(
 int _E0,
 int _E1,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

template<typename _Input_iterator>

template<typename _Input_iterator>
texture(
 int _E0,
 int _E1,
 int _E2,
 _Input_iterator _Src_first,
 _Input_iterator _Src_last,
 const Concurrency::accelerator_view& _Av) restrict(cpu)) ;

texture(
 int _E0,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 int _E0,
 int _E1,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 int _E0,
 int _E1,
 int _E2,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 const Concurrency::extent<_Rank>& _Ext,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) ;

texture(
 int _E0,
 int _E1,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 int _E1,
 int _E2,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 const Concurrency::extent<_Rank>& _Ext,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 int _E0,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 int _E0,
 int _E1,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 int _E0,
 int _E1,
 int _E2,

 int _E2,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element) restrict(cpu);

texture(
 const Concurrency::extent<_Rank>& _Ext,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) ;

texture(
 int _E0,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 int _E1,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 int _E0,
 int _E1,
 int _E2,
 In void* _Source,
 unsigned int _Src_byte_size,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av) restrict(cpu);

texture(
 const texture& _Src,
 const Concurrency::accelerator_view& _Acc_view);

texture(
 texture&& _Other);

texture(
 const Concurrency::extent<_Rank>& _Ext,
 unsigned int _Bits_per_scalar_element,
 const Concurrency::accelerator_view& _Av);

texture(
 const texture& _Src);

Parameters
_Acc_view
The accelerator_view that specifies the location of the texture.

_Av
The accelerator_view that specifies the location of the texture.

_Associated_av
An accelerator_view that specifies the preferred target for copies to or from this texture.

_Bits_per_scalar_element
The number of bits per each scalar element in the underlying scalar type of the texture. In general, supported
value are 8, 16, 32, and 64. If 0 is specified, the number of bits is the same as the underlying scalar_type. 64 is
only valid for double-based textures.

See also

_Ext
The extent in each dimension of the texture.

_E0
The most significant component of the texture.

_E1
The next-to-most-significant component of the texture.

_E2
The least significant component of the extent of the texture.

_Input_iterator
The type of the input interator.

_Mipmap_levels
The number of mipmap levels in the underlying texture. If 0 is specified, the texture will have the full range of
mipmap levels down to the smallest possible size for the specified extent.

_Rank
The rank of the extent.

_Source
A pointer to a host buffer.

_Src
To texture to copy.

_Src_byte_size
The number of bytes in the source buffer.

_Src_first
A beginning iterator into the source container.

_Src_last
An ending iterator into the source container.

_Other
Other data source.

_Rank
The rank of the section.

Concurrency::graphics Namespace

texture_view Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
template<typename value_type,int _Rank>
class texture_view;

template<typename value_type, int _Rank>
class texture_view
 : public details::_Texture_base<value_type, _Rank>;

template<typename value_type, int _Rank>
class texture_view<const value_type, _Rank>
 : public details::_Texture_base<value_type, _Rank>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

value_type The type of the elements in the texture aggregates.

coordinates_type The type of the coordinate used to specify a texel in the
texture_view —that is, a short_vector that has the same

rank as the associated texture that has a value type of float

.

gather_return_type The return type used for gather operations—that is, a rank 4
short_vector that holds the four homogenous color

components gathered from the four texel values sampled.

Public Constructors

NAME DESCRIPTION

texture_view Constructor Overloaded. Constructs a texture_view instance.

~texture_view Destructor Destroys the texture_view instance.

Provides read access and write access to a texture. texture_view can only be used to read textures whose value
type is int , unsigned int , or float that have default 32-bit bpse. To read other texture formats, use
texture_view<const value_type, _Rank> .

value_type
The type of the elements in the texture aggregate.

_Rank
The rank of the texture_view .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/texture-view-class.md

Public Methods

NAME DESCRIPTION

gather_alpha Overloaded. Samples the texture at the specified coordinates
by using the specified sampling configuration and returns the
alpha (w) components of the four sampled texels.

gather_blue Overloaded. Samples the texture at the specified coordinates
by using the specified sampling configuration and returns the
blue (z) components of the four sampled texels.

gather_green Overloaded. Samples the texture at the specified coordinates
by using the specified sampling configuration and returns the
green (y) components of the four sampled texels.

gather_red Overloaded. Samples the texture at the specified coordinates
by using the specified sampling configuration and returns the
red (x) components of the four sampled texels.

get Overloaded. Gets the element value by index.

sample Overloaded. Samples the texture at the specified coordinates
and level of detail by using the specified sampling
configuration.

set Sets the value of an element by index.

Public Operators

NAME DESCRIPTION

operator() Overloaded. Gets the element value by index.

operator[] Overloaded. Gets the element value by index.

operator= Overloaded. Assignment operator.

Public Data Members

NAME DESCRIPTION

value_type The value type of the elements of the texture_view .

Inheritance Hierarchy

Requirements

_Texture_base

texture_view

Header: amp_graphics.h

Namespace: concurrency::graphics

~texture_view

~texture_view() restrict(amp, cpu);

texture_view

texture_view(// [1] constructor
 texture<value_type, _Rank>& _Src) restrict(amp);

texture_view(// [2] constructor
 texture<value_type, _Rank>& _Src,
 unsigned int _Mipmap_level = 0) restrict(cpu);

texture_view(// [3] constructor
 const texture<value_type, _Rank>& _Src) restrict(amp);

texture_view(// [4] constructor
 const texture<value_type, _Rank>& _Src,
 unsigned int _Most_detailed_mip,
 unsigned int _Mip_levels) restrict(cpu);

texture_view(// [5] copy constructor
 const texture_view<value_type, _Rank>& _Other) restrict(amp, cpu);

texture_view(// [6] copy constructor
 const texture_view<const value_type, _Rank>& _Other) restrict(amp, cpu);

texture_view(// [7] copy constructor
 const texture_view<const value_type, _Rank>& _Other,
 unsigned int _Most_detailed_mip,
 unsigned int _Mip_levels) restrict(cpu);

Parameters

gather_red

Destroys the texture_view instance.

Constructs a texture_view instance.

_Src
[1, 2] Constructor The texture on which the writable texture_view is created.

[3, 4] Constructor The texture on which the non-writable texture_view is created.

_Other
[5] Copy Constructor The source writable texture_view .

[6, 7] Copy Constructor The source non-writable texture_view .

_Mipmap_level
The specific mipmap level on the source texture that this writeable texture_view binds to. The default value is 0,
which represents the top level (most detailed) mip level.

_Most_detailed_mip
Top level (most detailed) mip level for the view, relative to the specified texture_view object.

_Mip_levels
The number of mipmap levels accessible through the texture_view .

const gather_return_type gather_red(
 const sampler& _Sampler,
 const coordinates_type& _Coord) const restrict(amp);

template<
 address_mode _Address_mode = address_clamp
>
const gather_return_type gather_red(
 const coordinates_type& _Coord) const restrict(amp);

Parameters

Return Value

gather_green

const gather_return_type gather_green(
 const sampler& _Sampler,
 const coordinates_type& _Coord) const restrict(amp);

template<
 address_mode _Address_mode = address_clamp
>
const gather_return_type gather_green(
 const coordinates_type& _Coord) const restrict(amp);

Parameters

Return Value

Samples the texture at the specified coordinates by using the specified sampling configuration and returns the red
(x) components of the four sampled texels.

_Address_mode
The address mode to use to sample the texture_view . The address mode is the same for all dimensions.

_Sampler
The sampler configuration to use to sample the texture_view .

_Coord
The coordinates to take the sample from. Fractional coordinate values are used to interpolate between sample
texels.

A rank 4 short vector containing the red (x) component of the 4 sampled texel values.

Samples the texture at the specified coordinates by using the specified sampling configuration and returns the
green (y) components of the four sampled texels.

_Address_mode
The address mode to use to sample the texture_view . The address mode is the same for all dimensions.

_Sampler
The sampler configuration to use to sample the texture_view .

_Coord
The coordinates to take the sample from. Fractional coordinate values are used to interpolate between sample
texels.

A rank 4 short vector containing the green (y) component of the 4 sampled texel values.

gather_blue

const gather_return_type gather_blue(
 const sampler& _Sampler,
 const coordinates_type& _Coord) const restrict(amp);

template<
 address_mode _Address_mode = address_clamp
>
const gather_return_type gather_blue(
 const coordinates_type& _Coord) const restrict(amp);

Parameters

Return Value

gather_alpha

const gather_return_type gather_alpha(
 const sampler& _Sampler,
 const coordinates_type& _Coord) const restrict(amp);

template<
 address_mode _Address_mode = address_clamp
>
const gather_return_type gather_alpha(
 const coordinates_type& _Coord) const restrict(amp);

Parameters

Return Value

Samples the texture at the specified coordinates by using the specified sampling configuration and returns the
blue (z) components of the four sampled texels.

_Address_mode
The address mode to use to sample the texture_view . The address mode is the same for all dimensions.

_Sampler
The sampler configuration to use to sample the texture_view .

_Coord
The coordinates to take the sample from. Fractional coordinate values are used to interpolate between sample
texels.

A rank 4 short vector containing the red (x) component of the 4 sampled texel values.

Samples the texture at the specified coordinates by using the specified sampling configuration and returns the
alpha (w) components of the four sampled texels.

_Address_mode
The address mode to use to sample the texture_view . The address mode is the same for all dimensions.

_Sampler
The sampler configuration to use to sample the texture_view .

_Coord
The coordinates to take the sample from. Fractional coordinate values are used to interpolate between sample
texels.

A rank 4 short vector containing the alpha (w) component of the 4 sampled texel values.

get

const value_type get(
 const index<_Rank>& _Index) const restrict(amp);

value_type get(
 const index<_Rank>& _Index,
 unsigned int _Mip_level = 0) const restrict(amp);

Parameters

Return Value

operator=

texture_view<value_type, _Rank>& operator= (// [1] copy constructor
 const texture_view<value_type, _Rank>& _Other) restrict(amp, cpu);

texture_view<const value_type, _Rank>& operator= (// [2] copy constructor
 const texture_view<value_type, _Rank>& _Other) restrict(cpu);

texture_view<const value_type, _Rank>& operator= (// [3] copy constructor
 const texture_view<const value_type, _Rank>& _Other) restrict(amp, cpu);

Parameters

Return Value

operator[]

const value_type operator[] (const index<_Rank>& _Index) const restrict(amp);

const value_type operator[] (int _I0) const restrict(amp);

value_type operator[] (const index<_Rank>& _Index) const restrict(amp);

value_type operator[] (int _I0) const restrict(amp);

Gets the value of the element at the specified index.

_Index
The index of the element to get, possibly multi-dimensional.

_Mip_level
The mipmap level from which we should get the value. The default value 0 represents the most detailed mipmap
level.

The value of the element.

Assigns a view of the same texture as the specified texture_view to this texture_view instance.

_Other
[1, 2] Copy Constructor A writable texture_view object.

[3] Copy Constructor A non-writable texture_view object.

A reference to this texture_view instance.

Returns the element value by index.

Parameters

Return Value

operator()

const value_type operator() (
 const index<_Rank>& _Index) const restrict(amp);

const value_type operator() (
 int _I0) const restrict(amp);

const value_type operator() (
 int _I0, int _I1) const restrict(amp);

const value_type operator() (
 int _I0,
 int _I1,
 int _I2) const restrict(amp);

value_type operator() (
 const index<_Rank>& _Index) const restrict(amp);

value_type operator() (
 int _I0) const restrict(amp);

value_type operator() (
 int _I0,
 int _I1) const restrict(amp);

value_type operator() (
 int _I0,
 int _I1,
 int _I2) const restrict(amp);

Parameters

Return Value

_Index
The index, possibly multi-dimensional.

_I0
The one-dimensional index.

The element value indexed by _Index .

Returns the element value by index.

_Index
The index, possibly multi-dimensional.

_I0
The most-significant component of the index.

_I1
The next-to-most-significant component of the index.

_I2
The least-significant component of the index.

The element value indexed by _Index .

sample

value_type sample(
 const sampler& _Sampler,
 const coordinates_type& _Coord,
 float _Level_of_detail = 0.0f) const restrict(amp);

template<
 filter_mode _Filter_mode = filter_linear,
 address_mode _Address_mode = address_clamp
>
value_type sample(
 const coordinates_type& _Coord,
 float _Level_of_detail = 0.0f) const restrict(amp);

Parameters

Return Value

set

void set(
 const index<_Rank>& _Index,
 const value_type& value) const restrict(amp);

Parameters

value_type

Samples the texture at the specified coordinates and level of detail by using the specified sampling configuration.

_Filter_mode
The filter mode to use to sample the texture_view. The filter mode is the same for the minimization, maximization,
and mipmap filters.

_Address_mode
The address mode to use to sample the texture_view. The address mode is the same for all dimensions.

_Sampler
The sampler configuration to use to sample the texture_view.

_Coord
The coordinates to take the sample from. Fractional coordinate values are used to interpolate between texel values.

_Level_of_detail
The value specifies the mipmap level to sample from. Fractional values are used to interpolate between two
mipmap levels. The default level of detail is 0, which represents the most detailed mip level.

The interpolated sample value.

Sets the value of the element at the specified index to the specified value.

_Index
The index of the element to set, possibly multi-dimensional.

value
The value to set the element to.

The value type of the elements of the texture_view.

typedef typename const value_type value_type;

See also
Concurrency::graphics Namespace

writeonly_texture_view Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <
 typename value_type,
 int _Rank
>
class writeonly_texture_view;

template <
 typename value_type,
 int _Rank
>
class writeonly_texture_view<value_type, _Rank> : public details::_Texture_base<value_type, _Rank>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

scalar_type

value_type The type of the elements in the texture.

Public Constructors

NAME DESCRIPTION

writeonly_texture_view Constructor Initializes a new instance of the writeonly_texture_view

class.

~writeonly_texture_view Destructor Destroys the writeonly_texture_view object.

Public Methods

NAME DESCRIPTION

set Sets the value of the element at the specified index.

Public Operators

Provides writeonly access to a texture.

value_type
The type of the elements in the texture.

_Rank
The rank of the texture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/writeonly-texture-view-class.md

NAME DESCRIPTION

operator= Copies the specified writeonly_texture_view object to this
one.

Public Constants

NAME DESCRIPTION

rank Constant Gets the rank of the writeonly_texture_view object.

Inheritance Hierarchy

Requirements

~writeonly_texture_view

~writeonly_texture_view() restrict(amp,cpu);

operator=

writeonly_texture_view<value_type, _Rank>& operator= (
 const writeonly_texture_view<value_type, _Rank>& _Other) restrict(amp,cpu);

Parameters

Return Value

rank

static const int rank = _Rank;

set

_Texture_base

writeonly_texture_view

Header: amp_graphics.h

Namespace: Concurrency::graphics

Destroys the writeonly_texture_view object.

Copies the specified writeonly_texture_view object to this one.

_Other
writeonly_texture_view object to copy from.

A reference to this writeonly_texture_view object.

Gets the rank of the writeonly_texture_view object.

void set(
 const index<_Rank>& _Index,
 const value_type& value) const restrict(amp);

Parameters

writeonly_texture_view

writeonly_texture_view(
 texture<value_type,
 _Rank>& _Src) restrict(amp);

writeonly_texture_view(
 const writeonly_texture_view<value_type,
 _Rank>& _Src) restrict(amp,cpu);

Parameters

See also

Sets the value of the element at the specified index.

_Index
The index of the element.

value
The new value of the element.

Initializes a new instance of the writeonly_texture_view class.

_Rank
The rank of the texture.

value_type
The type of the elements in the texture.

_Src
The texture that is used to create the writeonly_texture_view .

Concurrency::graphics Namespace

uint_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class uint_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

uint_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

uint_2::get_x

uint_2::get_xy

uint_2::get_y

uint_2::get_yx

uint_2::ref_g_Method

uint_2::ref_r_Method

uint_2::ref_x_Method

uint_2::ref_y_Method

uint_2::set_x

uint_2::set_xy

uint_2::set_y

Represents a short vector of two unsigned integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/uint-2-class.md

uint_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

uint_2::operator--

uint_2::operator%=

uint_2::operator&=

uint_2::operator*=

uint_2::operator/=

uint_2::operator^=

uint_2::operator|=

uint_2::operator~

uint_2::operator++

uint_2::operator+=

uint_2::operator<<=

uint_2::operator=

uint_2::operator-=

uint_2::operator>>=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

uint_2::g

uint_2::gr

uint_2::r

uint_2::rg

uint_2::x

uint_2::xy

uint_2::y

uint_2::yx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

uint_2

uint_2() restrict(amp,
 cpu);

uint_2(
 unsigned int _V0,
 unsigned int _V1) restrict(amp,
 cpu);

uint_2(
 unsigned int _V) restrict(amp,
 cpu);

uint_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline uint_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline uint_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline uint_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline uint_2(
 const norm_2& _Other) restrict(amp,
 cpu);

explicit inline uint_2(
 const double_2& _Other) restrict(amp,
 cpu);

uint_2

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

Parameters

size
static const int size = 2;

See also

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

uint_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class uint_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

uint_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

uint_3::get_x

uint_3::get_xy

uint_3::get_xyz

uint_3::get_xz

uint_3::get_xzy

uint_3::get_y

uint_3::get_yx

uint_3::get_yxz

uint_3::get_yz

uint_3::get_yzx

uint_3::get_z

Represents a short vector of three unsigned integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/uint-3-class.md

uint_3::get_zx

uint_3::get_zxy

uint_3::get_zy

uint_3::get_zyx

uint_t::ref_b

uint_t::ref_g

uint_t::ref_r

uint_t::ref_x

uint_t::ref_y

uint_t::ref_z

uint_3::set_x

uint_3::set_xy

uint_3::set_xyz

uint_3::set_xz

uint_3::set_xzy

uint_3::set_y

uint_3::set_yx

uint_3::set_yxz

uint_3::set_yz

uint_3::set_yzx

uint_3::set_z

uint_3::set_zx

uint_3::set_zxy

uint_3::set_zy

uint_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

uint_3::operator--

uint_3::operator%=

uint_3::operator&=

uint_3::operator*=

uint_3::operator/=

uint_3::operator^=

uint_3::operator|=

uint_3::operator~

uint_3::operator++

uint_3::operator+=

uint_3::operator<<=

uint_3::operator=

uint_3::operator-=

uint_3::operator>>=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

uint_3::b

uint_3::bg

uint_3::bgr

uint_3::br

uint_3::brg

uint_3::g

uint_3::gb

uint_3::gbr

uint_3::gr

uint_3::grb

uint_3::r

uint_3::rb

uint_3::rbg

uint_3::rg

uint_3::rgb

uint_3::x

uint_3::xy

uint_3::xyz

uint_3::xz

uint_3::xzy

uint_3::y

uint_3::yx

uint_3::yxz

uint_3::yz

uint_3::yzx

uint_3::z

uint_3::zx

uint_3::zxy

uint_3::zy

uint_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy
uint_3

Requirements

uint_3

uint_3() restrict(amp,
 cpu);

uint_3(
 unsigned int _V0,
 unsigned int _V1,
 unsigned int _V2) restrict(amp,
 cpu);

uint_3(
 unsigned int _V) restrict(amp,
 cpu);

uint_3(
 const uint_3& _Other) restrict(amp,
 cpu);

explicit inline uint_3(
 const int_3& _Other) restrict(amp,
 cpu);

explicit inline uint_3(
 const float_3& _Other) restrict(amp,
 cpu);

explicit inline uint_3(
 const unorm_3& _Other) restrict(amp,
 cpu);

explicit inline uint_3(
 const norm_3& _Other) restrict(amp,
 cpu);

explicit inline uint_3(
 const double_3& _Other) restrict(amp,
 cpu);

Parameters

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

 size
static const int size = 3;

See also
Concurrency::graphics Namespace

uint_4 Class
3/28/2019 • 2 minutes to read • Edit Online

Syntax
class uint_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

uint_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

uint_4::get_w

uint_4::get_wx

uint_4::get_wxy

uint_4::get_wxyz

uint_4::get_wxz

uint_4::get_wxzy

uint_4::get_wy

uint_4::get_wyx

uint_4::get_wyxz

uint_4::get_wyz

uint_4::get_wyzx

Represents a short vector of four unsigned integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/uint-4-class.md

uint_4::get_wz

uint_4::get_wzx

uint_4::get_wzxy

uint_4::get_wzy

uint_4::get_wzyx

uint_4::get_x

uint_4::get_xw

uint_4::get_xwy

uint_4::get_xwyz

uint_4::get_xwz

uint_4::get_xwzy

uint_4::get_xy

uint_4::get_xyw

uint_4::get_xywz

uint_4::get_xyz

uint_4::get_xyzw

uint_4::get_xz

uint_4::get_xzw

uint_4::get_xzwy

uint_4::get_xzy

uint_4::get_xzyw

uint_4::get_y

uint_4::get_yw

uint_4::get_ywx

uint_4::get_ywxz

NAME DESCRIPTION

uint_4::get_ywz

uint_4::get_ywzx

uint_4::get_yx

uint_4::get_yxw

uint_4::get_yxwz

uint_4::get_yxz

uint_4::get_yxzw

uint_4::get_yz

uint_4::get_yzw

uint_4::get_yzwx

uint_4::get_yzx

uint_4::get_yzxw

uint_4::get_z

uint_4::get_zw

uint_4::get_zwx

uint_4::get_zwxy

uint_4::get_zwy

uint_4::get_zwyx

uint_4::get_zx

uint_4::get_zxw

uint_4::get_zxwy

uint_4::get_zxy

uint_4::get_zxyw

uint_4::get_zy

uint_4::get_zyw

NAME DESCRIPTION

uint_4::get_zywx

uint_4::get_zyx

uint_4::get_zyxw

uint_4::ref_a

uint_4::ref_b

uint_4::ref_g

uint_4::ref_r

uint_4::ref_w

uint_4::ref_x

uint_4::ref_y

uint_4::ref_z

uint_4::set_w

uint_4::set_wx

uint_4::set_wxy

uint_4::set_wxyz

uint_4::set_wxz

uint_4::set_wxzy

uint_4::set_wy

uint_4::set_wyx

uint_4::set_wyxz

uint_4::set_wyz

uint_4::set_wyzx

uint_4::set_wz

uint_4::set_wzx

uint_4::set_wzxy

NAME DESCRIPTION

uint_4::set_wzy

uint_4::set_wzyx

uint_4::set_x

uint_4::set_xw

uint_4::set_xwy

uint_4::set_xwyz

uint_4::set_xwz

uint_4::set_xwzy

uint_4::set_xy

uint_4::set_xyw

uint_4::set_xywz

uint_4::set_xyz

uint_4::set_xyzw

uint_4::set_xz

uint_4::set_xzw

uint_4::set_xzwy

uint_4::set_xzy

uint_4::set_xzyw

uint_4::set_y

uint_4::set_yw

uint_4::set_ywx

uint_4::set_ywxz

uint_4::set_ywz

uint_4::set_ywzx

uint_4::set_yx

NAME DESCRIPTION

uint_4::set_yxw

uint_4::set_yxwz

uint_4::set_yxz

uint_4::set_yxzw

uint_4::set_yz

uint_4::set_yzw

uint_4::set_yzwx

uint_4::set_yzx

uint_4::set_yzxw

uint_4::set_z

uint_4::set_zw

uint_4::set_zwx

uint_4::set_zwxy

uint_4::set_zwy

uint_4::set_zwyx

uint_4::set_zx

uint_4::set_zxw

uint_4::set_zxwy

uint_4::set_zxy

uint_4::set_zxyw

uint_4::set_zy

uint_4::set_zyw

uint_4::set_zywx

uint_4::set_zyx

uint_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

uint_4::operator-

uint_4::operator--

uint_4::operator*=

uint_4::operator/=

uint_4::operator++

uint_4::operator+=

uint_4::operator=

uint_4::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

uint_4::a

uint_4::ab

uint_4::abg

uint_4::abgr

uint_4::abr

uint_4::abrg

uint_4::ag

uint_4::agb

uint_4::agbr

uint_4::agr

uint_4::agrb

uint_4::ar

uint_4::arb

uint_4::arbg

uint_4::arg

uint_4::argb

uint_4::b

uint_4::ba

uint_4::bag

uint_4::bagr

uint_4::bar

uint_4::barg

uint_4::bg

uint_4::bga

uint_4::bgar

uint_4::bgr

uint_4::bgra

uint_4::br

uint_4::bra

uint_4::brag

uint_4::brg

uint_4::brga

uint_4::g

uint_4::ga

uint_4::gab

uint_4::gabr

uint_4::gar

uint_4::garb

NAME DESCRIPTION

uint_4::gb

uint_4::gba

uint_4::gbar

uint_4::gbr

uint_4::gbra

uint_4::gr

uint_4::gra

uint_4::grab

uint_4::grb

uint_4::grba

uint_4::r

uint_4::ra

uint_4::rab

uint_4::rabg

uint_4::rag

uint_4::ragb

uint_4::rb

uint_4::rba

uint_4::rbag

uint_4::rbg

uint_4::rbga

uint_4::rg

uint_4::rga

uint_4::rgab

uint_4::rgb

NAME DESCRIPTION

uint_4::rgba

uint_4::w

uint_4::wx

uint_4::wxy

uint_4::wxyz

uint_4::wxz

uint_4::wxzy

uint_4::wy

uint_4::wyx

uint_4::wyxz

uint_4::wyz

uint_4::wyzx

uint_4::wz

uint_4::wzx

uint_4::wzxy

uint_4::wzy

uint_4::wzyx

uint_4::x

uint_4::xw

uint_4::xwy

uint_4::xwyz

uint_4::xwz

uint_4::xwzy

uint_4::xy

uint_4::xyw

NAME DESCRIPTION

uint_4::xywz

uint_4::xyz

uint_4::xyzw

uint_4::xz

uint_4::xzw

uint_4::xzwy

uint_4::xzy

uint_4::xzyw

uint_4::y

uint_4::yw

uint_4::ywx

uint_4::ywxz

uint_4::ywz

uint_4::ywzx

uint_4::yx

uint_4::yxw

uint_4::yxwz

uint_4::yxz

uint_4::yxzw

uint_4::yz

uint_4::yzw

uint_4::yzwx

uint_4::yzx

uint_4::yzxw

uint_4::z

NAME DESCRIPTION

uint_4::zw

uint_4::zwx

uint_4::zwxy

uint_4::zwy

uint_4::zwyx

uint_4::zx

uint_4::zxw

uint_4::zxwy

uint_4::zxy

uint_4::zxyw

uint_4::zy

uint_4::zyw

uint_4::zywx

uint_4::zyx

uint_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

uint_4

Syntax

uint_4

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

uint_4() restrict(amp,cpu);
uint_4(
 unsigned int _V0,
 unsigned int _V1,
 unsigned int _V2,
 unsigned int _V3
) restrict(amp,cpu);
uint_4(
 unsigned int _V
) restrict(amp,cpu);
uint_4(
 const uint_4& _Other
) restrict(amp,cpu);
explicit inline uint_4(
 const int_4& _Other
) restrict(amp,cpu);
explicit inline uint_4(
 const float_4& _Other
) restrict(amp,cpu);
explicit inline uint_4(
 const unorm_4& _Other
) restrict(amp,cpu);
explicit inline uint_4(
 const norm_4& _Other
) restrict(amp,cpu);
explicit inline uint_4(
 const double_4& _Other
) restrict(amp,cpu);

Parameters

size
Syntax

static const int size = 4;

See also

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V3
The value to initialize element 3.

_V
The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

unorm Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class unorm;

Members
Public Constructors

NAME DESCRIPTION

unorm Constructor Overloaded. Default constructor. Initialize to 0.0f.

Public Operators

NAME DESCRIPTION

unorm::operator--

unorm::operator float Conversion operator. Convert the unorm number to a floating
point value.

unorm::operator*=

unorm::operator/=

unorm::operator++

unorm::operator+=

unorm::operator=

unorm::operator-=

Inheritance Hierarchy

Requirements

Represent a unorm number. Each element is a floating point number in the range of [0.0f, 1.0f].

unorm

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/unorm-class.md

 unorm

unorm(
 void) restrict(amp,
 cpu);

explicit unorm(
 float _V) restrict(amp,
 cpu);

explicit unorm(
 unsigned int _V) restrict(amp,
 cpu);

explicit unorm(
 int _V) restrict(amp,
 cpu);

explicit unorm(
 double _V) restrict(amp,
 cpu);

unorm(
 const unorm& _Other) restrict(amp,
 cpu);

inline explicit unorm(
 const norm& _Other) restrict(amp,
 cpu);

Parameters

See also

Default constructor. Initialize to 0.0f.

_V
The value used to initialize.

_Other
The norm object used to initialize.

Concurrency::graphics Namespace

unorm_2 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class unorm_2;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

unorm_2 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

unorm_2::get_x

unorm_2::get_xy

unorm_2::get_y

unorm_2::get_yx

unorm_2::ref_g

unorm_2::ref_r

unorm_2::ref_x

unorm_2::ref_y

unorm_2::set_x

unorm_2::set_xy

unorm_2::set_y

Represents a short vector of two unsigned normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/unorm-2-class.md

unorm_2::set_yx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

unorm_2::operator--

unorm_2::operator*=

unorm_2::operator/=

unorm_2::operator++

unorm_2::operator+=

unorm_2::operator=

unorm_2::operator-=

Public Constants

NAME DESCRIPTION

unorm_2::size Constant

Public Data Members

NAME DESCRIPTION

unorm_2::g

unorm_2::gr

unorm_2::r

unorm_2::rg

unorm_2::x

unorm_2::xy

unorm_2::y

unorm_2::yx

Inheritance Hierarchy
unorm_2

Requirements

unorm_2

unorm_2() restrict(amp,
 cpu);

unorm_2(
 unorm _V0,
 unorm _V1) restrict(amp,
 cpu);

unorm_2(
 float _V0,
 float _V1) restrict(amp,
 cpu);

unorm_2(
 unorm _V) restrict(amp,
 cpu);

explicit unorm_2(
 float _V) restrict(amp,
 cpu);

unorm_2(
 const unorm_2& _Other) restrict(amp,
 cpu);

explicit inline unorm_2(
 const uint_2& _Other) restrict(amp,
 cpu);

explicit inline unorm_2(
 const int_2& _Other) restrict(amp,
 cpu);

explicit inline unorm_2(
 const float_2& _Other) restrict(amp,
 cpu);

explicit inline unorm_2(
 const norm_2& _Other) restrict(amp,
 cpu);

explicit inline unorm_2(
 const double_2& _Other) restrict(amp,
 cpu);

Parameters

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V

size
static const int size = 2;

See also

The value for initialization.

_Other
The object used to initialize.

Concurrency::graphics Namespace

unorm_3 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class unorm_3;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

unorm_3 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

unorm_3::get_x

unorm_3::get_xy

unorm_3::get_xyz

unorm_3::get_xz

unorm_3::get_xzy

unorm_3::get_y

unorm_3::get_yx

unorm_3::get_yxz

unorm_3::get_yz

unorm_3::get_yzx

unorm_3::get_z

Represents a short vector of three unsigned normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/unorm-3-class.md

unorm_3::get_zx

unorm_3::get_zxy

unorm_3::get_zy

unorm_3::get_zyx

Unorm_3::ref_b

Unorm_3::ref_g

Unorm_3::ref_r

Unorm_3::ref_x

Unorm_3::ref_y

Unorm_3::ref_z

unorm_3::set_x

unorm_3::set_xy

unorm_3::set_xyz

unorm_3::set_xz

unorm_3::set_xzy

unorm_3::set_y

unorm_3::set_yx

unorm_3::set_yxz

unorm_3::set_yz

unorm_3::set_yzx

unorm_3::set_z

unorm_3::set_zx

unorm_3::set_zxy

unorm_3::set_zy

unorm_3::set_zyx

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

unorm_3::operator--

unorm_3::operator*=

unorm_3::operator/=

unorm_3::operator++

unorm_3::operator+=

unorm_3::operator=

unorm_3::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

unorm_3::b

unorm_3::bg

unorm_3::bgr

unorm_3::br

unorm_3::brg

unorm_3::g

unorm_3::gb

unorm_3::gbr

unorm_3::gr

unorm_3::grb

unorm_3::r

unorm_3::rb

unorm_3::rbg

unorm_3::rg

unorm_3::rgb

unorm_3::x

unorm_3::xy

unorm_3::xyz

unorm_3::xz

unorm_3::xzy

unorm_3::y

unorm_3::yx

unorm_3::yxz

unorm_3::yz

unorm_3::yzx

unorm_3::z

unorm_3::zx

unorm_3::zxy

unorm_3::zy

unorm_3::zyx

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

unorm_3

unorm_3

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

unorm_3() restrict(amp,
 cpu);

unorm_3(
 unorm _V0,
 unorm _V1,
 unorm _V2) restrict(amp,
 cpu);

unorm_3(
 float _V0,
 float _V1,
 float _V2) restrict(amp,
 cpu);

unorm_3(
 unorm _V) restrict(amp,
 cpu);

explicit unorm_3(
 float _V) restrict(amp,
 cpu);

unorm_3(
 const unorm_3& _Other) restrict(amp,
 cpu);

explicit inline unorm_3(
 const uint_3& _Other) restrict(amp,
 cpu);

explicit inline unorm_3(
 const int_3& _Other) restrict(amp,
 cpu);

explicit inline unorm_3(
 const float_3& _Other) restrict(amp,
 cpu);

explicit inline unorm_3(
 const norm_3& _Other) restrict(amp,
 cpu);

explicit inline unorm_3(
 const double_3& _Other) restrict(amp,
 cpu);

Parameters
_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V
The value for initialization.

_Other
The object used to initialize.

 size
static const int size = 3;

See also
Concurrency::graphics Namespace

unorm_4 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class unorm_4;

Members
Public Typedefs

NAME DESCRIPTION

value_type

Public Constructors

NAME DESCRIPTION

unorm_4 Constructor Overloaded. Default constructor, initializes all elements with 0.

Public Methods

NAME DESCRIPTION

unorm_4::get_w

unorm_4::get_wx

unorm_4::get_wxy

unorm_4::get_wxyz

unorm_4::get_wxz

unorm_4::get_wxzy

unorm_4::get_wy

unorm_4::get_wyx

unorm_4::get_wyxz

unorm_4::get_wyz

unorm_4::get_wyzx

Represents a short vector of four unsigned normal numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/unorm-4-class.md

unorm_4::get_wz

unorm_4::get_wzx

unorm_4::get_wzxy

unorm_4::get_wzy

unorm_4::get_wzyx

unorm_4::get_x

unorm_4::get_xw

unorm_4::get_xwy

unorm_4::get_xwyz

unorm_4::get_xwz

unorm_4::get_xwzy

unorm_4::get_xy

unorm_4::get_xyw

unorm_4::get_xywz

unorm_4::get_xyz

unorm_4::get_xyzw

unorm_4::get_xz

unorm_4::get_xzw

unorm_4::get_xzwy

unorm_4::get_xzy

unorm_4::get_xzyw

unorm_4::get_y

unorm_4::get_yw

unorm_4::get_ywx

unorm_4::get_ywxz

NAME DESCRIPTION

unorm_4::get_ywz

unorm_4::get_ywzx

unorm_4::get_yx

unorm_4::get_yxw

unorm_4::get_yxwz

unorm_4::get_yxz

unorm_4::get_yxzw

unorm_4::get_yz

unorm_4::get_yzw

unorm_4::get_yzwx

unorm_4::get_yzx

unorm_4::get_yzxw

unorm_4::get_z

unorm_4::get_zw

unorm_4::get_zwx

unorm_4::get_zwxy

unorm_4::get_zwy

unorm_4::get_zwyx

unorm_4::get_zx

unorm_4::get_zxw

unorm_4::get_zxwy

unorm_4::get_zxy

unorm_4::get_zxyw

unorm_4::get_zy

unorm_4::get_zyw

NAME DESCRIPTION

unorm_4::get_zywx

unorm_4::get_zyx

unorm_4::get_zyxw

unorm_4::ref_a

unorm_4::ref_b

unorm_4::ref_g

unorm_4::ref_r

unorm_4::ref_w

unorm_4::ref_x

unorm_4::ref_y

unorm_4::ref_z

unorm_4::set_w

unorm_4::set_wx

unorm_4::set_wxy

unorm_4::set_wxyz

unorm_4::set_wxz

unorm_4::set_wxzy

unorm_4::set_wy

unorm_4::set_wyx

unorm_4::set_wyxz

unorm_4::set_wyz

unorm_4::set_wyzx

unorm_4::set_wz

unorm_4::set_wzx

unorm_4::set_wzxy

NAME DESCRIPTION

unorm_4::set_wzy

unorm_4::set_wzyx

unorm_4::set_x

unorm_4::set_xw

unorm_4::set_xwy

unorm_4::set_xwyz

unorm_4::set_xwz

unorm_4::set_xwzy

unorm_4::set_xy

unorm_4::set_xyw

unorm_4::set_xywz

unorm_4::set_xyz

unorm_4::set_xyzw

unorm_4::set_xz

unorm_4::set_xzw

unorm_4::set_xzwy

unorm_4::set_xzy

unorm_4::set_xzyw

unorm_4::set_y

unorm_4::set_yw

unorm_4::set_ywx

unorm_4::set_ywxz

unorm_4::set_ywz

unorm_4::set_ywzx

unorm_4::set_yx

NAME DESCRIPTION

unorm_4::set_yxw

unorm_4::set_yxwz

unorm_4::set_yxz

unorm_4::set_yxzw

unorm_4::set_yz

unorm_4::set_yzw

unorm_4::set_yzwx

unorm_4::set_yzx

unorm_4::set_yzxw

unorm_4::set_z

unorm_4::set_zw

unorm_4::set_zwx

unorm_4::set_zwxy

unorm_4::set_zwy

unorm_4::set_zwyx

unorm_4::set_zx

unorm_4::set_zxw

unorm_4::set_zxwy

unorm_4::set_zxy

unorm_4::set_zxyw

unorm_4::set_zy

unorm_4::set_zyw

unorm_4::set_zywx

unorm_4::set_zyx

unorm_4::set_zyxw

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

unorm_4::operator-

unorm_4::operator--

unorm_4::operator*=

unorm_4::operator/=

unorm_4::operator++

unorm_4::operator+=

unorm_4::operator=

unorm_4::operator-=

Public Constants

NAME DESCRIPTION

size Constant

Public Data Members

NAME DESCRIPTION

unorm_4::a

unorm_4::ab

unorm_4::abg

unorm_4::abgr

unorm_4::abr

unorm_4::abrg

unorm_4::ag

unorm_4::agb

unorm_4::agbr

unorm_4::agr

unorm_4::agrb

unorm_4::ar

unorm_4::arb

unorm_4::arbg

unorm_4::arg

unorm_4::argb

unorm_4::b

unorm_4::ba

unorm_4::bag

unorm_4::bagr

unorm_4::bar

unorm_4::barg

unorm_4::bg

unorm_4::bga

unorm_4::bgar

unorm_4::bgr

unorm_4::bgra

unorm_4::br

unorm_4::bra

unorm_4::brag

unorm_4::brg

unorm_4::brga

unorm_4::g

unorm_4::ga

unorm_4::gab

unorm_4::gabr

unorm_4::gar

unorm_4::garb

NAME DESCRIPTION

unorm_4::gb

unorm_4::gba

unorm_4::gbar

unorm_4::gbr

unorm_4::gbra

unorm_4::gr

unorm_4::gra

unorm_4::grab

unorm_4::grb

unorm_4::grba

unorm_4::r

unorm_4::ra

unorm_4::rab

unorm_4::rabg

unorm_4::rag

unorm_4::ragb

unorm_4::rb

unorm_4::rba

unorm_4::rbag

unorm_4::rbg

unorm_4::rbga

unorm_4::rg

unorm_4::rga

unorm_4::rgab

unorm_4::rgb

NAME DESCRIPTION

unorm_4::rgba

unorm_4::w

unorm_4::wx

unorm_4::wxy

unorm_4::wxyz

unorm_4::wxz

unorm_4::wxzy

unorm_4::wy

unorm_4::wyx

unorm_4::wyxz

unorm_4::wyz

unorm_4::wyzx

unorm_4::wz

unorm_4::wzx

unorm_4::wzxy

unorm_4::wzy

unorm_4::wzyx

unorm_4::x

unorm_4::xw

unorm_4::xwy

unorm_4::xwyz

unorm_4::xwz

unorm_4::xwzy

unorm_4::xy

unorm_4::xyw

NAME DESCRIPTION

unorm_4::xywz

unorm_4::xyz

unorm_4::xyzw

unorm_4::xz

unorm_4::xzw

unorm_4::xzwy

unorm_4::xzy

unorm_4::xzyw

unorm_4::y

unorm_4::yw

unorm_4::ywx

unorm_4::ywxz

unorm_4::ywz

unorm_4::ywzx

unorm_4::yx

unorm_4::yxw

unorm_4::yxwz

unorm_4::yxz

unorm_4::yxzw

unorm_4::yz

unorm_4::yzw

unorm_4::yzwx

unorm_4::yzx

unorm_4::yzxw

unorm_4::z

NAME DESCRIPTION

unorm_4::zw

unorm_4::zwx

unorm_4::zwxy

unorm_4::zwy

unorm_4::zwyx

unorm_4::zx

unorm_4::zxw

unorm_4::zxwy

unorm_4::zxy

unorm_4::zxyw

unorm_4::zy

unorm_4::zyw

unorm_4::zywx

unorm_4::zyx

unorm_4::zyxw

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

unorm_4

unorm_4

Header: amp_short_vectors.h

Namespace: Concurrency::graphics

Default constructor, initializes all elements with 0.

unorm_4() restrict(amp,
 cpu);

unorm_4(
 unorm _V0,
 unorm _V1,
 unorm _V2,
 unorm _V3) restrict(amp,
 cpu);

unorm_4(
 float _V0,
 float _V1,
 float _V2,
 float _V3) restrict(amp,
 cpu);

unorm_4(
 unorm _V) restrict(amp,
 cpu);

explicit unorm_4(
 float _V) restrict(amp,
 cpu);

unorm_4(
 const unorm_4& _Other) restrict(amp,
 cpu);

explicit inline unorm_4(
 const uint_4& _Other) restrict(amp,
 cpu);

explicit inline unorm_4(
 const int_4& _Other) restrict(amp,
 cpu);

explicit inline unorm_4(
 const float_4& _Other) restrict(amp,
 cpu);

explicit inline unorm_4(
 const norm_4& _Other) restrict(amp,
 cpu);

explicit inline unorm_4(
 const double_4& _Other) restrict(amp,
 cpu);

Parameters
_V0
The value to initialize element 0.

_V1
The value to initialize element 1.

_V2
The value to initialize element 2.

_V3
The value to initialize element 3.

_V
The value for initialization.

 size
static const int size = 4;

See also

_Other
The object used to initialize.

Concurrency::graphics Namespace

Concurrency::precise_math Namespace
3/4/2019 • 7 minutes to read • Edit Online

Syntax
namespace precise_math;

Parameters

Members
Functions

NAME DESCRIPTION

acos Overloaded. Calculates the arccosine of the argument

acosf Calculates the arccosine of the argument

acosh Overloaded. Calculates the inverse hyperbolic cosine of the
argument

acoshf Calculates the inverse hyperbolic cosine of the argument

asin Overloaded. Calculates the arcsine of the argument

asinf Calculates the arcsine of the argument

asinh Overloaded. Calculates the inverse hyperbolic sine of the
argument

asinhf Calculates the inverse hyperbolic sine of the argument

atan Overloaded. Calculates the arctangent of the argument

atan2 Overloaded. Calculates the arctangent of _Y/_X

atan2f Calculates the arctangent of _Y/_X

atanf Calculates the arctangent of the argument

atanh Overloaded. Calculates the inverse hyperbolic tangent of the
argument

Functions in the precise_math namespace are C99 compliant. Both single precision and double precision versions
of each function are included. For example, acos is the double-precision version and acosf is the single-
precision version. These functions, including the single-precision functions, require extended double-precision
support on the accelerator. You can use the accelerator ::supports_double_precision to determine if you can run
these functions on a specific accelerator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-precise-math-namespace.md

atanhf Calculates the inverse hyperbolic tangent of the argument

cbrt Overloaded. Computes the real cube root of the argument

cbrtf Computes the real cube root of the argument

ceil Overloaded. Calculates the ceiling of the argument

ceilf Calculates the ceiling of the argument

copysign Overloaded. Produces a value with the magnitude of _X and
the sign of _Y

copysignf Produces a value with the magnitude of _X and the sign of _Y

cos Overloaded. Calculates the cosine of the argument

cosf Calculates the cosine of the argument

cosh Overloaded. Calculates the hyperbolic cosine value of the
argument

coshf Calculates the hyperbolic cosine value of the argument

cospi Overloaded. Calculates the cosine value of pi * _X

cospif Calculates the cosine value of pi * _X

erf Overloaded. Computes the error function of _X

erfc Overloaded. Computes the complementary error function of
_X

erfcf Computes the complementary error function of _X

erfcinv Overloaded. Computes the inverse complementary error
function of _X

erfcinvf Computes the inverse complementary error function of _X

erff Computes the error function of _X

erfinv Overloaded. Computes the inverse error function of _X

erfinvf Computes the inverse error function of _X

exp Overloaded. Calculates the base-e exponential of the
argument

exp10 Overloaded. Calculates the base-10 exponential of the
argument

NAME DESCRIPTION

exp10f Calculates the base-10 exponential of the argument

exp2 Overloaded. Calculates the base-2 exponential of the
argument

exp2f Calculates the base-2 exponential of the argument

expf Calculates the base-e exponential of the argument

expm1 Overloaded. Calculates the base-e exponential of the
argument, minus 1

expm1f Calculates the base-e exponential of the argument, minus 1

fabs Overloaded. Returns the absolute value of the argument

fabsf Returns the absolute value of the argument

fdim Overloaded. Determines the positive difference between the
arguments

fdimf Determines the positive difference between the arguments

floor Overloaded. Calculates the floor of the argument

floorf Calculates the floor of the argument

fma Overloaded. Compute (_X * _Y) + _Z, rounded as one ternary
operation

fmaf Compute (_X * _Y) + _Z, rounded as one ternary operation

fmax Overloaded. Determine the maximum numeric value of the
arguments

fmaxf Determine the maximum numeric value of the arguments

fmin Overloaded. Determine the minimum numeric value of the
arguments

fminf Determine the minimum numeric value of the arguments

fmod Function (C++ AMP) Overloaded. Calculates the floating-point remainder of _X/_Y

fmodf Calculates the floating-point remainder of _X/_Y

fpclassify Overloaded. Classifies the argument value as NaN, infinite,
normal, subnormal, zero

frexp Overloaded. Gets the mantissa and exponent of _X

NAME DESCRIPTION

frexpf Gets the mantissa and exponent of _X

hypot Overloaded. Computes the square root of the sum of the
squares of _X and _Y

hypotf Computes the square root of the sum of the squares of _X
and _Y

ilogb Overloaded. Extract the exponent of _X as a signed int value

ilogbf Extract the exponent of _X as a signed int value

isfinite Overloaded. Determines whether the argument has a finite
value

isinf Overloaded. Determines whether the argument is an infinity

isnan Overloaded. Determines whether the argument is a NaN

isnormal Overloaded. Determines whether the argument is a normal

ldexp Overloaded. Computes a real number from the mantissa and
exponent

ldexpf Computes a real number from the mantissa and exponent

lgamma Overloaded. Computes the natural logarithm of the absolute
value of gamma of the argument

lgammaf Computes the natural logarithm of the absolute value of
gamma of the argument

log Overloaded. Calculates the base-e logarithm of the argument

log10 Overloaded. Calculates the base-10 logarithm of the
argument

log10f Calculates the base-10 logarithm of the argument

log1p Overloaded. Calculates the base-e logarithm of 1 plus the
argument

log1pf Calculates the base-e logarithm of 1 plus the argument

log2 Overloaded. Calculates the base-2 logarithm of the argument

log2f Calculates the base-2 logarithm of the argument

logb Overloaded. Extracts the exponent of _X, as a signed integer
value in floating-point format

NAME DESCRIPTION

logbf Extracts the exponent of _X, as a signed integer value in
floating-point format

logf Calculates the base-e logarithm of the argument

modf Overloaded. Splits _X into fractional and integer parts.

modff Splits _X into fractional and integer parts.

nan Returns a quiet NaN

nanf Returns a quiet NaN

nearbyint Overloaded. Rounds the argument to an integer value in
floating-point format, using the current rounding direction.

nearbyintf Rounds the argument to an integer value in floating-point
format, using the current rounding direction.

nextafter Overloaded. Determine the next representable value, in the
type of the function, after _X in the direction of _Y

nextafterf Determine the next representable value, in the type of the
function, after _X in the direction of _Y

phi Overloaded. Returns the cumulative distribution function of
the argument

phif Returns the cumulative distribution function of the argument

pow Overloaded. Calculates _X raised to the power of _Y

powf Calculates _X raised to the power of _Y

probit Overloaded. Returns the inverse cumulative distribution
function of the argument

probitf Returns the inverse cumulative distribution function of the
argument

rcbrt Overloaded. Returns the reciprocal of the cube root of the
argument

rcbrtf Returns the reciprocal of the cube root of the argument

remainder Overloaded. Computes the remainder: _X REM _Y

remainderf Computes the remainder: _X REM _Y

NAME DESCRIPTION

remquo Overloaded. Computes the same remainder as _X REM _Y.
Also calculates the lower 23 bits of the integral quotient
_X/_Y, and gives that value the same sign as _X/_Y. It stores
this signed value in the integer pointed to by _Quo.

remquof Computes the same remainder as _X REM _Y. Also calculates
the lower 23 bits of the integral quotient _X/_Y, and gives that
value the same sign as _X/_Y. It stores this signed value in the
integer pointed to by _Quo.

round Overloaded. Rounds _X to the nearest integer

roundf Rounds _X to the nearest integer

rsqrt Overloaded. Returns the reciprocal of the square root of the
argument

rsqrtf Returns the reciprocal of the square root of the argument

scalb Overloaded. Multiplies _X by FLT_RADIX to the power _Y

scalbf Multiplies _X by FLT_RADIX to the power _Y

scalbn Overloaded. Multiplies _X by FLT_RADIX to the power _Y

scalbnf Multiplies _X by FLT_RADIX to the power _Y

signbit Overloaded. Determines whether the sign of _X is negative

signbitf Determines whether the sign of _X is negative

sin Overloaded. Calculates the sine value of the argument

sincos Overloaded. Calculates sine and cosine value of _X

sincosf Calculates sine and cosine value of _X

sinf Calculates the sine value of the argument

sinh Overloaded. Calculates the hyperbolic sine value of the
argument

sinhf Calculates the hyperbolic sine value of the argument

sinpi Overloaded. Calculates the sine value of pi * _X

sinpif Calculates the sine value of pi * _X

sqrt Overloaded. Calculates the squre root of the argument

sqrtf Calculates the squre root of the argument

NAME DESCRIPTION

tan Overloaded. Calculates the tangent value of the argument

tanf Calculates the tangent value of the argument

tanh Overloaded. Calculates the hyperbolic tangent value of the
argument

tanhf Calculates the hyperbolic tangent value of the argument

tanpi Overloaded. Calculates the tangent value of pi * _X

tanpif Calculates the tangent value of pi * _X

tgamma Overloaded. Computes the gamma function of _X

tgammaf Computes the gamma function of _X

trunc Overloaded. Truncates the argument to the integer
component

truncf Truncates the argument to the integer component

NAME DESCRIPTION

Requirements

See also

Header: amp_math.h

Namespace: Concurrency

Concurrency Namespace (C++ AMP)

Concurrency::precise_math namespace functions
3/4/2019 • 24 minutes to read • Edit Online

acos acosf acosh

acoshf asin asinf

asinh asinhf atan

atan2 atan2f atanf

atanh atanhf cbrt

cbrtf ceil ceilf

copysign copysignf cos

cosf cosh coshf

cospi cospif erf

erfc erfcf erfcinv

erfcinvf erff erfinv

erfinvf exp exp10

exp10f exp2 exp2f

expf expm1 expm1f

fabs fabsf floor

fdim fdimf

floorf fma fmaf

fmax fmaxf

fmin fminf fmod

fmodf fpclassify frexp

frexpf hypot hypotf

ilogb ilogbf isfinite

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/amp/reference/concurrency-precise-math-namespace-functions.md

isinf isnan isnormal

ldexp ldexpf lgamma

lgammaf log log10

log10f log1p log1pf

log2 log2f logb

logbf logf modf

modff nan nanf

nearbyint nearbyintf nextafter

nextafterf phi phif

pow powf probit

probitf rcbrt rcbrtf

remainder remainderf remquo

remquof round roundf

rsqrt rsqrtf scalb

scalbf scalbn scalbnf

signbit signbitf sin

sincos sincosf sinf

sinh sinhf sinpi

sinpif sqrt sqrtf

tan tanf tanh

tanhf tanpi tanpif

tgamma tgammaf trunc

truncf

acos
Calculates the arccosine of the argument

inline float acos(float _X) restrict(amp);

inline double acos(double _X) restrict(amp);

Parameters

Return Value

acosf

inline float acosf(float _X) restrict(amp);

Parameters

Return Value

acosh

inline float acosh(float _X) restrict(amp);

inline double acosh(double _X) restrict(amp);

Parameters

Return Value

acoshf

inline float acoshf(float _X) restrict(amp);

Parameters

Return Value

_X
Floating-point value

Returns the arccosine value of the argument

Calculates the arccosine of the argument

_X
Floating-point value

Returns the arccosine value of the argument

Calculates the inverse hyperbolic cosine of the argument

_X
Floating-point value

Returns the inverse hyperbolic cosine value of the argument

Calculates the inverse hyperbolic cosine of the argument

_X
Floating-point value

Returns the inverse hyperbolic cosine value of the argument

asin

inline float asin(float _X) restrict(amp);

inline double asin(double _X) restrict(amp);

Parameters

Return Value

asinf

inline float asinf(float _X) restrict(amp);

Parameters

Return Value

asinh

inline float asinh(float _X) restrict(amp);

inline double asinh(double _X) restrict(amp);

Parameters

Return Value

asinhf

inline float asinhf(float _X) restrict(amp);

Parameters

Calculates the arcsine of the argument

_X
Floating-point value

Returns the arcsine value of the argument

Calculates the arcsine of the argument

_X
Floating-point value

Returns the arcsine value of the argument

Calculates the inverse hyperbolic sine of the argument

_X
Floating-point value

Returns the inverse hyperbolic sine value of the argument

Calculates the inverse hyperbolic sine of the argument

_X
Floating-point value

Return Value

atan

inline float atan(float _X) restrict(amp);

inline double atan(double _X) restrict(amp);

Parameters

Return Value

atan2

inline float atan2(
 float _Y,
 float _X) restrict(amp);

inline double atan2(
 double _Y,
 double _X) restrict(amp);

Parameters

Return Value

atan2f

inline float atan2f(
 float _Y,
 float _X) restrict(amp);

Parameters

Returns the inverse hyperbolic sine value of the argument

Calculates the arctangent of the argument

_X
Floating-point value

Returns the arctangent value of the argument

Calculates the arctangent of _Y/_X

_Y
Floating-point value

_X
Floating-point value

Returns the arctangent value of _Y/_X

Calculates the arctangent of _Y/_X

_Y
Floating-point value

_X
Floating-point value

Return Value

atanf

inline float atanf(float _X) restrict(amp);

Parameters

Return Value

atanh

inline float atanh(float _X) restrict(amp);

inline double atanh(double _X) restrict(amp);

Parameters

Return Value

atanhf

inline float atanhf(float _X) restrict(amp);

Parameters

Return Value

cbrt

inline float cbrt(float _X) restrict(amp);

inline double cbrt(double _X) restrict(amp);

Returns the arctangent value of _Y/_X

Calculates the arctangent of the argument

_X
Floating-point value

Returns the arctangent value of the argument

Calculates the inverse hyperbolic tangent of the argument

_X
Floating-point value

Returns the inverse hyperbolic tangent value of the argument

Calculates the inverse hyperbolic tangent of the argument

_X
Floating-point value

Returns the inverse hyperbolic tangent value of the argument

Computes the real cube root of the argument

Parameters

Return Value

cbrtf

inline float cbrtf(float _X) restrict(amp);

Parameters

Return Value

ceil

inline float ceil(float _X) restrict(amp);

inline double ceil(double _X) restrict(amp);

Parameters

Return Value

ceilf

inline float ceilf(float _X) restrict(amp);

Parameters

Return Value

copysign

_X
Floating-point value

Returns the real cube root of the argument

Computes the real cube root of the argument

_X
Floating-point value

Returns the real cube root of the argument

Calculates the ceiling of the argument

_X
Floating-point value

Returns the ceiling of the argument

Calculates the ceiling of the argument

_X
Floating-point value

Returns the ceiling of the argument

Produces a value with the magnitude of _X and the sign of _Y

inline float copysign(
 float _X,
 float _Y) restrict(amp);

inline double copysign(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

copysignf

inline float copysignf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

cos

inline float cos(float _X) restrict(amp);

inline double cos(double _X) restrict(amp);

Parameters

Return Value

cosf

_X
Floating-point value

_Y
Floating-point value

Returns a value with the magnitude of _X and the sign of _Y

Produces a value with the magnitude of _X and the sign of _Y

_X
Floating-point value

_Y
Floating-point value

Returns a value with the magnitude of _X and the sign of _Y

Calculates the cosine of the argument

_X
Floating-point value

Returns the cosine value of the argument

Calculates the cosine of the argument

inline float cosf(float _X) restrict(amp);

Parameters

Return Value

cosh

inline float cosh(float _X) restrict(amp);

inline double cosh(double _X) restrict(amp);

Parameters

Return Value

coshf

inline float coshf(float _X) restrict(amp);

Parameters

Return Value

cospi

inline float cospi(float _X) restrict(amp);

inline double cospi(double _X) restrict(amp);

Parameters

Return Value

_X
Floating-point value

Returns the cosine value of the argument

Calculates the hyperbolic cosine value of the argument

_X
Floating-point value

Returns the hyperbolic cosine value of the argument

Calculates the hyperbolic cosine value of the argument

_X
Floating-point value

Returns the hyperbolic cosine value of the argument

Calculates the cosine value of pi * _X

_X
Floating-point value

Returns the cosine value of pi * _X

cospif

inline float cospif(float _X) restrict(amp);

Parameters

Return Value

erf

inline float erf(float _X) restrict(amp);

inline double erf(double _X) restrict(amp);

Parameters

Return Value

erfc

inline float erfc(float _X) restrict(amp);

inline double erfc(double _X) restrict(amp);

Parameters

Return Value

erfcf

inline float erfcf(float _X) restrict(amp);

Parameters

Calculates the cosine value of pi * _X

_X
Floating-point value

Returns the cosine value of pi * _X

Computes the error function of _X

_X
Floating-point value

Returns the error function of _X

Computes the complementary error function of _X

_X
Floating-point value

Returns the complementary error function of _X

Computes the complementary error function of _X

_X
Floating-point value

Return Value

erfcinv

inline float erfcinv(float _X) restrict(amp);

inline double erfcinv(double _X) restrict(amp);

Parameters

Return Value

erfcinvf

inline float erfcinvf(float _X) restrict(amp);

Parameters

Return Value

erff

inline float erff(float _X) restrict(amp);

Parameters

Return Value

erfinv

inline float erfinv(float _X) restrict(amp);

inline double erfinv(double _X) restrict(amp);

Returns the complementary error function of _X

Computes the inverse complementary error function of _X

_X
Floating-point value

Returns the inverse complementary error function of _X

Computes the inverse complementary error function of _X

_X
Floating-point value

Returns the inverse complementary error function of _X

Computes the error function of _X

_X
Floating-point value

Returns the error function of _X

Computes the inverse error function of _X

Parameters

Return Value

erfinvf

inline float erfinvf(float _X) restrict(amp);

Parameters

Return Value

exp10

inline float exp10(float _X) restrict(amp);

inline double exp10(double _X) restrict(amp);

Parameters

Return Value

exp10f

inline float exp10f(float _X) restrict(amp);

Parameters

Return Value

expm1

_X
Floating-point value

Returns the inverse error function of _X

Computes the inverse error function of _X

_X
Floating-point value

Returns the inverse error function of _X

Calculates the base-10 exponential of the argument

_X
Floating-point value

Returns the base-10 exponential of the argument

Calculates the base-10 exponential of the argument

_X
Floating-point value

Returns the base-10 exponential of the argument

Calculates the base-e exponential of the argument, minus 1

inline float expm1(float exponent) restrict(amp);

inline double expm1(double exponent) restrict(amp);

Parameters

Return Value

expm1f

inline float expm1f(float exponent) restrict(amp);

Parameters

Return Value

exp

inline float exp(float _X) restrict(amp);

inline double exp(double _X) restrict(amp);

Parameters

Return Value

expf

inline float expf(float _X) restrict(amp);

Parameters

Return Value

exponent
The exponential term n of the mathematical expression e , where e is the base of the natural logarithm.n

Returns the base-e exponential of the argument, minus 1

Calculates the base-e exponential of the argument, minus 1

exponent
The exponential term n of the mathematical expression e , where e is the base of the natural logarithm.n

Returns the base-e exponential of the argument, minus 1

Calculates the base-e exponential of the argument

_X
Floating-point value

Returns the base-e exponential of the argument

Calculates the base-e exponential of the argument

_X
Floating-point value

Returns the base-e exponential of the argument

exp2

inline float exp2(float _X) restrict(amp);

inline double exp2(double _X) restrict(amp);

Parameters

Return Value

exp2f

inline float exp2f(float _X) restrict(amp);

Parameters

Return Value

fabs

inline float fabs(float _X) restrict(amp);

inline double fabs(double _X) restrict(amp);

Parameters

Return Value

fabsf

inline float fabsf(float _X) restrict(amp);

Parameters

Calculates the base-2 exponential of the argument

_X
Floating-point value

Returns the base-2 exponential of the argument

Calculates the base-2 exponential of the argument

_X
Floating-point value

Returns the base-2 exponential of the argument

Returns the absolute value of the argument

_X
Floating-point value

Returns the absolute value of the argument

Returns the absolute value of the argument

_X
Floating-point value

Return Value

fdim

inline float fdim(
 float _X,
 float _Y
) restrict(amp);
inline double fdim(
 double _X,
 double _Y
) restrict(amp);

Parameters

Return Value

fdimf

inline float fdimf(
 float _X,
 float _Y
) restrict(amp);

Parameters

Return Value

floor

inline float floor(float _X) restrict(amp);

inline double floor(double _X) restrict(amp);

Parameters

Return Value

Returns the absolute value of the argument

Computes the positive difference between the arguments.

_X
Floating-point value _Y
Floating-point value

The difference between _X and _Y if _X is greater than _Y; otherwise, +0.

Computes the positive difference between the arguments.

_X
Floating-point value _Y
Floating-point value

The difference between _X and _Y if _X is greater than _Y; otherwise, +0.

Calculates the floor of the argument

_X
Floating-point value

floorf

inline float floorf(float _X) restrict(amp);

Parameters

Return Value

fma

inline float fma(
 float _X,
 float _Y,
 float _Z
) restrict(amp);

inline double fma(
 double _X,
 double _Y,
 double _Z
) restrict(amp);

Parameters

Return Value

fmaf

inline float fmaf(
 float _X,
 float _Y,
 float _Z
) restrict(amp);

Parameters

Returns the floor of the argument

Calculates the floor of the argument

_X
Floating-point value

Returns the floor of the argument

Computes the product of the first and second specified arguments, then adds the third specified argument to the
result; the entire computation is performed as a single operation.

_X
The first floating-point argument. _Y
The second floating-point argument. _Z
The third floating-point argument.

The result of the expression (_X * _Y) + _Z. The entire computation is performed as a single operation; that is, the
sub-expressions are calculated to infinite precision, and only the final result is rounded.

Computes the product of the first and second specified arguments, then adds the third specified argument to the
result; the entire computation is performed as a single operation.

Return Value

fmax

inline float fmax(
 float _X,
 float _Y) restrict(amp);

inline double fmax(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

fmaxf

inline float fmaxf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fmin

_X
The first floating-point argument. _Y
The second floating-point argument. _Z
The third floating-point argument.

The result of the expression (_X * _Y) + _Z. The entire computation is performed as a single operation; that is, the
sub-expressions are calculated to infinite precision, and only the final result is rounded.

Determine the maximum numeric value of the arguments

_X
Floating-point value

_Y
Floating-point value

Return the maximum numeric value of the arguments

Determine the maximum numeric value of the arguments

_X
Floating-point value

_Y
Floating-point value

Return the maximum numeric value of the arguments

Determine the minimum numeric value of the arguments

inline float fmin(
 float _X,
 float _Y) restrict(amp);

inline double fmin(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

fminf

inline float fminf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fmod Function (C++ AMP)

inline float fmod(
 float _X,
 float _Y) restrict(amp);

inline double fmod(
 double _X,
 double _Y) restrict(amp);

Parameters

_X
Floating-point value

_Y
Floating-point value

Return the minimum numeric value of the arguments

Determine the minimum numeric value of the arguments

_X
Floating-point value

_Y
Floating-point value

Return the minimum numeric value of the arguments

Computes the remainder of the first specified argument divided by the second specified argument.

_X
The first floating-point argument.

_Y
The second floating-point argument.

Return Value

fmodf

inline float fmodf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

fpclassify

inline int fpclassify(float _X) restrict(amp);

inline int fpclassify(double _X) restrict(amp);

Parameters

Return Value

frexp

inline float frexp(
 float _X,
 Out int* _Exp) restrict(amp);

inline double frexp(
 double _X,
 Out int* _Exp) restrict(amp);

Parameters

The remainder of _X divided by _Y ; that is, the value of _X - _Y n, where n is a whole integer such that the
magnitude of _X - _Y n is less than the magnitude of _Y .

Computes the remainder of the first specified argument divided by the second specified argument.

_X
The first floating-point argument.

_Y
The second floating-point argument.

The remainder of _X divided by _Y ; that is, the value of _X - _Y n, where n is a whole integer such that the
magnitude of _X - _Y n is less than the magnitude of _Y .

Classifies the argument value as NaN, infinite, normal, subnormal, zero

_X
Floating-point value

Returns the value of the number classification macro appropriate to the value of the argument.

Gets the mantissa and exponent of _X

_X
Floating-point value

Return Value

frexpf

inline float frexpf(
 float _X,
 Out int* _Exp) restrict(amp);

Parameters

Return Value

hypot

inline float hypot(
 float _X,
 float _Y) restrict(amp);

inline double hypot(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

hypotf

inline float hypotf(
 float _X,
 float _Y) restrict(amp);

Parameters

_Exp
Returns the integer exponent of _X in floating-point value

Returns the mantissa _X

Gets the mantissa and exponent of _X

_X
Floating-point value

_Exp
Returns the integer exponent of _X in floating-point value

Returns the mantissa _X

Computes the square root of the sum of the squares of _X and _Y

_X
Floating-point value

_Y
Floating-point value

Returns the square root of the sum of the squares of _X and _Y

Computes the square root of the sum of the squares of _X and _Y

Return Value

ilogb

inline int ilogb(float _X) restrict(amp);

inline int ilogb(double _X) restrict(amp);

Parameters

Return Value

ilogbf

inline int ilogbf(float _X) restrict(amp);

Parameters

Return Value

isfinite

inline int isfinite(float _X) restrict(amp);

inline int isfinite(double _X) restrict(amp);

Parameters

Return Value

_X
Floating-point value

_Y
Floating-point value

Returns the square root of the sum of the squares of _X and _Y

Extract the exponent of _X as a signed int value

_X
Floating-point value

Returns the exponent of _X as a signed int value

Extract the exponent of _X as a signed int value

_X
Floating-point value

Returns the exponent of _X as a signed int value

Determines whether the argument has a finite value

_X
Floating-point value

Returns a nonzero value if and only if the argument has a finite value

isinf

inline int isinf(float _X) restrict(amp);

inline int isinf(double _X) restrict(amp);

Parameters

Return Value

isnan

inline int isnan(float _X) restrict(amp);

inline int isnan(double _X) restrict(amp);

Parameters

Return Value

isnormal

inline int isnormal(float _X) restrict(amp);

inline int isnormal(double _X) restrict(amp);

Parameters

Return Value

ldexp

Determines whether the argument is an infinity

_X
Floating-point value

Returns a nonzero value if and only if the argument has an infinite value

Determines whether the argument is a NaN

_X
Floating-point value

Returns a nonzero value if and only if the argument has a NaN value

Determines whether the argument is a normal

_X
Floating-point value

Returns a nonzero value if and only if the argument has a normal value

Computes a real number from the specified mantissa and exponent.

inline float ldexp(
 float _X,
 int _Exp) restrict(amp);

inline double ldexp(
 double _X,
 double _Exp) restrict(amp);

Parameters

Return Value

ldexpf

inline float ldexpf(
 float _X,
 int _Exp) restrict(amp);

Parameters

Return Value

lgamma

inline float lgamma(
 float _X,
 Out int* _Sign) restrict(amp);

inline double lgamma(
 double _X,
 Out int* _Sign) restrict(amp);

Parameters

_X
Floating-point value, mantissa

_Exp
Integer value, exponent

Returns _X * 2^_Exp

Computes a real number from the specified mantissa and exponent.

_X
Floating-point value, mantissa

_Exp
Integer value, exponent

Returns _X * 2^_Exp

Computes the natural logarithm of the absolute value of gamma of the argument

_X
Floating-point value

_Sign
Returns the sign

Return Value

lgammaf

inline float lgammaf(
 float _X,
 Out int* _Sign) restrict(amp);

Parameters

Return Value

log

inline float log(float _X) restrict(amp);

inline double log(double _X) restrict(amp);

Parameters

Return Value

log10

inline float log10(float _X) restrict(amp);

inline double log10(double _X) restrict(amp);

Parameters

Return Value

log10f

Returns the natural logarithm of the absolute value of gamma of the argument

Computes the natural logarithm of the absolute value of gamma of the argument

_X
Floating-point value

_Sign
Returns the sign

Returns the natural logarithm of the absolute value of gamma of the argument

Calculates the base-e logarithm of the argument

_X
Floating-point value

Returns the base-e logarithm of the argument

Calculates the base-10 logarithm of the argument

_X
Floating-point value

Returns the base-10 logarithm of the argument

inline float log10f(float _X) restrict(amp);

Parameters

Return Value

log1p

inline float log1p(float _X) restrict(amp);

inline double log1p(double _X) restrict(amp);

Parameters

Return Value

log1pf

inline float log1pf(float _X) restrict(amp);

Parameters

Return Value

log2

inline float log2(float _X) restrict(amp);

inline double log2(double _X) restrict(amp);

Parameters

Return Value

Calculates the base-10 logarithm of the argument

_X
Floating-point value

Returns the base-10 logarithm of the argument

Calculates the base-e logarithm of 1 plus the argument

_X
Floating-point value

Returns the base-e logarithm of 1 plus the argument

Calculates the base-e logarithm of 1 plus the argument

_X
Floating-point value

Returns the base-e logarithm of 1 plus the argument

Calculates the base-2 logarithm of the argument

_X
Floating-point value

log2f

inline float log2f(float _X) restrict(amp);

Parameters

Return Value

logb

inline float logb(float _X) restrict(amp);

inline double logb(double _X) restrict(amp);

Parameters

Return Value

logbf

inline float logbf(float _X) restrict(amp);

Parameters

Return Value

logf

inline float logf(float _X) restrict(amp);

Parameters

Returns the base-10 logarithm of the argument

Calculates the base-2 logarithm of the argument

_X
Floating-point value

Returns the base-10 logarithm of the argument

Extracts the exponent of _X, as a signed integer value in floating-point format

_X
Floating-point value

Returns the signed exponent of _X

Extracts the exponent of _X, as a signed integer value in floating-point format

_X
Floating-point value

Returns the signed exponent of _X

Calculates the base-e logarithm of the argument

_X

Return Value

modf

inline float modf(
 float _X,
 Out float* _Iptr) restrict(amp);

inline double modf(
 double _X,
 Out double* _Iptr) restrict(amp);

Parameters

Return Value

modff

inline float modff(
 float _X,
 Out float* _Iptr) restrict(amp);

Parameters

Return Value

nan

inline double nan(int _X) restrict(amp);

Parameters

Floating-point value

Returns the base-e logarithm of the argument

Splits the specified argument into fractional and integer parts.

_X
Floating-point value

_Iptr
[out] The integer portion of _X , as a floating-point value.

The signed fractional portion of _X .

Splits the specified argument into fractional and integer parts.

_X
Floating-point value

_Iptr
The integer portion of _X , as a floating-point value.

Returns the signed fractional portion of _X .

Returns a quiet NaN

_X
Integer value

Return Value

nanf

inline float nanf(int _X) restrict(amp);

Parameters

Return Value

nearbyint

inline float nearbyint(float _X) restrict(amp);

inline double nearbyint(double _X) restrict(amp);

Parameters

Return Value

nearbyintf

inline float nearbyintf(float _X) restrict(amp);

Parameters

Return Value

nextafter

Returns a quiet NaN, if available, with the content indicated in _X

Returns a quiet NaN

_X
Integer value

Returns a quiet NaN, if available, with the content indicated in _X

Rounds the argument to an integer value in floating-point format, using the current rounding direction.

_X
Floating-point value

Returns the rounded integer value.

Rounds the argument to an integer value in floating-point format, using the current rounding direction.

_X
Floating-point value

Returns the rounded integer value.

Determine the next representable value, in the type of the function, after _X in the direction of _Y

inline float nextafter(
 float _X,
 float _Y) restrict(amp);

inline double nextafter(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

nextafterf

inline float nextafterf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

phi

inline float phi(float _X) restrict(amp);

inline double phi(double _X) restrict(amp);

Parameters

Return Value

phif

_X
Floating-point value

_Y
Floating-point value

Returns the next representable value, in the type of the function, after _X in the direction of _Y

Determine the next representable value, in the type of the function, after _X in the direction of _Y

_X
Floating-point value

_Y
Floating-point value

Returns the next representable value, in the type of the function, after _X in the direction of _Y

Returns the cumulative distribution function of the argument

_X
Floating-point value

Returns the cumulative distribution function of the argument

Returns the cumulative distribution function of the argument

inline float phif(float _X) restrict(amp);

Parameters

Return Value

pow

inline float pow(
 float _X,
 float _Y) restrict(amp);

inline double pow(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

powf

inline float powf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

probit

inline float probit(float _X) restrict(amp);

inline double probit(double _X) restrict(amp);

_X
Floating-point value

Returns the cumulative distribution function of the argument

Calculates _X raised to the power of _Y

_X
Floating-point value, base

_Y
Floating-point value, exponent

Calculates _X raised to the power of _Y

_X
Floating-point value, base

_Y
Floating-point value, exponent

Returns the inverse cumulative distribution function of the argument

Parameters

Return Value

probitf

inline float probitf(float _X) restrict(amp);

Parameters

Return Value

rcbrt

inline float rcbrt(float _X) restrict(amp);

inline double rcbrt(double _X) restrict(amp);

Parameters

Return Value

rcbrtf

inline float rcbrtf(float _X) restrict(amp);

Parameters

Return Value

remainder

_X
Floating-point value

Returns the inverse cumulative distribution function of the argument

Returns the inverse cumulative distribution function of the argument

_X
Floating-point value

Returns the inverse cumulative distribution function of the argument

Returns the reciprocal of the cube root of the argument

_X
Floating-point value

Returns the reciprocal of the cube root of the argument

Returns the reciprocal of the cube root of the argument

_X
Floating-point value

Returns the reciprocal of the cube root of the argument

Computes the remainder: _X REM _Y

inline float remainder(
 float _X,
 float _Y) restrict(amp);

inline double remainder(
 double _X,
 double _Y) restrict(amp);

Parameters

Return Value

remainderf

inline float remainderf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

remquo

inline float remquo(
 float _X,
 float _Y,
 Out int* _Quo) restrict(amp);

inline double remquo(
 double _X,
 double _Y,
 Out int* _Quo) restrict(amp);

Parameters

_X
Floating-point value

_Y
Floating-point value

Returns _X REM _Y

Computes the remainder: _X REM _Y

_X
Floating-point value

_Y
Floating-point value

Returns _X REM _Y

Computes the remainder of the first specified argument divided by the second specified argument. Also computes
the quotient of the significand of the first specified argument divided by the significand of the second specified
argument, and returns the quotient using the location specified in the third argument.

_X
The first floating-point argument.

Return Value

remquof

inline float remquof(
 float _X,
 float _Y,
 Out int* _Quo) restrict(amp);

Parameters

Return Value

round

inline float round(float _X) restrict(amp);

inline double round(double _X) restrict(amp);

Parameters

Return Value

roundf

_Y
The second floating-point argument.

_Quo
[out] The address of an integer that’s used to return the quotient of the fractional bits of _X divided by the
fractional bits of _Y .

Returns the remainder of _X divided by _Y .

Computes the remainder of the first specified argument divided by the second specified argument. Also computes
the quotient of the significand of the first specified argument divided by the significand of the second specified
argument, and returns the quotient using the location specified in the third argument.

_X
The first floating-point argument.

_Y
The second floating-point argument.

_Quo
[out] The address of an integer that’s used to return the quotient of the fractional bits of _X divided by the
fractional bits of _Y .

Returns the remainder of _X divided by _Y .

Rounds _X to the nearest integer

_X
Floating-point value

Returns the nearest integer of _X

Rounds _X to the nearest integer

inline float roundf(float _X) restrict(amp);

Parameters

Return Value

rsqrt

inline float rsqrt(float _X) restrict(amp);

inline double rsqrt(double _X) restrict(amp);

Parameters

Return Value

rsqrtf

inline float rsqrtf(float _X) restrict(amp);

Parameters

Return Value

scalb

inline float scalb(
 float _X,
 float _Y) restrict(amp);

inline double scalb(
 double _X,
 double _Y) restrict(amp);

Parameters

_X
Floating-point value

Returns the nearest integer of _X

Returns the reciprocal of the square root of the argument

_X
Floating-point value

Returns the reciprocal of the square root of the argument

Returns the reciprocal of the square root of the argument

_X
Floating-point value

Returns the reciprocal of the square root of the argument

Multiplies _X by FLT_RADIX to the power _Y

_X
Floating-point value

Return Value

scalbf

inline float scalbf(
 float _X,
 float _Y) restrict(amp);

Parameters

Return Value

scalbn

inline float scalbn(
 float _X,
 int _Y) restrict(amp);

inline double scalbn(
 double _X,
 int _Y) restrict(amp);

Parameters

Return Value

scalbnf

inline float scalbnf(
 float _X,
 int _Y) restrict(amp);

Parameters

_Y
Floating-point value

Returns _X * (FLT_RADIX ^ _Y)

Multiplies _X by FLT_RADIX to the power _Y

_X
Floating-point value

_Y
Floating-point value

Returns _X * (FLT_RADIX ^ _Y)

Multiplies _X by FLT_RADIX to the power _Y

_X
Floating-point value

_Y
Integer value

Returns _X * (FLT_RADIX ^ _Y)

Multiplies _X by FLT_RADIX to the power _Y

Return Value

signbit

inline int signbit(float _X) restrict(amp);

inline int signbit(double _X) restrict(amp);

Parameters

Return Value

signbitf

inline int signbitf(float _X) restrict(amp);

Parameters

Return Value

sin

inline float sin(float _X) restrict(amp);

inline double sin(double _X) restrict(amp);

Parameters

Return Value

_X
Floating-point value

_Y
Integer value

Returns _X * (FLT_RADIX ^ _Y)

Determines whether the sign of _X is negative

_X
Floating-point value

Returns a nonzero value if and only if the sign of _X is negative

Determines whether the sign of _X is negative

_X
Floating-point value

Returns a nonzero value if and only if the sign of _X is negative

Calculates the sine value of the argument

_X
Floating-point value

Returns the sine value of the argument

sinf

inline float sinf(float _X) restrict(amp);

Parameters

Return Value

sincos

inline void sincos(
 float _X,
 Out float* _S,
 Out float* _C) restrict(amp);

inline void sincos(
 double _X,
 Out double* _S,
 Out double* _C) restrict(amp);

Parameters

sincosf

inline void sincosf(
 float _X,
 Out float* _S,
 Out float* _C) restrict(amp);

Parameters

Calculates the sine value of the argument

_X
Floating-point value

Returns the sine value of the argument

Calculates sine and cosine value of _X

_X
Floating-point value

_S
Returns the sine value of _X

_C
Returns the cosine value of _X

Calculates sine and cosine value of _X

_X
Floating-point value

_S
Returns the sine value of _X

_C
Returns the cosine value of _X

sinh

inline float sinh(float _X) restrict(amp);

inline double sinh(double _X) restrict(amp);

Parameters

Return Value

sinhf

inline float sinhf(float _X) restrict(amp);

Parameters

Return Value

sinpi

inline float sinpi(float _X) restrict(amp);

inline double sinpi(double _X) restrict(amp);

Parameters

Return Value

sinpif

inline float sinpif(float _X) restrict(amp);

Parameters

Calculates the hyperbolic sine value of the argument

_X
Floating-point value

Returns the hyperbolic sine value of the argument

Calculates the hyperbolic sine value of the argument

_X
Floating-point value

Returns the hyperbolic sine value of the argument

Calculates the sine value of pi * _X

_X
Floating-point value

Returns the sine value of pi * _X

Calculates the sine value of pi * _X

_X
Floating-point value

Return Value

sqrt

inline float sqrt(float _X) restrict(amp);

inline double sqrt(double _X) restrict(amp);

Parameters

Return Value

sqrtf

inline float sqrtf(float _X) restrict(amp);

Parameters

Return Value

tan

inline float tan(float _X) restrict(amp);

inline double tan(double _X) restrict(amp);

Parameters

Return Value

tanf

inline float tanf(float _X) restrict(amp);

Returns the sine value of pi * _X

Calculates the squre root of the argument

_X
Floating-point value

Returns the squre root of the argument

Calculates the squre root of the argument

_X
Floating-point value

Returns the squre root of the argument

Calculates the tangent value of the argument

_X
Floating-point value

Returns the tangent value of the argument

Calculates the tangent value of the argument

Parameters

Return Value

tanh

inline float tanh(float _X) restrict(amp);

inline double tanh(double _X) restrict(amp);

Parameters

Return Value

tanhf

inline float tanhf(float _X) restrict(amp);

Parameters

Return Value

tanpi

inline float tanpi(float _X) restrict(amp);

inline double tanpi(double _X) restrict(amp);

Parameters

Return Value

tanpif

_X
Floating-point value

Returns the tangent value of the argument

Calculates the hyperbolic tangent value of the argument

_X
Floating-point value

Returns the hyperbolic tangent value of the argument

Calculates the hyperbolic tangent value of the argument

_X
Floating-point value

Returns the hyperbolic tangent value of the argument

Calculates the tangent value of pi * _X

_X
Floating-point value

Returns the tangent value of pi * _X

inline float tanpif(float _X) restrict(amp);

Parameters

Return Value

tgamma

inline float tgamma(float _X) restrict(amp);

inline double tgamma(double _X) restrict(amp);

Parameters

Return Value

tgammaf

inline float tgammaf(float _X) restrict(amp);

Parameters

Return Value

trunc

inline float trunc(float _X) restrict(amp);

inline double trunc(double _X) restrict(amp);

Parameters

Return Value

Calculates the tangent value of pi * _X

_X
Floating-point value

Returns the tangent value of pi * _X

Computes the gamma function of _X

_X
Floating-point value

Returns the result of gamma function of _X

Computes the gamma function of _X

_X
Floating-point value

Returns the result of gamma function of _X

Truncates the argument to the integer component

_X
Floating-point value

 truncf

inline float truncf(float _X) restrict(amp);

Parameters

Return Value

See also

Returns the integer component of the argument

Truncates the argument to the integer component

_X
Floating-point value

Returns the integer component of the argument

Concurrency::precise_math Namespace

Concurrency Runtime
3/20/2019 • 6 minutes to read • Edit Online

TIP

Choosing Concurrency Runtime Features

Overview Teaches why the Concurrency Runtime is important and
describes its key features.

Comparing to Other Concurrency Models Shows how the Concurrency Runtime compares to other
concurrency models, such as the Windows thread pool and
OpenMP, so that you can use the concurrency model that
best fits your application requirements.

Migrating from OpenMP to the Concurrency Runtime Compares OpenMP to the Concurrency Runtime and
provides examples about how to migrate existing OpenMP
code to use the Concurrency Runtime.

Parallel Patterns Library (PPL) Introduces you to the PPL, which provides parallel loops,
tasks, and parallel containers.

Asynchronous Agents Library Introduces you to how to use asynchronous agents and
message passing to easily incorporate dataflow and pipelining
tasks in your applications.

Task Scheduler Introduces you to the Task Scheduler, which enables you to
fine-tune the performance of your desktop apps that uses
the Concurrency Runtime.

Task Parallelism in the PPL

The Concurrency Runtime for C++ helps you write robust, scalable, and responsive parallel applications. It raises
the level of abstraction so that you do not have to manage the infrastructure details that are related to
concurrency. You can also use it to specify scheduling policies that meet the quality of service demands of your
applications. Use these resources to help you start working with the Concurrency Runtime.

For reference documentation, see Reference.

The Concurrency Runtime relies heavily on C++11 features and adopts the more modern C++ style. To learn more, read
Welcome Back to C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/concurrency-runtime.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp

Task Parallelism

How to: Use parallel_invoke to Write a Parallel Sort Routine

How to: Use parallel_invoke to Execute Parallel Operations

How to: Create a Task that Completes After a Delay

Describes tasks and task groups, which can help you to write
asynchronous code and decompose parallel work into smaller
pieces.

Walkthrough: Implementing Futures Demonstrates how to combine Concurrency Runtime
features to do something more.

Walkthrough: Removing Work from a User-Interface Thread Shows how to move the work that is performed by the UI
thread in a MFC application to a worker thread.

Best Practices in the Parallel Patterns Library

General Best Practices in the Concurrency Runtime

Provides tips and best practices for working with the PPL.

Data Parallelism in the PPL

Parallel Algorithms

How to: Write a parallel_for Loop

How to: Write a parallel_for_each Loop

How to: Perform Map and Reduce Operations in Parallel

Describes parallel_for , parallel_for_each ,
parallel_invoke , and other parallel algorithms. Use parallel

algorithms to solve data parallel problems that involve
collections of data.

Parallel Containers and Objects

How to: Use Parallel Containers to Increase Efficiency

How to: Use combinable to Improve Performance

How to: Use combinable to Combine Sets

Describes the combinable class, as well as
concurrent_vector , concurrent_queue ,
concurrent_unordered_map , and other parallel containers.

Use parallel containers and objects when you require
containers that provide thread-safe access to their elements.

Best Practices in the Parallel Patterns Library

General Best Practices in the Concurrency Runtime

Provides tips and best practices for working with the PPL.

Canceling Tasks and Parallel Algorithms

Cancellation in the PPL Describes the role of cancellation in the PPL, including how to
initiate and respond to cancellation requests.

How to: Use Cancellation to Break from a Parallel Loop

How to: Use Exception Handling to Break from a Parallel Loop

Demonstrates two ways to cancel data-parallel work.

Universal Windows Platform apps

Creating Asynchronous Operations in C++ for UWP Apps Describes some of the key points to keep in mind when you
use the Concurrency Runtime to produce asynchronous
operations in a UWP app.

Walkthrough: Connecting Using Tasks and XML HTTP
Requests

Shows how to combine PPL tasks with the
IXMLHTTPRequest2 and IXMLHTTPRequest2Callback

interfaces to send HTTP GET and POST requests to a web
service in a UWP app.

Windows Runtime app samples Contains downloadable code samples and demo apps for
Windows 8.x. The C++ samples use Concurrency Runtime
features such as PPL tasks to process data in the background
to keep the UX responsive.

Dataflow Programming in the Asynchronous Agents Library

Asynchronous Agents

Asynchronous Message Blocks

Message Passing Functions

How to: Implement Various Producer-Consumer Patterns

How to: Provide Work Functions to the call and transformer
Classes

How to: Use transformer in a Data Pipeline

How to: Select Among Completed Tasks

How to: Send a Message at a Regular Interval

How to: Use a Message Block Filter

Describes asynchronous agents, message blocks, and
message-passing functions, which are the building blocks for
performing dataflow operations in the Concurrency Runtime.

Walkthrough: Creating an Agent-Based Application

Walkthrough: Creating a Dataflow Agent

Shows how to create basic agent-based applications.

Walkthrough: Creating an Image-Processing Network Shows how to create a network of asynchronous message
blocks that perform image processing.

Walkthrough: Using join to Prevent Deadlock Uses the dining philosophers problem to illustrate how to use
the Concurrency Runtime to prevent deadlock in your
application.

Walkthrough: Creating a Custom Message Block Shows how to create a custom message block type that
orders incoming messages by priority.

Best Practices in the Asynchronous Agents Library

General Best Practices in the Concurrency Runtime

Provides tips and best practices for working with agents.

Exception Handling and Debugging

http://code.msdn.microsoft.com/windowsapps

Exception Handling Describes how to work with exceptions in the Concurrency
Runtime.

Parallel Diagnostic Tools Teaches you how to fine-tune your applications and make the
most effective use of the Concurrency Runtime.

Tuning Performance

Parallel Diagnostic Tools Teaches you how to fine-tune your applications and make the
most effective use of the Concurrency Runtime.

Scheduler Instances

How to: Manage a Scheduler Instance

Scheduler Policies

How to: Specify Specific Scheduler Policies

How to: Create Agents that Use Specific Scheduler Policies

Shows how to work with manage scheduler instances and
scheduler policies. For desktop apps, scheduler policies enable
you to associate specific rules with specific types of
workloads. For example, you can create one scheduler
instance to run some tasks at an elevated thread priority and
use the default scheduler to run other tasks at the normal
thread priority.

Schedule Groups

How to: Use Schedule Groups to Influence Order of Execution

Demonstrates how to use schedule groups to affinitize, or
group, related tasks together. For example, you might require
a high degree of locality among related tasks when those
tasks benefit from executing on the same processor node.

Lightweight Tasks Explains how lightweight tasks are useful for creating work
that does not require load-balancing or cancellation, and how
they are also useful for adapting existing code for use with
the Concurrency Runtime.

Contexts

How to: Use the Context Class to Implement a Cooperative
Semaphore

How to: Use Oversubscription to Offset Latency

Describes how to control the behavior of the threads that are
managed by the Concurrency Runtime.

Memory Management Functions

How to: Use Alloc and Free to Improve Memory Performance

Describes the memory management functions that the
Concurrency Runtime provides to help you allocate and free
memory in a concurrent manner.

Additional Resources

Async programming patterns and tips in Hilo (Windows Store
apps using C++ and XAML)

Learn how we used the Concurrency Runtime to implement
asynchronous operations in Hilo, a Windows Runtime app
using C++ and XAML.

Parallel Programming in Native Code blog Provides additional in-depth blog articles about parallel
programming in the Concurrency Runtime.

https://msdn.microsoft.com/library/windows/apps/jj160321.aspx
http://go.microsoft.com/fwlink/p/?linkid=183873

Parallel Computing in C++ and Native Code forum Enables you to participate in community discussions about
the Concurrency Runtime.

Parallel Programming Teaches you about the parallel programming model that is
available in the .NET Framework.

See also
Reference

http://go.microsoft.com/fwlink/p/?linkid=183874
https://docs.microsoft.com/dotnet/standard/parallel-programming/index

Overview of the Concurrency Runtime
3/4/2019 • 6 minutes to read • Edit Online

Sections

Concurrency Runtime implementation history

Why a Runtime for Concurrency is Important

This document provides an overview of the Concurrency Runtime. It describes the benefits of the Concurrency
Runtime, when to use it, and how its components interact with each other and with the operating system and
applications.

This document contains the following sections:

Concurrency Runtime implementation history

Why a Runtime for Concurrency is Important

Architecture

C++ Lambda Expressions

Requirements

In Visual Studio 2010 through 2013, the Concurrency Runtime was incorporated within msvcr100.dll through
msvcr120.dll. When the UCRT refactoring occurred in Visual Studio 2015, that DLL was refactored into three
parts:

ucrtbase.dll – C API, shipped in Windows 10 and serviced downlevel via Windows Update-

vcruntime140.dll – Compiler support functions and EH runtime, shipped via Visual Studio

concrt140.dll – Concurrency Runtime, shipped via Visual Studio. Required for parallel containers and
algorithms such as concurrency::parallel_for . Also, the STL requires this DLL on Windows XP to power
synchronization primitives, because Windows XP does not have condition variables.

In Visual Studio 2015 and later, the Concurrency Runtime Task Scheduler is no longer the scheduler for the task
class and related types in ppltasks.h. Those types now use the Windows ThreadPool for better performance and
interoperability with Windows synchronization primitives.

A runtime for concurrency provides uniformity and predictability to applications and application components that
run simultaneously. Two examples of the benefits of the Concurrency Runtime are cooperative task scheduling and
cooperative blocking.

The Concurrency Runtime uses a cooperative task scheduler that implements a work-stealing algorithm to
efficiently distribute work among computing resources. For example, consider an application that has two threads
that are both managed by the same runtime. If one thread finishes its scheduled task, it can offload work from the
other thread. This mechanism balances the overall workload of the application.

The Concurrency Runtime also provides synchronization primitives that use cooperative blocking to synchronize
access to resources. For example, consider a task that must have exclusive access to a shared resource. By blocking
cooperatively, the runtime can use the remaining quantum to perform another task as the first task waits for the
resource. This mechanism promotes maximum usage of computing resources.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/overview-of-the-concurrency-runtime.md

 Architecture

IMPORTANT

Parallel Patterns Library

Asynchronous Agents Library

[Top]

The Concurrency Runtime is divided into four components: the Parallel Patterns Library (PPL), the Asynchronous
Agents Library, the Task Scheduler, and the Resource Manager. These components reside between the operating
system and applications. The following illustration shows how the Concurrency Runtime components interact
among the operating system and applications:

Concurrency Runtime Architecture

The Task Scheduler and Resource Manager components are not available from a Universal Windows Platform (UWP) app or
when you use the task class or other types in ppltasks.h.

The Concurrency Runtime is highly composable, that is, you can combine existing functionality to do more. The
Concurrency Runtime composes many features, such as parallel algorithms, from lower-level components.

The Concurrency Runtime also provides synchronization primitives that use cooperative blocking to synchronize
access to resources. For more information about these synchronization primitives, see Synchronization Data
Structures.

The following sections provide a brief overview of what each component provides and when to use it.

The Parallel Patterns Library (PPL) provides general-purpose containers and algorithms for performing fine-
grained parallelism. The PPL enables imperative data parallelism by providing parallel algorithms that distribute
computations on collections or on sets of data across computing resources. It also enables task parallelism by
providing task objects that distribute multiple independent operations across computing resources.

Use the Parallel Patterns Library when you have a local computation that can benefit from parallel execution. For
example, you can use the concurrency::parallel_for algorithm to transform an existing for loop to act in parallel.

For more information about the Parallel Patterns Library, see Parallel Patterns Library (PPL).

The Asynchronous Agents Library (or just Agents Library) provides both an actor-based programming model and
message passing interfaces for coarse-grained dataflow and pipelining tasks. Asynchronous agents enable you to
make productive use of latency by performing work as other components wait for data.

Use the Agents Library when you have multiple entities that communicate with each other asynchronously. For
example, you can create an agent that reads data from a file or network connection and then uses the message
passing interfaces to send that data to another agent.

Task Scheduler

Resource Manager

C++ Lambda Expressions

For more information about the Agents Library, see Asynchronous Agents Library.

The Task Scheduler schedules and coordinates tasks at run time. The Task Scheduler is cooperative and uses a
work-stealing algorithm to achieve maximum usage of processing resources.

The Concurrency Runtime provides a default scheduler so that you do not have to manage infrastructure details.
However, to meet the quality needs of your application, you can also provide your own scheduling policy or
associate specific schedulers with specific tasks.

For more information about the Task Scheduler, see Task Scheduler.

The role of the Resource Manager is to manage computing resources, such as processors and memory. The
Resource Manager responds to workloads as they change at run time by assigning resources to where they can be
most effective.

The Resource Manager serves as an abstraction over computing resources and primarily interacts with the Task
Scheduler. Although you can use the Resource Manager to fine-tune the performance of your libraries and
applications, you typically use the functionality that is provided by the Parallel Patterns Library, the Agents Library,
and the Task Scheduler. These libraries use the Resource Manager to dynamically rebalance resources as
workloads change.

[Top]

Many of the types and algorithms that are defined by the Concurrency Runtime are implemented as C++
templates. Some of these types and algorithms take as a parameter a routine that performs work. This parameter
can be a lambda function, a function object, or a function pointer. These entities are also referred to as work
functions or work routines.

Lambda expressions are an important new Visual C++ language feature because they provide a succinct way to
define work functions for parallel processing. Function objects and function pointers enable you to use the
Concurrency Runtime with your existing code. However, we recommend that you use lambda expressions when
you write new code because of the safety and productivity benefits that they provide.

The following example compares the syntax of lambda functions, function objects, and function pointers in multiple
calls to the concurrency::parallel_for_each algorithm. Each call to parallel_for_each uses a different technique to
compute the square of each element in a std::array object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl

// comparing-work-functions.cpp
// compile with: /EHsc
#include <ppl.h>
#include <array>
#include <iostream>

using namespace concurrency;
using namespace std;

// Function object (functor) class that computes the square of its input.
template<class Ty>
class SquareFunctor
{
public:
 void operator()(Ty& n) const
 {
 n *= n;
 }
};

// Function that computes the square of its input.
template<class Ty>
void square_function(Ty& n)
{
 n *= n;
}

int wmain()
{
 // Create an array object that contains 5 values.
 array<int, 5> values = { 1, 2, 3, 4, 5 };

 // Use a lambda function, a function object, and a function pointer to
 // compute the square of each element of the array in parallel.

 // Use a lambda function to square each element.
 parallel_for_each(begin(values), end(values), [](int& n){n *= n;});

 // Use a function object (functor) to square each element.
 parallel_for_each(begin(values), end(values), SquareFunctor<int>());

 // Use a function pointer to square each element.
 parallel_for_each(begin(values), end(values), &square_function<int>);

 // Print each element of the array to the console.
 for_each(begin(values), end(values), [](int& n) {
 wcout << n << endl;
 });
}

1
256
6561
65536
390625

Requirements

Output

For more information about lambda functions in C++, see Lambda Expressions.

[Top]

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp

COMPONENT HEADER FILES

Parallel Patterns Library (PPL) ppl.h

concurrent_queue.h

concurrent_vector.h

Asynchronous Agents Library agents.h

Task Scheduler concrt.h

Resource Manager concrtrm.h

The following table shows the header files that are associated with each component of the Concurrency Runtime:

The Concurrency Runtime is declared in the Concurrency namespace. (You can also use concurrency, which is an
alias for this namespace.) The concurrency::details namespace supports the Concurrency Runtime framework,
and is not intended to be used directly from your code.

The Concurrency Runtime is provided as part of the C Runtime Library (CRT). For more information about how to
build an application that uses the CRT, see CRT Library Features.

[Top]

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features

Exception Handling in the Concurrency Runtime
3/4/2019 • 16 minutes to read • Edit Online

Key Points

In this Document

Tasks and Continuations

The Concurrency Runtime uses C++ exception handling to communicate many kinds of errors. These errors
include invalid use of the runtime, runtime errors such as failure to acquire a resource, and errors that occur in
work functions that you provide to tasks and task groups. When a task or task group throws an exception, the
runtime holds that exception and marshals it to the context that waits for the task or task group to finish. For
components such as lightweight tasks and agents, the runtime does not manage exceptions for you. In these
cases, you must implement your own exception-handling mechanism. This topic describes how the runtime
handles exceptions that are thrown by tasks, task groups, lightweight tasks, and asynchronous agents, and how
to respond to exceptions in your applications.

When a task or task group throws an exception, the runtime holds that exception and marshals it to the
context that waits for the task or task group to finish.

When possible, surround every call to concurrency::task::get and concurrency::task::wait with a try /
catch block to handle errors that you can recover from. The runtime terminates the app if a task throws

an exception and that exception is not caught by the task, one of its continuations, or the main app.

A task-based continuation always runs; it does not matter whether the antecedent task completed
successfully, threw an exception, or was canceled. A value-based continuation does not run if the
antecedent task throws or cancels.

Because task-based continuations always run, consider whether to add a task-based continuation at the
end of your continuation chain. This can help guarantee that your code observes all exceptions.

The runtime throws concurrency::task_canceled when you call concurrency::task::get and that task is
canceled.

The runtime does not manage exceptions for lightweight tasks and agents.

Tasks and Continuations

Task Groups and Parallel Algorithms

Exceptions Thrown by the Runtime

Multiple Exceptions

Cancellation

Lightweight Tasks

Asynchronous Agents

This section describes how the runtime handles exceptions that are thrown by concurrency::task objects and
their continuations. For more information about the task and continuation model, see Task Parallelism.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/exception-handling-in-the-concurrency-runtime.md

// eh-task.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 wcout << L"Running a task..." << endl;
 // Create a task that throws.
 auto t = create_task([]
 {
 throw exception();
 });

 // Create a continuation that prints its input value.
 auto continuation = t.then([]
 {
 // We do not expect this task to run because
 // the antecedent task threw.
 wcout << L"In continuation task..." << endl;
 });

 // Wait for the continuation to finish and handle any
 // error that occurs.
 try
 {
 wcout << L"Waiting for tasks to finish..." << endl;
 continuation.wait();

 // Alternatively, call get() to produce the same result.
 //continuation.get();
 }
 catch (const exception& e)
 {
 wcout << L"Caught exception." << endl;
 }
}
/* Output:
 Running a task...
 Waiting for tasks to finish...
 Caught exception.
*/

When you throw an exception in the body of a work function that you pass to a task object, the runtime stores
that exception and marshals it to the context that calls concurrency::task::get or concurrency::task::wait. The
document Task Parallelism describes task-based versus value-based continuations, but to summarize, a value-
based continuation takes a parameter of type T and a task-based continuation takes a parameter of type
task<T> . If a task that throws has one or more value-based continuations, those continuations are not

scheduled to run. The following example illustrates this behavior:

A task-based continuation enables you to handle any exception that is thrown by the antecedent task. A task-
based continuation always runs; it does not matter whether the task completed successfully, threw an exception,
or was canceled. When a task throws an exception, its task-based continuations are scheduled to run. The
following example shows a task that always throws. The task has two continuations; one is value-based and the
other is task-based. The task-based exception always runs, and therefore can catch the exception that is thrown
by the antecedent task. When the example waits for both continuations to finish, the exception is thrown again
because the task exception is always thrown when task::get or task::wait is called.

// eh-continuations.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 wcout << L"Running a task..." << endl;
 // Create a task that throws.
 auto t = create_task([]() -> int
 {
 throw exception();
 return 42;
 });

 //
 // Attach two continuations to the task. The first continuation is
 // value-based; the second is task-based.

 // Value-based continuation.
 auto c1 = t.then([](int n)
 {
 // We don't expect to get here because the antecedent
 // task always throws.
 wcout << L"Received " << n << L'.' << endl;
 });

 // Task-based continuation.
 auto c2 = t.then([](task<int> previousTask)
 {
 // We do expect to get here because task-based continuations
 // are scheduled even when the antecedent task throws.
 try
 {
 wcout << L"Received " << previousTask.get() << L'.' << endl;
 }
 catch (const exception& e)
 {
 wcout << L"Caught exception from previous task." << endl;
 }
 });

 // Wait for the continuations to finish.
 try
 {
 wcout << L"Waiting for tasks to finish..." << endl;
 (c1 && c2).wait();
 }
 catch (const exception& e)
 {
 wcout << L"Caught exception while waiting for all tasks to finish." << endl;
 }
}
/* Output:
 Running a task...
 Waiting for tasks to finish...
 Caught exception from previous task.
 Caught exception while waiting for all tasks to finish.
*/

We recommend that you use task-based continuations to catch exceptions that you are able to handle. Because
task-based continuations always run, consider whether to add a task-based continuation at the end of your
continuation chain. This can help guarantee that your code observes all exceptions. The following example

shows a basic value-based continuation chain. The third task in the chain throws, and therefore any value-based
continuations that follow it are not run. However, the final continuation is task-based, and therefore always runs.
This final continuation handles the exception that is thrown by the third task.

We recommend that you catch the most specific exceptions that you can. You can omit this final task-based
continuation if you don’t have specific exceptions to catch. Any exception will remain unhandled and can
terminate the app.

// eh-task-chain.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 int n = 1;
 create_task([n]
 {
 wcout << L"In first task. n = ";
 wcout << n << endl;

 return n * 2;

 }).then([](int n)
 {
 wcout << L"In second task. n = ";
 wcout << n << endl;

 return n * 2;

 }).then([](int n)
 {
 wcout << L"In third task. n = ";
 wcout << n << endl;

 // This task throws.
 throw exception();
 // Not reached.
 return n * 2;

 }).then([](int n)
 {
 // This continuation is not run because the previous task throws.
 wcout << L"In fourth task. n = ";
 wcout << n << endl;

 return n * 2;

 }).then([](task<int> previousTask)
 {
 // This continuation is run because it is value-based.
 try
 {
 // The call to task::get rethrows the exception.
 wcout << L"In final task. result = ";
 wcout << previousTask.get() << endl;
 }
 catch (const exception&)
 {
 wcout << L"<exception>" << endl;
 }
 }).wait();
}
/* Output:
 In first task. n = 1
 In second task. n = 2
 In third task. n = 4
 In final task. result = <exception>
*/

TIP

C a u t i o n

Task Groups and Parallel Algorithms

C a u t i o n

You can use the concurrency::task_completion_event::set_exception method to associate an exception with a task
completion event. The document Task Parallelism describes the concurrency::task_completion_event class in greater detail.

concurrency::task_canceled is an important runtime exception type that relates to task . The runtime throws
task_canceled when you call task::get and that task is canceled. (Conversely, task::wait returns

task_status::canceled and does not throw.) You can catch and handle this exception from a task-based
continuation or when you call task::get . For more information about task cancellation, see Cancellation in the
PPL.

Never throw task_canceled from your code. Call concurrency::cancel_current_task instead.

The runtime terminates the app if a task throws an exception and that exception is not caught by the task, one of
its continuations, or the main app. If your application crashes, you can configure Visual Studio to break when
C++ exceptions are thrown. After you diagnose the location of the unhandled exception, use a task-based
continuation to handle it.

The section Exceptions Thrown by the Runtime in this document describes how to work with runtime exceptions
in greater detail.

[Top]

This section describes how the runtime handles exceptions that are thrown by task groups. This section also
applies to parallel algorithms such as concurrency::parallel_for, because these algorithms build on task groups.

Make sure that you understand the effects that exceptions have on dependent tasks. For recommended practices
about how to use exception handling with tasks or parallel algorithms, see the Understand how Cancellation and
Exception Handling Affect Object Destruction section in the Best Practices in the Parallel Patterns Library topic.

For more information about task groups, see Task Parallelism. For more information about parallel algorithms,
see Parallel Algorithms.

When you throw an exception in the body of a work function that you pass to a concurrency::task_group or
concurrency::structured_task_group object, the runtime stores that exception and marshals it to the context that
calls concurrency::task_group::wait, concurrency::structured_task_group::wait,
concurrency::task_group::run_and_wait, or concurrency::structured_task_group::run_and_wait. The runtime also
stops all active tasks that are in the task group (including those in child task groups) and discards any tasks that
have not yet started.

The following example shows the basic structure of a work function that throws an exception. The example uses
a task_group object to print the values of two point objects in parallel. The print_point work function prints
the values of a point object to the console. The work function throws an exception if the input value is NULL .
The runtime stores this exception and marshals it to the context that calls task_group::wait .

// eh-task-group.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Defines a basic point with X and Y coordinates.
struct point
{
 int X;
 int Y;
};

// Prints the provided point object to the console.
void print_point(point* pt)
{
 // Throw an exception if the value is NULL.
 if (pt == NULL)
 {
 throw exception("point is NULL.");
 }

 // Otherwise, print the values of the point.
 wstringstream ss;
 ss << L"X = " << pt->X << L", Y = " << pt->Y << endl;
 wcout << ss.str();
}

int wmain()
{
 // Create a few point objects.
 point pt = {15, 30};
 point* pt1 = &pt;
 point* pt2 = NULL;

 // Use a task group to print the values of the points.
 task_group tasks;

 tasks.run([&] {
 print_point(pt1);
 });

 tasks.run([&] {
 print_point(pt2);
 });

 // Wait for the tasks to finish. If any task throws an exception,
 // the runtime marshals it to the call to wait.
 try
 {
 tasks.wait();
 }
 catch (const exception& e)
 {
 wcerr << L"Caught exception: " << e.what() << endl;
 }
}

X = 15, Y = 30Caught exception: point is NULL.

This example produces the following output.

 Exceptions Thrown by the Runtime

For a complete example that uses exception handling in a task group, see How to: Use Exception Handling to
Break from a Parallel Loop.

[Top]

An exception can result from a call to the runtime. Most exception types, except for concurrency::task_canceled
and concurrency::operation_timed_out, indicate a programming error. These errors are typically unrecoverable,
and therefore should not be caught or handled by application code. We suggest that you only catch or handle
unrecoverable errors in your application code when you need to diagnose programming errors. However,
understanding the exception types that are defined by the runtime can help you diagnose programming errors.

The exception handling mechanism is the same for exceptions that are thrown by the runtime as exceptions that
are thrown by work functions. For example, the concurrency::receive function throws operation_timed_out when
it does not receive a message in the specified time period. If receive throws an exception in a work function
that you pass to a task group, the runtime stores that exception and marshals it to the context that calls
task_group::wait , structured_task_group::wait , task_group::run_and_wait , or
structured_task_group::run_and_wait .

The following example uses the concurrency::parallel_invoke algorithm to run two tasks in parallel. The first task
waits five seconds and then sends a message to a message buffer. The second task uses the receive function to
wait three seconds to receive a message from the same message buffer. The receive function throws
operation_timed_out if it does not receive the message in the time period.

// eh-time-out.cpp
// compile with: /EHsc
#include <agents.h>
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 single_assignment<int> buffer;
 int result;

 try
 {
 // Run two tasks in parallel.
 parallel_invoke(
 // This task waits 5 seconds and then sends a message to
 // the message buffer.
 [&] {
 wait(5000);
 send(buffer, 42);
 },
 // This task waits 3 seconds to receive a message.
 // The receive function throws operation_timed_out if it does
 // not receive a message in the specified time period.
 [&] {
 result = receive(buffer, 3000);
 }
);

 // Print the result.
 wcout << L"The result is " << result << endl;
 }
 catch (operation_timed_out&)
 {
 wcout << L"The operation timed out." << endl;
 }
}

The operation timed out.

Multiple Exceptions

This example produces the following output.

To prevent abnormal termination of your application, make sure that your code handles exceptions when it calls
into the runtime. Also handle exceptions when you call into external code that uses the Concurrency Runtime,
for example, a third-party library.

[Top]

If a task or parallel algorithm receives multiple exceptions, the runtime marshals only one of those exceptions to
the calling context. The runtime does not guarantee which exception it marshals.

The following example uses the parallel_for algorithm to print numbers to the console. It throws an exception
if the input value is less than some minimum value or greater than some maximum value. In this example,
multiple work functions can throw an exception.

// eh-multiple.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

int wmain()
{
 const int min = 0;
 const int max = 10;

 // Print values in a parallel_for loop. Use a try-catch block to
 // handle any exceptions that occur in the loop.
 try
 {
 parallel_for(-5, 20, [min,max](int i)
 {
 // Throw an exeception if the input value is less than the
 // minimum or greater than the maximum.

 // Otherwise, print the value to the console.

 if (i < min)
 {
 stringstream ss;
 ss << i << ": the value is less than the minimum.";
 throw exception(ss.str().c_str());
 }
 else if (i > max)
 {
 stringstream ss;
 ss << i << ": the value is greater than than the maximum.";
 throw exception(ss.str().c_str());
 }
 else
 {
 wstringstream ss;
 ss << i << endl;
 wcout << ss.str();
 }
 });
 }
 catch (exception& e)
 {
 // Print the error to the console.
 wcerr << L"Caught exception: " << e.what() << endl;
 }
}

8293104567Caught exception: -5: the value is less than the minimum.

Cancellation

The following shows sample output for this example.

[Top]

Not all exceptions indicate an error. For example, a search algorithm might use exception handling to stop its
associated task when it finds the result. For more information about how to use cancellation mechanisms in
your code, see Cancellation in the PPL.

Lightweight Tasks

Asynchronous Agents

// eh-agents.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Defines a point with x and y coordinates.
struct point
{
 int X;
 int Y;
};

// Informs the agent to end processing.
point sentinel = {0,0};

// An agent that prints point objects to the console.
class point_agent : public agent
{
public:
 explicit point_agent(unbounded_buffer<point*>& points)
 : _points(points)
 {
 }

 // Retrieves any exception that occurred in the agent.
 bool get_error(exception& e)
 {
 return try_receive(_error, e);
 }

protected:
 // Performs the work of the agent.
 void run()
 {
 // Perform processing in a try block.
 try

[Top]

A lightweight task is a task that you schedule directly from a concurrency::Scheduler object. Lightweight tasks
carry less overhead than ordinary tasks. However, the runtime does not catch exceptions that are thrown by
lightweight tasks. Instead, the exception is caught by the unhandled exception handler, which by default
terminates the process. Therefore, use an appropriate error-handling mechanism in your application. For more
information about lightweight tasks, see Task Scheduler.

[Top]

Like lightweight tasks, the runtime does not manage exceptions that are thrown by asynchronous agents.

The following example shows one way to handle exceptions in a class that derives from concurrency::agent. This
example defines the points_agent class. The points_agent::run method reads point objects from the message
buffer and prints them to the console. The run method throws an exception if it receives a NULL pointer.

The run method surrounds all work in a try - catch block. The catch block stores the exception in a message
buffer. The application checks whether the agent encountered an error by reading from this buffer after the
agent finishes.

 {
 // Read from the buffer until we reach the sentinel value.
 while (true)
 {
 // Read a value from the message buffer.
 point* r = receive(_points);

 // In this example, it is an error to receive a
 // NULL point pointer. In this case, throw an exception.
 if (r == NULL)
 {
 throw exception("point must not be NULL");
 }
 // Break from the loop if we receive the
 // sentinel value.
 else if (r == &sentinel)
 {
 break;
 }
 // Otherwise, do something with the point.
 else
 {
 // Print the point to the console.
 wcout << L"X: " << r->X << L" Y: " << r->Y << endl;
 }
 }
 }
 // Store the error in the message buffer.
 catch (exception& e)
 {
 send(_error, e);
 }

 // Set the agent status to done.
 done();
 }

private:
 // A message buffer that receives point objects.
 unbounded_buffer<point*>& _points;

 // A message buffer that stores error information.
 single_assignment<exception> _error;
};

int wmain()
{
 // Create a message buffer so that we can communicate with
 // the agent.
 unbounded_buffer<point*> buffer;

 // Create and start a point_agent object.
 point_agent a(buffer);
 a.start();

 // Send several points to the agent.
 point r1 = {10, 20};
 point r2 = {20, 30};
 point r3 = {30, 40};

 send(buffer, &r1);
 send(buffer, &r2);
 // To illustrate exception handling, send the NULL pointer to the agent.
 send(buffer, reinterpret_cast<point*>(NULL));
 send(buffer, &r3);
 send(buffer, &sentinel);

 // Wait for the agent to finish.
 agent::wait(&a);

 agent::wait(&a);

 // Check whether the agent encountered an error.
 exception e;
 if (a.get_error(e))
 {
 cout << "error occurred in agent: " << e.what() << endl;
 }

 // Print out agent status.
 wcout << L"the status of the agent is: ";
 switch (a.status())
 {
 case agent_created:
 wcout << L"created";
 break;
 case agent_runnable:
 wcout << L"runnable";
 break;
 case agent_started:
 wcout << L"started";
 break;
 case agent_done:
 wcout << L"done";
 break;
 case agent_canceled:
 wcout << L"canceled";
 break;
 default:
 wcout << L"unknown";
 break;
 }
 wcout << endl;
}

X: 10 Y: 20
X: 20 Y: 30
error occurred in agent: point must not be NULL
the status of the agent is: done

Summary

See also

This example produces the following output.

Because the try - catch block exists outside the while loop, the agent ends processing when it encounters the
first error. If the try - catch block was inside the while loop, the agent would continue after an error occurs.

This example stores exceptions in a message buffer so that another component can monitor the agent for errors
as it runs. This example uses a concurrency::single_assignment object to store the error. In the case where an
agent handles multiple exceptions, the single_assignment class stores only the first message that is passed to it.
To store only the last exception, use the concurrency::overwrite_buffer class. To store all exceptions, use the
concurrency::unbounded_buffer class. For more information about these message blocks, see Asynchronous
Message Blocks.

For more information about asynchronous agents, see Asynchronous Agents.

[Top]

[Top]

Concurrency Runtime
Task Parallelism
Parallel Algorithms
Cancellation in the PPL
Task Scheduler
Asynchronous Agents

Parallel Diagnostic Tools (Concurrency Runtime)
3/4/2019 • 2 minutes to read • Edit Online

Debugging

Profiling

Event Tracing

EVENT DESCRIPTION VALUE

concurrency::ConcRT_ProviderGuid The ETW provider identifier for the
Concurrency Runtime.

f7b697a3-4db5-4d3b-be71-
c4d284e6592f

concurrency::ContextEventGuid Marks events that are related to
contexts.

5727a00f-50be-4519-8256-
f7699871fecb

concurrency::PPLParallelForEventGuid Marks the entrance and exit to calls to
the concurrency::parallel_for algorithm.

31c8da6b-6165-4042-8b92-
949e315f4d84

concurrency::PPLParallelForeachEventG
uid

Marks the entrance and exit to calls to
the concurrency::parallel_for_each
algorithm.

5cb7d785-9d66-465d-bae1-
4611061b5434

concurrency::PPLParallelInvokeEventGui
d

Marks the entrance and exit to calls to
the concurrency::parallel_invoke
algorithm.

d1b5b133-ec3d-49f4-98a3-
464d1a9e4682

Visual Studio provides extensive support for debugging and profiling multi-threaded applications.

The Visual Studio debugger includes the Parallel Stacks window, Parallel Tasks window, and Parallel Watch
window. For more information, see Walkthrough: Debugging a Parallel Application and How to: Use the Parallel
Watch Window.

The profiling tools provide three data views that display graphical, tabular and numerical information about how a
multi-threaded application interacts with itself and with other programs. The views enable you to quickly identify
areas of concern, and to navigate from points on the graphical displays to call stacks, call sites, and source code.
For more information, see Concurrency Visualizer.

The Concurrency Runtime uses Event Tracing for Windows (ETW) to notify instrumentation tools, such as
profilers, when various events occur. These events include when a scheduler is activated or deactivated, when a
context begins, ends, blocks, unblocks, or yields, and when a parallel algorithm begins or ends.

Tools such as the Concurrency Visualizer utilize this functionality; therefore, you typically do not have to work with
these events directly. However, these events are useful when you are developing a custom profiler or when you
use event tracing tools such as Xperf.

The Concurrency Runtime raises these events only when tracing is enabled. Call the concurrency::EnableTracing
function to enable event tracing and the concurrency::DisableTracing function to disable tracing.

The following table describes the events that the runtime raises when event tracing is enabled:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/parallel-diagnostic-tools-concurrency-runtime.md
https://docs.microsoft.com/visualstudio/debugger/walkthrough-debugging-a-parallel-application
https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-parallel-watch-window
https://docs.microsoft.com/visualstudio/profiling/concurrency-visualizer
https://docs.microsoft.com/windows/desktop/ETW/event-tracing-portal
https://docs.microsoft.com/visualstudio/profiling/concurrency-visualizer
http://go.microsoft.com/fwlink/p/?linkid=160628

concurrency::SchedulerEventGuid Marks events that are related to the
Task Scheduler.

e2091f8a-1e0a-4731-84a2-
0dd57c8a5261

concurrency::VirtualProcessorEventGuid Marks events that are related to virtual
processors.

2f27805f-1676-4ecc-96fa-
7eb09d44302f

EVENT DESCRIPTION VALUE

// etw.cpp
// compile with: /EHsc
#include <ppl.h>

using namespace concurrency;

int wmain()
{
 // Perform some parallel work.
 // Event tracing is disabled at this point.
 parallel_for(0, 10000, [](int i) {
 // TODO: Perform work.
 });

 // Enable tracing for a second call to parallel_for.
 EnableTracing();
 parallel_for(0, 10000, [](int i) {
 // TODO: Perform work.
 });
 DisableTracing();
}

See also

The Concurrency Runtime defines, but does not currently raise, the following events. The runtime reserves these
events for future use:

concurrency::ConcRTEventGuid

concurrency::ScheduleGroupEventGuid

concurrency::ChoreEventGuid

concurrency::LockEventGuid

concurrency::ResourceManagerEventGuid

The concurrency::ConcRT_EventType enumeration specifies the possible operations that an event tracks. For
example, at the entrance of the parallel_for algorithm, the runtime raises the PPLParallelForEventGuid event and
provides CONCRT_EVENT_START as the operation. Before the parallel_for algorithm returns, the runtime again
raises the PPLParallelForEventGuid event and provides CONCRT_EVENT_END as the operation.

The following example illustrates how to enable tracing for a call to parallel_for . The runtime does not trace the
first call to parallel_for because tracing it not enabled. The call to EnableTracing enables the runtime to trace the
second call to parallel_for .

The runtime tracks the number of times that you call EnableTracing and DisableTracing . Therefore, if you call
EnableTracing multiple times, you must call DisableTracing the same number of times in order to disable tracing.

Concurrency Runtime

Creating Asynchronous Operations in C++ for UWP
Apps
3/5/2019 • 23 minutes to read • Edit Online

NOTE

Key points

In this document

This document describes some of the key points to keep in mind when you use the task class to produce Windows
ThreadPool-based asynchronous operations in a Universal Windows Runtime (UWP) app.

The use of asynchronous programming is a key component in the Windows Runtime app model because it
enables apps to remain responsive to user input. You can start a long-running task without blocking the UI thread,
and you can receive the results of the task later. You can also cancel tasks and receive progress notifications as
tasks run in the background. The document Asynchronous programming in C++ provides an overview of the
asynchronous pattern that's available in Visual C++ to create UWP apps. That document teaches how to both
consume and create chains of asynchronous Windows Runtime operations. This section describes how to use the
types in ppltasks.h to produce asynchronous operations that can be consumed by another Windows Runtime
component and how to control how asynchronous work is executed. Also consider reading Async programming
patterns and tips in Hilo (Windows Store apps using C++ and XAML) to learn how we used the task class to
implement asynchronous operations in Hilo, a Windows Runtime app using C++ and XAML.

You can use the Parallel Patterns Library (PPL) and Asynchronous Agents Library in a UWP app. However, you cannot use
the Task Scheduler or the Resource Manager. This document describes additional features that the PPL provides that are
available only to a UWP app, and not to a desktop app.

Use concurrency::create_async to create asynchronous operations that can be used by other components
(which might be written in languages other than C++).

Use concurrency::progress_reporter to report progress notifications to components that call your
asynchronous operations.

Use cancellation tokens to enable internal asynchronous operations to cancel.

The behavior of the create_async function depends on the return type of the work function that is passed
to it. A work function that returns a task (either task<T> or task<void>) runs synchronously in the context
that called create_async . A work function that returns T or void runs in an arbitrary context.

You can use the concurrency::task::then method to create a chain of tasks that run one after another. In a
UWP app, the default context for a task’s continuations depends on how that task was constructed. If the
task was created by passing an asynchronous action to the task constructor, or by passing a lambda
expression that returns an asynchronous action, then the default context for all continuations of that task is
the current context. If the task is not constructed from an asynchronous action, then an arbitrary context is
used by default for the task’s continuations. You can override the default context with the
concurrency::task_continuation_context class.

Creating Asynchronous Operations

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/creating-asynchronous-operations-in-cpp-for-windows-store-apps.md
https://docs.microsoft.com/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/library/windows/apps/jj160321.aspx

 Creating Asynchronous Operations

NOTE

Example: Creating a C++ Windows Runtime Component

Controlling the Execution Thread

Example: Controlling Execution in a Windows Runtime App with C++ and XAML

You can use the task and continuation model in the Parallel Patterns Library (PPL) to define background tasks as
well as additional tasks that run when the previous task completes. This functionality is provided by the
concurrency::task class. For more information about this model and the task class, see Task Parallelism.

The Windows Runtime is a programming interface that you can use to create UWP apps that run only in a special
operating system environment. Such apps use authorized functions, data types, and devices, and are distributed
from the Microsoft Store. The Windows Runtime is represented by the Application Binary Interface (ABI). The ABI
is an underlying binary contract that makes Windows Runtime APIs available to programming languages such as
Visual C++.

By using the Windows Runtime, you can use the best features of various programming languages and combine
them into one app. For example, you might create your UI in JavaScript and perform the computationally-
intensive app logic in a C++ component. The ability to perform these computationally-intensive operations in the
background is a key factor in keeping your UI responsive. Because the task class is specific to C++, you must use
a Windows Runtime interface to communicate asynchronous operations to other components (which might be
written in languages other than C++). The Windows Runtime provides four interfaces that you can use to
represent asynchronous operations:

Windows::Foundation::IAsyncAction
Represents an asynchronous action.

Windows::Foundation::IAsyncActionWithProgress<TProgress>
Represents an asynchronous action that reports progress.

Windows::Foundation::IAsyncOperation<TResult>
Represents an asynchronous operation that returns a result.

Windows::Foundation::IAsyncOperationWithProgress<TResult, TProgress>
Represents an asynchronous operation that returns a result and reports progress.

The notion of an action means that the asynchronous task doesn't produce a value (think of a function that returns
void). The notion of an operation means that the asynchronous task does produce a value. The notion of

progress means that the task can report progress messages to the caller. JavaScript, the .NET Framework, and
Visual C++ each provides its own way to create instances of these interfaces for use across the ABI boundary. For
Visual C++, the PPL provides the concurrency::create_async function. This function creates a Windows Runtime
asynchronous action or operation that represents the completion of a task. The create_async function takes a
work function (typically a lambda expression), internally creates a task object, and wraps that task in one of the
four asynchronous Windows Runtime interfaces.

Use create_async only when you have to create functionality that can be accessed from another language or another
Windows Runtime component. Use the task class directly when you know that the operation is both produced and
consumed by C++ code in the same component.

The return type of create_async is determined by the type of its arguments. For example, if your work function
doesn't return a value and doesn't report progress, create_async returns IAsyncAction . If your work function
doesn't return a value and also reports progress, create_async returns IAsyncActionWithProgress . To report

https://docs.microsoft.com/uwp/api/windows.foundation.iasyncaction
https://msdn.microsoft.com/library/windows/apps/br206581.aspx
https://msdn.microsoft.com/library/windows/apps/br206598.aspx
https://msdn.microsoft.com/library/windows/apps/br206594.aspx

WARNING

TO CREATE THIS WINDOWS
RUNTIME INTERFACE

RETURN THIS TYPE FROM
CREATE_ASYNC

PASS THESE PARAMETER
TYPES TO YOUR WORK
FUNCTION TO USE AN
IMPLICIT CANCELLATION
TOKEN

PASS THESE PARAMETER
TYPES TO YOUR WORK
FUNCTION TO USE AN
EXPLICIT CANCELLATION
TOKEN

IAsyncAction void or task<void> (none) (cancellation_token)

IAsyncActionWithProgress<TProgress>void or task<void> (progress_reporter) (progress_reporter ,
cancellation_token)

IAsyncOperation<TResult> T or task<T> (none) (cancellation_token)

IAsyncActionOperationWithProgress<TProgress,
TProgress>

T or task<T> (progress_reporter) (progress_reporter ,
cancellation_token)

progress, provide a concurrency::progress_reporter object as the parameter to your work function. The ability to
report progress enables you to report what amount of work was performed and what amount still remains (for
example, as a percentage). It also enables you to report results as they become available.

The IAsyncAction , IAsyncActionWithProgress<TProgress> , IAsyncOperation<TResult> , and
IAsyncActionOperationWithProgress<TProgress, TProgress> interfaces each provide a Cancel method that enables

you to cancel the asynchronous operation. The task class works with cancellation tokens. When you use a
cancellation token to cancel work, the runtime does not start new work that subscribes to that token. Work that is
already active can monitor its cancellation token and stop when it can. This mechanism is described in greater
detail in the document Cancellation in the PPL. You can connect task cancellation with the Windows Runtime
Cancel methods in two ways. First, you can define the work function that you pass to create_async to take a

concurrency::cancellation_token object. When the Cancel method is called, this cancellation token is cancelled and
the normal cancellation rules apply to the underlying task object that supports the create_async call. If you do
not provide a cancellation_token object, the underlying task object defines one implicitly. Define a
cancellation_token object when you need to cooperatively respond to cancellation in your work function. The

section Example: Controlling Execution in a Windows Runtime App with C++ and XAML shows an example of
how to perform cancellation in a Universal Windows Platform (UWP) app with C# and XAML that uses a custom
Windows Runtime C++ component.

In a chain of task continuations, always clean up state and then call concurrency::cancel_current_task when the cancellation
token is cancelled. If you return early instead of calling cancel_current_task , the operation transitions to the completed
state instead of the canceled state.

The following table summarizes the combinations that you can use to define asynchronous operations in your
app.

You can return a value or a task object from the work function that you pass to the create_async function. These
variations produce different behaviors. When you return a value, the work function is wrapped in a task so that it
can be run on a background thread. In addition, the underlying task uses an implicit cancellation token.
Conversely, if you return a task object, the work function runs synchronously. Therefore, if you return a task
object, ensure that any lengthy operations in your work function also run as tasks to enable your app to remain
responsive. In addition, the underlying task does not use an implicit cancellation token. Therefore, you need to
define your work function to take a cancellation_token object if you require support for cancellation when you
return a task object from create_async .

The following example shows the various ways to create an IAsyncAction object that can be consumed by another

// Creates an IAsyncAction object and uses an implicit cancellation token.
auto op1 = create_async([]
{
 // Define work here.
});

// Creates an IAsyncAction object and uses no cancellation token.
auto op2 = create_async([]
{
 return create_task([]
 {
 // Define work here.
 });
});

// Creates an IAsyncAction object and uses an explicit cancellation token.
auto op3 = create_async([](cancellation_token ct)
{
 // Define work here.
});

// Creates an IAsyncAction object that runs another task and also uses an explicit cancellation token.
auto op4 = create_async([](cancellation_token ct)
{
 return create_task([ct]()
 {
 // Define work here.
 });
});

Example: Creating a C++ Windows Runtime Component and
Consuming it from C#

Windows Runtime component.

Consider an app that uses XAML and C# to define the UI and a C++ Windows Runtime component to perform
compute-intensive operations. In this example, the C++ component computes which numbers in a given range
are prime. To illustrate the differences among the four Windows Runtime asynchronous task interfaces, start, in
Visual Studio, by creating a Blank Solution and naming it Primes . Then add to the solution a Windows
Runtime Component project and naming it PrimesLibrary . Add the following code to the generated C++
header file (this example renames Class1.h to Primes.h). Each public method defines one of the four
asynchronous interfaces. The methods that return a value return a Windows::Foundation::Collections::IVector<int>
object. The methods that report progress produce double values that define the percentage of overall work that
has completed.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_

#pragma once

namespace PrimesLibrary
{
 public ref class Primes sealed
 {
 public:
 Primes();

 // Computes the numbers that are prime in the provided range and stores them in an internal variable.
 Windows::Foundation::IAsyncAction^ ComputePrimesAsync(int first, int last);

 // Computes the numbers that are prime in the provided range and stores them in an internal variable.
 // This version also reports progress messages.
 Windows::Foundation::IAsyncActionWithProgress<double>^ ComputePrimesWithProgressAsync(int first, int
last);

 // Gets the numbers that are prime in the provided range.
 Windows::Foundation::IAsyncOperation<Windows::Foundation::Collections::IVector<int>^>^
GetPrimesAsync(int first, int last);

 // Gets the numbers that are prime in the provided range. This version also reports progress messages.
 Windows::Foundation::IAsyncOperationWithProgress<Windows::Foundation::Collections::IVector<int>^,
double>^ GetPrimesWithProgressAsync(int first, int last);
 };
}

NOTE

// PrimesLibrary.cpp
#include "pch.h"
#include "Primes.h"
#include <atomic>
#include <collection.h>
#include <ppltasks.h>
#include <concurrent_vector.h>

using namespace concurrency;
using namespace std;

using namespace Platform;
using namespace Platform::Collections;
using namespace Windows::Foundation;
using namespace Windows::Foundation::Collections;

using namespace PrimesLibrary;

Primes::Primes()
{
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)

By convention, asynchronous method names in the Windows Runtime typically end with "Async".

Add the following code to the generated C++ source file (this example renames Class1.cpp to Primes.cpp). The
is_prime function determines whether its input is prime. The remaining methods implement the Primes class.

Each call to create_async uses a signature that's compatible with the method from which it is called. For example,
because Primes::ComputePrimesAsync returns IAsyncAction , the work function that's provided to create_async

doesn't return a value and doesn't take a progress_reporter object as its parameter.

 if (n < 2)
 {
 return false;
 }
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 {
 return false;
 }
 }
 return true;
}

// Adds the numbers that are prime in the provided range
// to the primes global variable.
IAsyncAction^ Primes::ComputePrimesAsync(int first, int last)
{
 return create_async([this, first, last]
 {
 // Ensure that the input values are in range.
 if (first < 0 || last < 0)
 {
 throw ref new InvalidArgumentException();
 }
 // Perform the computation in parallel.
 parallel_for(first, last + 1, [this](int n)
 {
 if (is_prime(n))
 {
 // Perhaps store the value somewhere...
 }
 });
 });
}

IAsyncActionWithProgress<double>^ Primes::ComputePrimesWithProgressAsync(int first, int last)
{
 return create_async([first, last](progress_reporter<double> reporter)
 {
 // Ensure that the input values are in range.
 if (first < 0 || last < 0)
 {
 throw ref new InvalidArgumentException();
 }
 // Perform the computation in parallel.
 atomic<long> operation = 0;
 long range = last - first + 1;
 double lastPercent = 0.0;
 parallel_for(first, last + 1, [&operation, range, &lastPercent, reporter](int n)
 {
 // Report progress message.
 double progress = 100.0 * (++operation) / range;
 if (progress >= lastPercent)
 {
 reporter.report(progress);
 lastPercent += 1.0;
 }

 if (is_prime(n))
 {
 // Perhaps store the value somewhere...
 }
 });
 reporter.report(100.0);
 });
}

IAsyncOperation<IVector<int>^>^ Primes::GetPrimesAsync(int first, int last)
{

{
 return create_async([this, first, last]() -> IVector<int>^
 {
 // Ensure that the input values are in range.
 if (first < 0 || last < 0)
 {
 throw ref new InvalidArgumentException();
 }
 // Perform the computation in parallel.
 concurrent_vector<int> primes;
 parallel_for(first, last + 1, [this, &primes](int n)
 {
 // If the value is prime, add it to the global vector.
 if (is_prime(n))
 {
 primes.push_back(n);
 }
 });
 // Sort the results.
 sort(begin(primes), end(primes), less<int>());

 // Copy the results to an IVector object. The IVector
 // interface makes collections of data available to other
 // Windows Runtime components.
 auto results = ref new Vector<int>();
 for (int prime : primes)
 {
 results->Append(prime);
 }
 return results;
 });
}

IAsyncOperationWithProgress<IVector<int>^, double>^ Primes::GetPrimesWithProgressAsync(int first, int last)
{
 return create_async([this, first, last](progress_reporter<double> reporter) -> IVector<int>^
 {
 // Ensure that the input values are in range.
 if (first < 0 || last < 0)
 {
 throw ref new InvalidArgumentException();
 }
 // Perform the computation in parallel.
 concurrent_vector<int> primes;
 long operation = 0;
 long range = last - first + 1;
 double lastPercent = 0.0;
 parallel_for(first, last + 1, [&primes, &operation, range, &lastPercent, reporter](int n)
 {
 // Report progress message.
 double progress = 100.0 * (++operation) / range;
 if (progress >= lastPercent)
 {
 reporter.report(progress);
 lastPercent += 1.0;
 }

 // If the value is prime, add it to the local vector.
 if (is_prime(n))
 {
 primes.push_back(n);
 }
 });
 reporter.report(100.0);

 // Sort the results.
 sort(begin(primes), end(primes), less<int>());

 // Copy the results to an IVector object. The IVector
 // interface makes collections of data available to other

 // interface makes collections of data available to other
 // Windows Runtime components.
 auto results = ref new Vector<int>();
 for (int prime : primes)
 {
 results->Append(prime);
 }
 return results;
 });
}

Each method first performs validation to ensure that the input parameters are non-negative. If an input value is
negative, the method throws Platform::InvalidArgumentException. Error handling is explained later in this section.

To consume these methods from a UWP app, use the Visual C# Blank App (XAML) template to add a second
project to the Visual Studio solution. This example names the project Primes . Then, from the Primes project, add
a reference to the PrimesLibrary project.

Add the following code to MainPage.xaml. This code defines the UI so that you can call the C++ component and
display results.

https://msdn.microsoft.com/library/windows/apps/hh755794.aspx

<Page
 x:Class="Primes.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Primes"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="300"/>
 <ColumnDefinition Width="300"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="125"/>
 <RowDefinition Height="125"/>
 <RowDefinition Height="125"/>
 </Grid.RowDefinitions>

 <StackPanel Grid.Column="0" Grid.Row="0">
 <Button Name="b1" Click="computePrimes">Compute Primes</Button>
 <TextBlock Name="tb1"></TextBlock>
 </StackPanel>

 <StackPanel Grid.Column="1" Grid.Row="0">
 <Button Name="b2" Click="computePrimesWithProgress">Compute Primes with Progress</Button>
 <ProgressBar Name="pb1" HorizontalAlignment="Left" Width="100"></ProgressBar>
 <TextBlock Name="tb2"></TextBlock>
 </StackPanel>

 <StackPanel Grid.Column="0" Grid.Row="1">
 <Button Name="b3" Click="getPrimes">Get Primes</Button>
 <TextBlock Name="tb3"></TextBlock>
 </StackPanel>

 <StackPanel Grid.Column="1" Grid.Row="1">
 <Button Name="b4" Click="getPrimesWithProgress">Get Primes with Progress</Button>
 <ProgressBar Name="pb4" HorizontalAlignment="Left" Width="100"></ProgressBar>
 <TextBlock Name="tb4"></TextBlock>
 </StackPanel>

 <StackPanel Grid.Column="0" Grid.Row="2">
 <Button Name="b5" Click="getPrimesHandleErrors">Get Primes and Handle Errors</Button>
 <ProgressBar Name="pb5" HorizontalAlignment="Left" Width="100"></ProgressBar>
 <TextBlock Name="tb5"></TextBlock>
 </StackPanel>

 <StackPanel Grid.Column="1" Grid.Row="2">
 <Button Name="b6" Click="getPrimesCancellation">Get Primes with Cancellation</Button>
 <Button Name="cancelButton" Click="cancelGetPrimes" IsEnabled="false">Cancel</Button>
 <ProgressBar Name="pb6" HorizontalAlignment="Left" Width="100"></ProgressBar>
 <TextBlock Name="tb6"></TextBlock>
 </StackPanel>
 </Grid>
</Page>

private PrimesLibrary.Primes primesLib = new PrimesLibrary.Primes();

private async void computePrimes(object sender, RoutedEventArgs e)
{
 b1.IsEnabled = false;
 tb1.Text = "Working...";

Add the following code to the MainPage class in MainPage.xaml. This code defines a Primes object and the button
event handlers.

 tb1.Text = "Working...";

 var asyncAction = primesLib.ComputePrimesAsync(0, 100000);

 await asyncAction;

 tb1.Text = "Done";
 b1.IsEnabled = true;
}

private async void computePrimesWithProgress(object sender, RoutedEventArgs e)
{
 b2.IsEnabled = false;
 tb2.Text = "Working...";

 var asyncAction = primesLib.ComputePrimesWithProgressAsync(0, 100000);
 asyncAction.Progress = new AsyncActionProgressHandler<double>((action, progress) =>
 {
 pb1.Value = progress;
 });

 await asyncAction;

 tb2.Text = "Done";
 b2.IsEnabled = true;
}

private async void getPrimes(object sender, RoutedEventArgs e)
{
 b3.IsEnabled = false;
 tb3.Text = "Working...";

 var asyncOperation = primesLib.GetPrimesAsync(0, 100000);

 await asyncOperation;

 tb3.Text = "Found " + asyncOperation.GetResults().Count + " primes";
 b3.IsEnabled = true;
}

private async void getPrimesWithProgress(object sender, RoutedEventArgs e)
{
 b4.IsEnabled = false;
 tb4.Text = "Working...";

 var asyncOperation = primesLib.GetPrimesWithProgressAsync(0, 100000);
 asyncOperation.Progress = new AsyncOperationProgressHandler<IList<int>, double>((operation, progress) =>
 {
 pb4.Value = progress;
 });

 await asyncOperation;

 tb4.Text = "Found " + asyncOperation.GetResults().Count + " primes";
 b4.IsEnabled = true;
}

private async void getPrimesHandleErrors(object sender, RoutedEventArgs e)
{
 b5.IsEnabled = false;
 tb5.Text = "Working...";

 var asyncOperation = primesLib.GetPrimesWithProgressAsync(-1000, 100000);
 asyncOperation.Progress = new AsyncOperationProgressHandler<IList<int>, double>((operation, progress) =>
 {
 pb5.Value = progress;
 });

 try
 {

 {
 await asyncOperation;
 tb5.Text = "Found " + asyncOperation.GetResults().Count + " primes";
 }
 catch (ArgumentException ex)
 {
 tb5.Text = "ERROR: " + ex.Message;
 }

 b5.IsEnabled = true;
}

private IAsyncOperationWithProgress<IList<int>, double> asyncCancelableOperation;

private async void getPrimesCancellation(object sender, RoutedEventArgs e)
{
 b6.IsEnabled = false;
 cancelButton.IsEnabled = true;
 tb6.Text = "Working...";

 asyncCancelableOperation = primesLib.GetPrimesWithProgressAsync(0, 200000);
 asyncCancelableOperation.Progress = new AsyncOperationProgressHandler<IList<int>, double>((operation,
progress) =>
 {
 pb6.Value = progress;
 });

 try
 {
 await asyncCancelableOperation;
 tb6.Text = "Found " + asyncCancelableOperation.GetResults().Count + " primes";
 }
 catch (System.Threading.Tasks.TaskCanceledException)
 {
 tb6.Text = "Operation canceled";
 }

 b6.IsEnabled = true;
 cancelButton.IsEnabled = false;
}

private void cancelGetPrimes(object sender, RoutedEventArgs e)
{
 cancelButton.IsEnabled = false;
 asyncCancelableOperation.Cancel();
}

IMPORTANT

These methods use the async and await keywords to update the UI after the asynchronous operations
complete. For information about asynchronous coding in UWP apps, see Threading and async programming.

The getPrimesCancellation and cancelGetPrimes methods work together to enable the user to cancel the
operation. When the user chooses the Cancel button, the cancelGetPrimes method calls
IAsyncOperationWithProgress<TResult, TProgress>::Cancel to cancel the operation. The Concurrency Runtime,
which manages the underlying asynchronous operation, throws an internal exception type that's caught by the
Windows Runtime to communicate that cancellation has completed. For more information about the cancellation
model, see Cancellation.

To enable the PPL to correctly report to the Windows Runtime that it has canceled the operation, do not catch this internal
exception type. This means that you should also not catch all exceptions (catch (...)). If you must catch all exceptions,
rethrow the exception to ensure that the Windows Runtime can complete the cancellation operation.

https://docs.microsoft.com/windows/uwp/threading-async
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncinfo.cancel

 Controlling the Execution Thread

The following illustration shows the Primes app after each option has been chosen.

For examples that use create_async to create asynchronous tasks that can be consumed by other languages, see
Using C++ in the Bing Maps Trip Optimizer sample and Windows 8 Asynchronous Operations in C++ with PPL.

The Windows Runtime uses the COM threading model. In this model, objects are hosted in different apartments,
depending on how they handle their synchronization. Thread-safe objects are hosted in the multi-threaded
apartment (MTA). Objects that must be accessed by a single thread are hosted in a single-threaded apartment
(STA).

In an app that has a UI, the ASTA (Application STA) thread is responsible for pumping window messages and is
the only thread in the process that can update the STA-hosted UI controls. This has two consequences. First, to
enable the app to remain responsive, all CPU-intensive and I/O operations should not be run on the ASTA thread.
Second, results that come from background threads must be marshaled back to the ASTA to update the UI. In a
C++ UWP app, MainPage and other XAML pages all run on the ATSA. Therefore, task continuations that are
declared on the ASTA are run there by default so you can update controls directly in the continuation body.
However, if you nest a task in another task, any continuations on that nested task run in the MTA. Therefore, you
need to consider whether to explicitly specify on what context these continuations run.

A task that's created from an asynchronous operation, such as IAsyncOperation<TResult> , uses special semantics
that can help you ignore the threading details. Although an operation might run on a background thread (or it
may not be backed by a thread at all), its continuations are by default guaranteed to run on the apartment that
started the continuation operations (in other words, from the apartment that called task::then). You can use the
concurrency::task_continuation_context class to control the execution context of a continuation. Use these static
helper methods to create task_continuation_context objects:

Use concurrency::task_continuation_context::use_arbitrary to specify that the continuation runs on a
background thread.

Use concurrency::task_continuation_context::use_current to specify that the continuation runs on the thread
that called task::then .

You can pass a task_continuation_context object to the task::then method to explicitly control the execution
context of the continuation or you can pass the task to another apartment and then call the task::then method to
implicitly control the execution context.

https://msdn.microsoft.com/library/windows/apps/hh699891.aspx
http://code.msdn.microsoft.com/windowsapps/windows-8-asynchronous-08009a0d

IMPORTANT

IMPORTANT

IMPORTANT

Example: Controlling Execution in a Windows Runtime App with C++
and XAML

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ProgressRing x:Name="Progress"/>
 <TextBlock x:Name="Results" FontSize="16"/>
</Grid>

#include <sstream>
#include <ppltasks.h>
#include <concurrent_unordered_map.h>

Because the main UI thread of UWP apps run under STA, continuations that you create on that STA by default run on the
STA. Accordingly, continuations that you create on the MTA run on the MTA.

The following section shows an app that reads a file from disk, finds the most common words in that file, and then
shows the results in the UI. The final operation, updating the UI, occurs on the UI thread.

This behavior is specific to UWP apps. For desktop apps, you do not control where continuations run. Instead, the scheduler
chooses a worker thread on which to run each continuation.

Do not call concurrency::task::wait in the body of a continuation that runs on the STA. Otherwise, the runtime throws
concurrency::invalid_operation because this method blocks the current thread and can cause the app to become
unresponsive. However, you can call the concurrency::task::get method to receive the result of the antecedent task in a task-
based continuation.

Consider a C++ XAML app that reads a file from disk, finds the most common words in that file, and then shows
the results in the UI. To create this app, start, in Visual Studio, by creating a Blank App (Universal Windows)
project and naming it CommonWords . In your app manifest, specify the Documents Library capability to enable the
app to access the Documents folder. Also add the Text (.txt) file type to the declarations section of the app manifest.
For more information about app capabilities and declarations, see App packages and deployment.

Update the Grid element in MainPage.xaml to include a ProgressRing element and a TextBlock element. The
ProgressRing indicates that the operation is in progress and the TextBlock shows the results of the computation.

Add the following #include statements to pch.h.

Add the following method declarations to the MainPage class (MainPage.h).

https://msdn.microsoft.com/library/windows/apps/hh464929.aspx

private:
 // Splits the provided text string into individual words.
 concurrency::task<std::vector<std::wstring>> MakeWordList(Platform::String^ text);

 // Finds the most common words that are at least the provided minimum length.
 concurrency::task<std::vector<std::pair<std::wstring, size_t>>> FindCommonWords(const
std::vector<std::wstring>& words, size_t min_length, size_t count);

 // Shows the most common words on the UI.
 void ShowResults(const std::vector<std::pair<std::wstring, size_t>>& commonWords);

using namespace concurrency;
using namespace std;
using namespace Windows::Storage;
using namespace Windows::Storage::Streams;

// Splits the provided text string into individual words.
task<vector<wstring>> MainPage::MakeWordList(String^ text)
{
 return create_task([text]() -> vector<wstring>
 {
 vector<wstring> words;

 // Add continuous sequences of alphanumeric characters to the string vector.
 wstring current_word;
 for (wchar_t ch : text)
 {
 if (!iswalnum(ch))
 {
 if (current_word.length() > 0)
 {
 words.push_back(current_word);
 current_word.clear();
 }
 }
 else
 {
 current_word += ch;
 }
 }

 return words;
 });
}

// Finds the most common words that are at least the provided minimum length.
task<vector<pair<wstring, size_t>>> MainPage::FindCommonWords(const vector<wstring>& words, size_t min_length,
size_t count)
{
 return create_task([words, min_length, count]() -> vector<pair<wstring, size_t>>
 {
 typedef pair<wstring, size_t> pair;

 // Counts the occurrences of each word.
 concurrent_unordered_map<wstring, size_t> counts;

 parallel_for_each(begin(words), end(words), [&counts, min_length](const wstring& word)
 {

Add the following using statements to MainPage.cpp.

In MainPage.cpp, implement the MainPage::MakeWordList , MainPage::FindCommonWords , and MainPage::ShowResults

methods. The MainPage::MakeWordList and MainPage::FindCommonWords perform computationally-intensive
operations. The MainPage::ShowResults method displays the result of the computation in the UI.

 {
 // Increment the count of words that are at least the minimum length.
 if (word.length() >= min_length)
 {
 // Increment the count.
 InterlockedIncrement(&counts[word]);
 }
 });

 // Copy the contents of the map to a vector and sort the vector by the number of occurrences of each
word.
 vector<pair> wordvector;
 copy(begin(counts), end(counts), back_inserter(wordvector));

 sort(begin(wordvector), end(wordvector), [](const pair& x, const pair& y)
 {
 return x.second > y.second;
 });

 size_t size = min(wordvector.size(), count);
 wordvector.erase(begin(wordvector) + size, end(wordvector));

 return wordvector;
 });
}

// Shows the most common words on the UI.
void MainPage::ShowResults(const vector<pair<wstring, size_t>>& commonWords)
{
 wstringstream ss;
 ss << "The most common words that have five or more letters are:";
 for (auto commonWord : commonWords)
 {
 ss << endl << commonWord.first << L" (" << commonWord.second << L')';
 }

 // Update the UI.
 Results->Text = ref new String(ss.str().c_str());
}

Modify the MainPage constructor to create a chain of continuation tasks that displays in the UI the common words
in the book The Iliad by Homer. The first two continuation tasks, which split the text into individual words and find
common words, can be time consuming and are therefore explicitly set to run in the background. The final
continuation task, which updates the UI, specifies no continuation context, and therefore follows the apartment
threading rules.

MainPage::MainPage()
{
 InitializeComponent();

 // To run this example, save the contents of http://www.gutenberg.org/files/6130/6130-0.txt to your
Documents folder.
 // Name the file "The Iliad.txt" and save it under UTF-8 encoding.

 // Enable the progress ring.
 Progress->IsActive = true;

 // Find the most common words in the book "The Iliad".

 // Get the file.
 create_task(KnownFolders::DocumentsLibrary->GetFileAsync("The Iliad.txt")).then([](StorageFile^ file)
 {
 // Read the file text.
 return FileIO::ReadTextAsync(file, UnicodeEncoding::Utf8);

 // By default, all continuations from a Windows Runtime async operation run on the
 // thread that calls task.then. Specify use_arbitrary to run this continuation
 // on a background thread.
 }, task_continuation_context::use_arbitrary()).then([this](String^ file)
 {
 // Create a word list from the text.
 return MakeWordList(file);

 // By default, all continuations from a Windows Runtime async operation run on the
 // thread that calls task.then. Specify use_arbitrary to run this continuation
 // on a background thread.
 }, task_continuation_context::use_arbitrary()).then([this](vector<wstring> words)
 {
 // Find the most common words.
 return FindCommonWords(words, 5, 9);

 // By default, all continuations from a Windows Runtime async operation run on the
 // thread that calls task.then. Specify use_arbitrary to run this continuation
 // on a background thread.
 }, task_continuation_context::use_arbitrary()).then([this](vector<pair<wstring, size_t>> commonWords)
 {
 // Stop the progress ring.
 Progress->IsActive = false;

 // Show the results.
 ShowResults(commonWords);

 // We don't specify a continuation context here because we want the continuation
 // to run on the STA thread.
 });
}

NOTE
This example demonstrates how to specify execution contexts and how to compose a chain of continuations. Recall that by
default a task that's created from an asynchronous operation runs its continuations on the apartment that called
task::then . Therefore, this example uses task_continuation_context::use_arbitrary to specify that operations that

do not involve the UI be performed on a background thread.

The following illustration shows the results of the CommonWords app.

See also

In this example, it’s possible to support cancellation because the task objects that support create_async use an
implicit cancellation token. Define your work function to take a cancellation_token object if your tasks need to
respond to cancellation in a cooperative manner. For more info about cancellation in the PPL, see Cancellation in
the PPL

Concurrency Runtime

Comparing the Concurrency Runtime to Other
Concurrency Models
3/4/2019 • 8 minutes to read • Edit Online

Sections

Comparing Preemptive Scheduling to Cooperative Scheduling

Preemptive and Cooperative Scheduling

Differences Between Preemptive and Cooperative Schedulers

This document describes the differences between the features and programming models of the Concurrency
Runtime and other technologies. By understanding how the benefits of the Concurrency Runtime compare to the
benefits of other programming models, you can select the technology that best satisfies the requirements of your
applications.

If you are currently using another programming model, such as the Windows thread pool or OpenMP, there are
situations where it can be appropriate to migrate to the Concurrency Runtime. For example, the topic Migrating
from OpenMP to the Concurrency Runtime describes when it can be appropriate to migrate from OpenMP to the
Concurrency Runtime. However, if you are satisfied with application performance and current debugging support,
migration is not required.

You can use the features and productivity benefits of the Concurrency Runtime to complement your existing
application that uses another concurrency model. The Concurrency Runtime cannot guarantee load balancing
when multiple task schedulers compete for the same computing resources. However, when workloads do not
overlap, this effect is minimal.

Comparing Preemptive Scheduling to Cooperative Scheduling

Comparing the Concurrency Runtime to the Windows API

Comparing the Concurrency Runtime to OpenMP

The preemptive model and cooperative scheduling models are two common ways to enable multiple tasks to
share computing resources, for example, processors or hardware threads.

Preemptive scheduling is a round-robin, priority-based mechanism that gives every task exclusive access to a
computing resource for a given time period, and then switches to another task. Preemptive scheduling is common
in multitasking operating systems such as Windows. Cooperative scheduling is a mechanism that gives every task
exclusive access to a computing resource until the task finishes or until the task yields its access to the resource.
The Concurrency Runtime uses cooperative scheduling together with the preemptive scheduler of the operating
system to achieve maximum usage of processing resources.

Preemptive schedulers seek to give multiple threads equal access to computing resources to ensure that every
thread makes progress. On computers that have many computing resources, ensuring fair access becomes less
problematic; however, ensuring efficient utilization of the resources becomes more problematic.

A preemptive kernel-mode scheduler requires the application code to rely on the operating system to make
scheduling decisions. Conversely, a user-mode cooperative scheduler enables application code to make its own
scheduling decisions. Because cooperative scheduling enables many scheduling decisions to be made by the
application, it reduces much of the overhead that is associated with kernel-mode synchronization. A cooperative
scheduler typically defers scheduling decisions to the operating system kernel when it has no other work to

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/comparing-the-concurrency-runtime-to-other-concurrency-models.md

Cooperative Scheduling and Efficiency

Using Preemptive and Cooperative Scheduling Together

Comparing the Concurrency Runtime to the Windows API

Programming Languages

Threads and Thread Pools

schedule. A cooperative scheduler also defers to the operating system scheduler when there is a blocking
operation that is communicated to the kernel, but that operation is not communicated to the user-mode scheduler.

To a preemptive scheduler, all work that has the same priority level is equal. A preemptive scheduler typically
schedules threads in the order in which they are created. Furthermore, a preemptive scheduler gives every thread
a time slice in a round-robin manner, based on thread priority. Although this mechanism provides fairness (every
thread makes forward progress), it comes at some cost of efficiency. For example, many computation-intensive
algorithms do not require fairness. Instead, it is important that related tasks finish in the least overall time.
Cooperative scheduling enables an application to more efficiently schedule work. For example, consider an
application that has many threads. Scheduling threads that do not share resources to run concurrently can reduce
synchronization overhead and thereby increase efficiency. Another efficient way to schedule tasks is to run
pipelines of tasks (where each task acts on the output of the previous one) on the same processor so that the input
of each pipeline stage is already loaded into the memory cache.

Cooperative scheduling does not solve all scheduling problems. For example, tasks that do not fairly yield to other
tasks can consume all available computing resources and prevent other tasks from making progress. The
Concurrency Runtime uses the efficiency benefits of cooperative scheduling to complement the fairness
guarantees of preemptive scheduling. By default, the Concurrency Runtime provides a cooperative scheduler that
uses a work-stealing algorithm to efficiently distribute work among computing resources. However, the
Concurrency Runtime scheduler also relies on the preemptive scheduler of the operating system to fairly
distribute resources among applications. You can also create custom schedulers and scheduler policies in your
applications to produce fine-grained control over thread execution.

[Top]

The Microsoft Windows application programming interface, which is typically referred to as the Windows API
(and formerly known as Win32), provides a programming model that enables concurrency in your applications.
The Concurrency Runtime builds on the Windows API to provide additional programming models that are not
available from the underlying operating system.

The Concurrency Runtime builds on the Windows API thread model to perform parallel work. It also uses the
Windows API memory management and thread-local storage mechanisms. On Windows 7 and Windows Server
2008 R2, it uses Windows API support for user-schedulable threads and computers that have more than 64
hardware threads. The Concurrency Runtime extends the Windows API model by providing a cooperative task
scheduler and a work-stealing algorithm to maximize the use of computing resources, and by enabling multiple
simultaneous scheduler instances.

The Windows API uses the C programming language to expose the programming model. The Concurrency
Runtime provides a C++ programming interface that takes advantage of the newest features in the C++ language.
For example, lambda functions provide a succinct, type-safe mechanism for defining parallel work functions. For
more information about the newest C++ features that the Concurrency Runtime uses, see Overview.

The central concurrency mechanism in the Windows API is the thread. You typically use the CreateThread function
to create threads. Although threads are relatively easy to create and use, the operating system allocates a
significant amount of time and other resources to manage them. Additionally, although each thread is guaranteed
to receive the same execution time as any other thread at the same priority level, the associated overhead requires
that you create sufficiently large tasks. For smaller or more fine-grained tasks, the overhead that is associated with
concurrency can outweigh the benefit of running the tasks in parallel.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

Behavior on Various Operating Systems

Comparing the Concurrency Runtime to OpenMP

Thread pools are one way to reduce the cost of thread management. Custom thread pools and the thread pool
implementation that is provided by the Windows API both enable small work items to efficiently run in parallel.
The Windows thread pool maintains work items in a first-in, first-out (FIFO) queue. Each work item is started in
the order in which it was added to the pool.

The Concurrency Runtime implements a work-stealing algorithm to extend the FIFO scheduling mechanism. The
algorithm moves tasks that have not yet started to threads that run out of work items. Although the work-stealing
algorithm can balance workloads, it can also cause work items to be reordered. This reordering process can cause
a work item to start in a different order than it was submitted. This is useful with recursive algorithms, where there
is a better chance that data is shared among newer tasks than among older ones. Getting the new items to run first
means fewer cache misses and possibly fewer page faults.

From the perspective of the operating system, work stealing is unfair. However, when an application implements
an algorithm or task to run in parallel, fairness among the sub-tasks does not always matter. What does matter is
how quickly the overall task finishes. For other algorithms, FIFO is the appropriate scheduling strategy.

On Windows XP and Windows Vista, applications that use the Concurrency Runtime behave similarly, except that
heap performance is improved on Windows Vista.

In Windows 7 and Windows Server 2008 R2, the operating system further supports concurrency and scalability.
For example, these operating systems support computers that have more than 64 hardware threads. An existing
application that uses the Windows API must be modified to take advantage of these new features. However, an
application that uses the Concurrency Runtime automatically uses these features and does not require
modifications.

base.user-mode_scheduling

[Top]

The Concurrency Runtime enables a variety of programming models. These models may overlap or complement
the models of other libraries. This section compares the Concurrency Runtime to OpenMP.

The OpenMP programming model is defined by an open standard and has well-defined bindings to the Fortran
and C/C++ programming languages. OpenMP versions 2.0 and 2.5 are well-suited for parallel algorithms that are
iterative; that is, they perform parallel iteration over an array of data. OpenMP is most efficient when the degree of
parallelism is pre-determined and matches the available resources on the system. The OpenMP model is an
especially good match for high-performance computing, where very large computational problems are distributed
across the processing resources of a single computer. In this scenario, the hardware environment is known and the
developer can reasonably expect to have exclusive access to computing resources when the algorithm is executed.

However, other, less constrained computing environments may not be a good match for OpenMP. For example,
recursive problems (such as the quicksort algorithm or searching a tree of data) are more difficult to implement by
using OpenMP. The Concurrency Runtime complements the capabilities of OpenMP by providing the Parallel
Patterns Library (PPL) and the Asynchronous Agents Library. Unlike OpenMP, the Concurrency Runtime provides
a dynamic scheduler that adapts to available resources and adjusts the degree of parallelism as workloads change.

Many of the features in the Concurrency Runtime can be extended. You can also combine existing features to
compose new ones. Because OpenMP relies on compiler directives, it cannot be extended easily.

For more information about how the Concurrency Runtime compares to OpenMP and how to migrate existing
OpenMP code to use the Concurrency Runtime, see Migrating from OpenMP to the Concurrency Runtime.

[Top]

https://msdn.microsoft.com/library/windows/desktop/dd627187

See also
Concurrency Runtime
Overview
Parallel Patterns Library (PPL)
Asynchronous Agents Library
OpenMP

Migrating from OpenMP to the Concurrency
Runtime
5/8/2019 • 4 minutes to read • Edit Online

When to Migrate from OpenMP to the Concurrency Runtime

CASES ADVANTAGES OF THE CONCURRENCY RUNTIME

You require an extensible concurrent programming
framework.

Many of the features in the Concurrency Runtime can be
extended. You can also combine existing features to compose
new ones. Because OpenMP relies on compiler directives, it
cannot be easily extended.

Your application would benefit from cooperative blocking. When a task blocks because it requires a resource that is not
yet available, the Concurrency Runtime can perform other
tasks while the first task waits for the resource.

Your application would benefit from dynamic load balancing. The Concurrency Runtime uses a scheduling algorithm that
adjusts the allocation of computing resources as workloads
change. In OpenMP, when the scheduler allocates computing
resources to a parallel region, those resource allocations are
fixed throughout the computation.

The Concurrency Runtime enables a variety of programming models. These models may overlap or complement
the models of other libraries. The documents in this section compare OpenMP to the Concurrency Runtime and
provide examples about how to migrate existing OpenMP code to use the Concurrency Runtime.

The OpenMP programming model is defined by an open standard and has well-defined bindings to the Fortran
and C/C++ programming languages. OpenMP versions 2.0 and 2.5, which are supported by the Microsoft C++
compiler, are well-suited for parallel algorithms that are iterative; that is, they perform parallel iteration over an
array of data. OpenMP 3.0 supports non-iterative tasks in addition to iterative tasks.

OpenMP is most efficient when the degree of parallelism is pre-determined and matches the available resources
on the system. The OpenMP model is an especially good match for high-performance computing, where very
large computational problems are distributed across the processing resources of one computer. In this scenario,
the hardware environment is generally fixed and the developer can reasonably expect to have exclusive access to
all computing resources when the algorithm is executed.

However, less constrained computing environments may not be a good match for OpenMP. For example,
recursive problems (such as the quicksort algorithm or searching a tree of data) are more difficult to implement
by using OpenMP 2.0 and 2.5. The Concurrency Runtime complements the capabilities of OpenMP by providing
the Asynchronous Agents Library and the Parallel Patterns Library (PPL). The Asynchronous Agents Library
supports coarse-grained task parallelism; the PPL supports more fine-grained parallel tasks. The Concurrency
Runtime provides the infrastructure that is required to perform operations in parallel so that you can focus on the
logic of your application. However, because the Concurrency Runtime enables a variety of programming models,
its scheduling overhead can be greater than other concurrency libraries such as OpenMP. Therefore, we
recommend that you test performance incrementally when you convert your existing OpenMP code to use the
Concurrency Runtime.

It may be advantageous to migrate existing OpenMP code to use the Concurrency Runtime in the following
cases.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/migrating-from-openmp-to-the-concurrency-runtime.md

You require exception handling support. The PPL lets you catch exceptions both inside and outside of
a parallel region or loop. In OpenMP, you must handle the
exception inside of the parallel region or loop.

You require a cancellation mechanism. The PPL enables applications to cancel both individual tasks
and parallel trees of work. OpenMP requires the application
to implement its own cancellation mechanism.

You require parallel code to finish in a different context from
which it starts.

The Concurrency Runtime lets you start a task in one context,
and then wait on or cancel that task in another context. In
OpenMP, all parallel work must finish in the context from
which it starts.

You require enhanced debugging support. Visual Studio provides the Parallel Stacks and Parallel
Tasks windows so that you can more easily debug
multithreaded applications.

For more information about debugging support for the
Concurrency Runtime, see Using the Tasks Window, Using the
Parallel Stacks Window, and Walkthrough: Debugging a
Parallel Application.

CASES ADVANTAGES OF THE CONCURRENCY RUNTIME

When Not to Migrate from OpenMP to the Concurrency Runtime

CASES EXPLANATION

Your application already meets your requirements. If you are satisfied with application performance and current
debugging support, migration might not be appropriate.

Your parallel loop bodies perform little work. The overhead of the Concurrency Runtime task scheduler
might not overcome the benefits of executing the loop body
in parallel, especially when the loop body is relatively small.

Your application is written in C. Because the Concurrency Runtime uses many C++ features, it
might not be suitable when you cannot write code that
enables the C application to fully use it.

Related Topics

The following cases describe when it might not be appropriate to migrate existing OpenMP code to use the
Concurrency Runtime.

How to: Convert an OpenMP parallel for Loop to Use the Concurrency Runtime

Given a basic loop that uses the OpenMP parallel and for directives, demonstrates how to convert it to use the
Concurrency Runtime concurrency::parallel_for algorithm.

How to: Convert an OpenMP Loop that Uses Cancellation to Use the Concurrency Runtime
Given an OpenMP parallelfor loop that does not require all iterations to run, demonstrates how to convert it to
use the Concurrency Runtime cancellation mechanism.

How to: Convert an OpenMP Loop that Uses Exception Handling to Use the Concurrency Runtime
Given an OpenMP parallelfor loop that performs exception handling, demonstrates how to convert it to use the
Concurrency Runtime exception handling mechanism.

https://docs.microsoft.com/visualstudio/debugger/using-the-tasks-window
https://docs.microsoft.com/visualstudio/debugger/using-the-parallel-stacks-window
https://docs.microsoft.com/visualstudio/debugger/walkthrough-debugging-a-parallel-application
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp

See also

How to: Convert an OpenMP Loop that Uses a Reduction Variable to Use the Concurrency Runtime
Given an OpenMP parallelfor loop that uses the reduction clause, demonstrates how to convert it to use the
Concurrency Runtime.

Concurrency Runtime
OpenMP
Parallel Patterns Library (PPL)
Asynchronous Agents Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/reduction

How to: Convert an OpenMP parallel for Loop to
Use the Concurrency Runtime
3/4/2019 • 3 minutes to read • Edit Online

Example

// concrt-omp-count-primes.cpp
// compile with: /EHsc /openmp
#include <ppl.h>
#include <random>
#include <array>
#include <iostream>

using namespace concurrency;
using namespace std;

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

// Uses OpenMP to compute the count of prime numbers in an array.
void omp_count_primes(int* a, size_t size)
{
 if (size == 0)
 return;

 size_t count = 0;
 #pragma omp parallel for
 for (int i = 0; i < static_cast<int>(size); ++i)
 {
 if (is_prime(a[i])) {
 #pragma omp atomic
 ++count;
 }
 }

 wcout << L"found " << count
 << L" prime numbers." << endl;
}

// Uses the Concurrency Runtime to compute the count of prime numbers in an array.
void concrt_count_primes(int* a, size_t size)
{
 if (size == 0)
 return;

This example demonstrates how to convert a basic loop that uses the OpenMP parallel and for directives to use
the Concurrency Runtime concurrency::parallel_for algorithm.

This example uses both OpenMP and the Concurrency Runtime to compute the count of prime numbers in an
array of random values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-convert-an-openmp-parallel-for-loop-to-use-the-concurrency-runtime.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp

 return;

 combinable<size_t> counts;
 parallel_for<size_t>(0, size, [&](size_t i)
 {
 if (is_prime(a[i])) {
 counts.local()++;
 }
 });

 wcout << L"found " << counts.combine(plus<size_t>())
 << L" prime numbers." << endl;
}

int wmain()
{
 // The length of the array.
 const size_t size = 1000000;

 // Create an array and initialize it with random values.
 int* a = new int[size];

 mt19937 gen(42);
 for (size_t i = 0; i < size; ++i) {
 a[i] = gen();
 }

 // Count prime numbers by using OpenMP and the Concurrency Runtime.

 wcout << L"Using OpenMP..." << endl;
 omp_count_primes(a, size);

 wcout << L"Using the Concurrency Runtime..." << endl;
 concrt_count_primes(a, size);

 delete[] a;
}

Using OpenMP...
found 107254 prime numbers.
Using the Concurrency Runtime...
found 107254 prime numbers.

Example

This example produces the following output.

The parallel_for algorithm and OpenMP 3.0 allow for the index type to be a signed integral type or an unsigned
integral type. The parallel_for algorithm also makes sure that the specified range does not overflow a signed
type. OpenMP versions 2.0 and 2.5 allow for signed integral index types only. OpenMP also does not validate the
index range.

The version of this example that uses the Concurrency Runtime also uses a concurrency::combinable object in
place of the atomic directive to increment the counter value without requiring synchronization.

For more information about parallel_for and other parallel algorithms, see Parallel Algorithms. For more
information about the combinable class, see Parallel Containers and Objects.

This example modifies the previous one to act on an std::array object instead of on a native array. Because
OpenMP versions 2.0 and 2.5 allow for signed integral index types only in a parallel_for construct, you cannot
use iterators to access the elements of a C++ Standard Library container in parallel. The Parallel Patterns Library
(PPL) provides the concurrency::parallel_for_each algorithm, which performs tasks, in parallel, on an iterative

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/atomic
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl

// Uses OpenMP to compute the count of prime numbers in an
// array object.
template<size_t Size>
void omp_count_primes(const array<int, Size>& a)
{
 if (a.size() == 0)
 return;

 size_t count = 0;
 int size = static_cast<int>(a.size());
 #pragma omp parallel for
 for (int i = 0; i < size; ++i)
 {
 if (is_prime(a[i])) {
 #pragma omp atomic
 ++count;
 }
 }

 wcout << L"found " << count
 << L" prime numbers." << endl;
}

// Uses the Concurrency Runtime to compute the count of prime numbers in an
// array object.
template<size_t Size>
void concrt_count_primes(const array<int, Size>& a)
{
 if (a.size() == 0)
 return;

 combinable<size_t> counts;
 parallel_for_each(begin(a), end(a), [&counts](int n)
 {
 if (is_prime(n)) {
 counts.local()++;
 }
 });

 wcout << L"found " << counts.combine(plus<size_t>())
 << L" prime numbers." << endl;
}

Compiling the Code

See also

container such as those provided by the C++ Standard Library. It uses the same partitioning logic that the
parallel_for algorithm uses. The parallel_for_each algorithm resembles the C++ Standard Library std::for_each

algorithm, except that the parallel_for_each algorithm executes the tasks concurrently.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
concrt-omp-count-primes.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc /openmp concrt-omp-count-primes.cpp

Migrating from OpenMP to the Concurrency Runtime
Parallel Algorithms
Parallel Containers and Objects

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

How to: Convert an OpenMP Loop that Uses
Cancellation to Use the Concurrency Runtime
3/4/2019 • 4 minutes to read • Edit Online

Example

// concrt-omp-parallel-any-of.cpp
// compile with: /EHsc /openmp
#include <ppl.h>
#include <array>
#include <random>
#include <iostream>

using namespace concurrency;
using namespace std;

// Uses OpenMP to determine whether a condition exists in
// the specified range of elements.
template <class InIt, class Predicate>
bool omp_parallel_any_of(InIt first, InIt last, const Predicate& pr)
{
 typedef typename std::iterator_traits<InIt>::value_type item_type;

 // A flag that indicates that the condition exists.
 bool found = false;

 #pragma omp parallel for
 for (int i = 0; i < static_cast<int>(last-first); ++i)
 {
 if (!found)
 {
 item_type& cur = *(first + i);

 // If the element satisfies the condition, set the flag to
 // cancel the operation.
 if (pr(cur)) {
 found = true;
 }
 }
 }

 return found;
}

Some parallel loops do not require that all iterations be executed. For example, an algorithm that searches for a
value can terminate after the value is found. OpenMP does not provide a mechanism to break out of a parallel
loop. However, you can use a Boolean value, or flag, to enable an iteration of the loop to indicate that the solution
has been found. The Concurrency Runtime provides functionality that enables one task to cancel other tasks that
have not yet started.

This example demonstrates how to convert an OpenMP parallelfor loop that does not require for all iterations to
run to use the Concurrency Runtime cancellation mechanism.

This example uses both OpenMP and the Concurrency Runtime to implement a parallel version of the std::any_of
algorithm. The OpenMP version of this example uses a flag to coordinate among all parallel loop iterations that
the condition has been met. The version that uses the Concurrency Runtime uses the
concurrency::structured_task_group::cancel method to stop the overall operation when the condition is met.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/convert-an-openmp-loop-that-uses-cancellation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

// Uses the Concurrency Runtime to determine whether a condition exists in
// the specified range of elements.
template <class InIt, class Predicate>
bool concrt_parallel_any_of(InIt first, InIt last, const Predicate& pr)
{
 typedef typename std::iterator_traits<InIt>::value_type item_type;

 structured_task_group tasks;

 // Create a predicate function that cancels the task group when
 // an element satisfies the condition.
 auto for_each_predicate = [&pr, &tasks](const item_type& cur) {
 if (pr(cur)) {
 tasks.cancel();
 }
 };

 // Create a task that calls the predicate function in parallel on each
 // element in the range.
 auto task = make_task([&]() {
 parallel_for_each(first, last, for_each_predicate);
 });

 // The condition is satisfied if the task group is in the cancelled state.
 return tasks.run_and_wait(task) == canceled;
}

int wmain()
{
 // The length of the array.
 const size_t size = 100000;

 // Create an array and initialize it with random values.
 array<int, size> a;
 generate(begin(a), end(a), mt19937(42));

 // Search for a value in the array by using OpenMP and the Concurrency Runtime.

 const int what = 9114046;
 auto predicate = [what](int n) -> bool {
 return (n == what);
 };

 wcout << L"Using OpenMP..." << endl;
 if (omp_parallel_any_of(begin(a), end(a), predicate))
 {
 wcout << what << L" is in the array." << endl;
 }
 else
 {
 wcout << what << L" is not in the array." << endl;
 }

 wcout << L"Using the Concurrency Runtime..." << endl;
 if (concrt_parallel_any_of(begin(a), end(a), predicate))
 {
 wcout << what << L" is in the array." << endl;
 }
 else
 {
 wcout << what << L" is not in the array." << endl;
 }
}

This example produces the following output.

Using OpenMP...
9114046 is in the array.
Using the Concurrency Runtime...
9114046 is in the array.

Compiling the Code

See also

In the version of that uses OpenMP, all iterations of the loop execute, even when the flag is set. Furthermore, if a
task were to have any child tasks, the flag would also have to be available to those child tasks to communicate
cancellation. In the Concurrency Runtime, when a task group is cancelled, the runtime cancels the entire tree of
work, including child tasks. The concurrency::parallel_for_each algorithm uses tasks to perform work. Therefore,
when one iteration of the loop cancels the root task, the entire tree of computation is also cancelled. When a tree of
work is cancelled, the runtime does not start new tasks. However, the runtime allows tasks that have already
started to finish. Therefore, in the case of the parallel_for_each algorithm, active loop iterations can clean up their
resources.

In both versions of this example, if the array contains more than one copy of the value to search for, multiple loop
iterations can each simultaneously set the result and cancel the overall operation. You can use a synchronization
primitive, such as a critical section, if your problem requires that only one task performs work when a condition is
met.

You can also use exception handling to cancel tasks that use the PPL. For more information about cancellation, see
Cancellation in the PPL.

For more information about parallel_for_each and other parallel algorithms, see Parallel Algorithms.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
concrt-omp-parallel-any-of.cpp and then run the following command in a Visual Studio Command Prompt

window.

cl.exe /EHsc /openmp concrt-omp-parallel-any-of.cpp

Migrating from OpenMP to the Concurrency Runtime
Cancellation in the PPL
Parallel Algorithms

How to: Convert an OpenMP Loop that Uses
Exception Handling to Use the Concurrency Runtime
3/4/2019 • 4 minutes to read • Edit Online

Example

// concrt-omp-exceptions.cpp
// compile with: /EHsc /openmp
#include <ppl.h>
#include <new>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Demonstrates a function that performs a memory allocation request
// that does not succeed.
void do_work(int)
{
 // The following memory allocation causes this function to
 // throw std::bad_alloc.
 char* ptr = new char[(~unsigned int((int)0)/2) - 1];

 // TODO: Assuming that the allocation succeeds, perform some work
 // and free the allocated memory.

 delete[] ptr;
}

// Demonstrates an OpenMP parallel loop that performs exception handling.
void omp_exception_handling()
{
 #pragma omp parallel for

This example demonstrates how to convert an OpenMP parallelfor loop that performs exception handling to use
the Concurrency Runtime exception handling mechanism.

In OpenMP, an exception that is thrown in a parallel region must be caught and handled in the same region by the
same thread. An exception that escapes the parallel region is caught by the unhandled exception handler, which
terminates the process by default.

In the Concurrency Runtime, when you throw an exception in the body of a work function that you pass to a task
group such as a concurrency::task_group or concurrency::structured_task_group object, or to a parallel algorithm
such as concurrency::parallel_for, the runtime stores that exception and marshals it to the context that waits for the
task group or algorithm to finish. For task groups, the waiting context is the context that calls
concurrency::task_group::wait, concurrency::structured_task_group::wait, concurrency::task_group::run_and_wait, or
concurrency::structured_task_group::run_and_wait. For a parallel algorithm, the waiting context is the context that
called that algorithm. The runtime also stops all active tasks that are in the task group, including those in child task
groups, and discards any tasks that have not yet started.

This example demonstrates how to handle exceptions in an OpenMP parallel region and in a call to
parallel_for . The do_work function performs a memory allocation request that does not succeed and therefore

throws an exception of type std::bad_alloc. In the version that uses OpenMP, the thread that throws the exception
must also catch it. In other words, each iteration of an OpenMP parallel loop must handle the exception. In the
version that uses the Concurrency Runtime, the main thread catches an exception that is thrown by another thread.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/convert-an-openmp-loop-that-uses-exception-handling.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bad-alloc-class

 #pragma omp parallel for
 for(int i = 0; i < 10; i++)
 {
 try {
 // Perform a unit of work.
 do_work(i);
 }
 catch (exception const& e) {
 // Print the error to the console.
 wstringstream ss;
 ss << L"An error of type '" << typeid(e).name()
 << L"' occurred." << endl;
 wcout << ss.str();
 }
 }
}

// Demonstrates an Concurrency Runtime parallel loop that performs exception handling.
void concrt_exception_handling()
{
 try {
 parallel_for(0, 10, [](int i)
 {
 // Perform a unit of work.
 do_work(i);
 });
 }
 catch (exception const& e) {
 // Print the error to the console.
 wcout << L"An error of type '" << typeid(e).name()
 << L"' occurred." << endl;
 }
}

int wmain()
{
 wcout << L"Using OpenMP..." << endl;
 omp_exception_handling();

 wcout << L"Using the Concurrency Runtime..." << endl;
 concrt_exception_handling();
}

Using OpenMP...
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
An error of type 'class std::bad_alloc' occurred.
Using the Concurrency Runtime...
An error of type 'class std::bad_alloc' occurred.

This example produces the following output.

In the version of this example that uses OpenMP, the exception occurs in and is handled by each loop iteration. In
the version that uses the Concurrency Runtime, the runtime stores the exception, stops all active tasks, discards
any tasks that have not yet started, and marshals the exception to the context that calls parallel_for .

If you require that the version that uses OpenMP terminates after the exception occurs, you could use a Boolean
flag to signal to other loop iterations that the error occurred. As in the example in the topic How to: Convert an

Compiling the Code

See also

OpenMP Loop that Uses Cancellation to Use the Concurrency Runtime, subsequent loop iterations would do
nothing if the flag is set. Conversely, if you require that the loop that uses the Concurrency Runtime continues after
the exception occurs, handle the exception in the parallel loop body itself.

Other components of the Concurrency Runtime, such as asynchronous agents and lightweight tasks, do not
transport exceptions. Instead, unhandled exceptions are caught by the unhandled exception handler, which
terminates the process by default. For more information about exception handling, see Exception Handling.

For more information about parallel_for and other parallel algorithms, see Parallel Algorithms.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
concrt-omp-exceptions.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc /openmp concrt-omp-exceptions.cpp

Migrating from OpenMP to the Concurrency Runtime
Exception Handling
Parallel Algorithms

How to: Convert an OpenMP Loop that Uses a
Reduction Variable to Use the Concurrency Runtime
3/4/2019 • 2 minutes to read • Edit Online

Example

This example demonstrates how to convert an OpenMP parallelfor loop that uses the reduction clause to use the
Concurrency Runtime.

The OpenMP reduction clause lets you specify one or more thread-private variables that are subject to a
reduction operation at the end of the parallel region. OpenMP predefines a set of reduction operators. Each
reduction variable must be a scalar (for example, int , long , and float). OpenMP also defines several
restrictions on how reduction variables are used in a parallel region.

The Parallel Patterns Library (PPL) provides the concurrency::combinable class, which provides reusable, thread-
local storage that lets you perform fine-grained computations and then merge those computations into a final
result. The combinable class is a template that acts on both scalar and complex types. To use the combinable class,
perform sub-computations in the body of a parallel construct and then call the concurrency::combinable::combine
or concurrency::combinable::combine_each method to produce the final result. The combine and combine_each

methods each take a combine function that specifies how to combine each pair of elements. Therefore, the
combinable class is not restricted to a fixed set of reduction operators.

This example uses both OpenMP and the Concurrency Runtime to compute the sum of the first 35 Fibonacci
numbers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/convert-an-openmp-loop-that-uses-a-reduction-variable.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/for-openmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/reduction

// concrt-omp-fibonacci-reduction.cpp
// compile with: /EHsc /openmp
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Computes the nth Fibonacci number.
// This function illustrates a lengthy operation and is therefore
// not optimized for performance.
int fibonacci(int n)
{
 if (n < 2)
 return n;

 // Compute the components in parallel.
 int n1, n2;
 parallel_invoke(
 [n,&n1] { n1 = fibonacci(n-1); },
 [n,&n2] { n2 = fibonacci(n-2); }
);

 return n1 + n2;
}

// Uses OpenMP to compute the sum of Fibonacci numbers in parallel.
void omp_parallel_fibonacci_sum(int count)
{
 int sum = 0;
 #pragma omp parallel for reduction(+ : sum)
 for (int i = 0; i < count; ++i)
 {
 sum += fibonacci(i);
 }

 wcout << L"The sum of the first " << count << L" Fibonacci numbers is "
 << sum << L'.' << endl;
}

// Uses the Concurrency Runtime to compute the sum of Fibonacci numbers in parallel.
void concrt_parallel_fibonacci_sum(int count)
{
 combinable<int> sums;
 parallel_for(0, count, [&sums](int i)
 {
 sums.local() += fibonacci(i);
 });

 wcout << L"The sum of the first " << count << L" Fibonacci numbers is "
 << sums.combine(plus<int>()) << L'.' << endl;
}

int wmain()
{
 const int count = 35;

 wcout << L"Using OpenMP..." << endl;
 omp_parallel_fibonacci_sum(count);

 wcout << L"Using the Concurrency Runtime..." << endl;
 concrt_parallel_fibonacci_sum(count);
}

This example produces the following output.

Using OpenMP...
The sum of the first 35 Fibonacci numbers is 14930351.
Using the Concurrency Runtime...
The sum of the first 35 Fibonacci numbers is 14930351.

Compiling the Code

See also

For more information about the combinable class, see Parallel Containers and Objects.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
concrt-omp-fibonacci-reduction.cpp and then run the following command in a Visual Studio Command Prompt

window.

cl.exe /EHsc /openmp concrt-omp-fibonacci-reduction.cpp

Migrating from OpenMP to the Concurrency Runtime
Parallel Containers and Objects

Parallel Patterns Library (PPL)
3/4/2019 • 3 minutes to read • Edit Online

Example

// parallel-fibonacci.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <concurrent_vector.h>
#include <array>
#include <vector>
#include <tuple>
#include <algorithm>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.

The Parallel Patterns Library (PPL) provides an imperative programming model that promotes scalability and
ease-of-use for developing concurrent applications. The PPL builds on the scheduling and resource
management components of the Concurrency Runtime. It raises the level of abstraction between your
application code and the underlying threading mechanism by providing generic, type-safe algorithms and
containers that act on data in parallel. The PPL also lets you develop applications that scale by providing
alternatives to shared state.

The PPL provides the following features:

Task Parallelism: a mechanism that works on top of the Windows ThreadPool to execute several work
items (tasks) in parallel

Parallel algorithms: generic algorithms that works on top of the Concurrency Runtime to act on
collections of data in parallel

Parallel containers and objects: generic container types that provide safe concurrent access to their
elements

The PPL provides a programming model that resembles the C++ Standard Library. The following example
demonstrates many features of the PPL. It computes several Fibonacci numbers serially and in parallel. Both
computations act on a std::array object. The example also prints to the console the time that is required to
perform both computations.

The serial version uses the C++ Standard Library std::for_each algorithm to traverse the array and stores the
results in a std::vector object. The parallel version performs the same task, but uses the PPL
concurrency::parallel_for_each algorithm and stores the results in a concurrency::concurrent_vector object. The
concurrent_vector class enables each loop iteration to concurrently add elements without the requirement to

synchronize write access to the container.

Because parallel_for_each acts concurrently, the parallel version of this example must sort the
concurrent_vector object to produce the same results as the serial version.

Note that the example uses a naïve method to compute the Fibonacci numbers; however, this method
illustrates how the Concurrency Runtime can improve the performance of long computations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/parallel-patterns-library-ppl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Computes the nth Fibonacci number.
int fibonacci(int n)
{
 if(n < 2)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
}

int wmain()
{
 __int64 elapsed;

 // An array of Fibonacci numbers to compute.
 array<int, 4> a = { 24, 26, 41, 42 };

 // The results of the serial computation.
 vector<tuple<int,int>> results1;

 // The results of the parallel computation.
 concurrent_vector<tuple<int,int>> results2;

 // Use the for_each algorithm to compute the results serially.
 elapsed = time_call([&]
 {
 for_each (begin(a), end(a), [&](int n) {
 results1.push_back(make_tuple(n, fibonacci(n)));
 });
 });
 wcout << L"serial time: " << elapsed << L" ms" << endl;

 // Use the parallel_for_each algorithm to perform the same task.
 elapsed = time_call([&]
 {
 parallel_for_each (begin(a), end(a), [&](int n) {
 results2.push_back(make_tuple(n, fibonacci(n)));
 });

 // Because parallel_for_each acts concurrently, the results do not
 // have a pre-determined order. Sort the concurrent_vector object
 // so that the results match the serial version.
 sort(begin(results2), end(results2));
 });
 wcout << L"parallel time: " << elapsed << L" ms" << endl << endl;

 // Print the results.
 for_each (begin(results2), end(results2), [](tuple<int,int>& pair) {
 wcout << L"fib(" << get<0>(pair) << L"): " << get<1>(pair) << endl;
 });
}

The following sample output is for a computer that has four processors.

serial time: 9250 ms
parallel time: 5726 ms

fib(24): 46368
fib(26): 121393
fib(41): 165580141
fib(42): 267914296

Related Topics
TITLE DESCRIPTION

Task Parallelism Describes the role of tasks and task groups in the PPL.

Parallel Algorithms Describes how to use parallel algorithms such as
parallel_for and parallel_for_each .

Parallel Containers and Objects Describes the various parallel containers and objects that
are provided by the PPL.

Cancellation in the PPL Explains how to cancel the work that is being performed by
a parallel algorithm.

Concurrency Runtime Describes the Concurrency Runtime, which simplifies parallel
programming, and contains links to related topics.

Each iteration of the loop requires a different amount of time to finish. The performance of parallel_for_each

is bounded by the operation that finishes last. Therefore, you should not expect linear performance
improvements between the serial and parallel versions of this example.

Task Parallelism (Concurrency Runtime)
11/8/2018 • 27 minutes to read • Edit Online

TIP

Key Points

In this Document

In the Concurrency Runtime, a task is a unit of work that performs a specific job and typically runs in parallel
with other tasks. A task can be decomposed into additional, more fine-grained tasks that are organized into a
task group.

You use tasks when you write asynchronous code and want some operation to occur after the asynchronous
operation completes. For example, you could use a task to asynchronously read from a file and then use
another task—a continuation task, which is explained later in this document—to process the data after it
becomes available. Conversely, you can use tasks groups to decompose parallel work into smaller pieces. For
example, suppose you have a recursive algorithm that divides the remaining work into two partitions. You
can use task groups to run these partitions concurrently, and then wait for the divided work to complete.

When you want to apply the same routine to every element of a collection in parallel, use a parallel algorithm, such as
concurrency::parallel_for, instead of a task or task group. For more information about parallel algorithms, see Parallel
Algorithms.

When you pass variables to a lambda expression by reference, you must guarantee that the lifetime of
that variable persists until the task finishes.

Use tasks (the concurrency::task class) when you write asynchronous code. The task class uses the
Windows ThreadPool as its scheduler, not the Concurrency Runtime.

Use task groups (the concurrency::task_group class or the concurrency::parallel_invoke algorithm)
when you want to decompose parallel work into smaller pieces and then wait for those smaller pieces
to complete.

Use the concurrency::task::then method to create continuations. A continuation is a task that runs
asynchronously after another task completes. You can connect any number of continuations to form a
chain of asynchronous work.

A task-based continuation is always scheduled for execution when the antecedent task finishes, even
when the antecedent task is canceled or throws an exception.

Use concurrency::when_all to create a task that completes after every member of a set of tasks
completes. Use concurrency::when_any to create a task that completes after one member of a set of
tasks completes.

Tasks and task groups can participate in the Parallel Patterns Library (PPL) cancellation mechanism.
For more information, see Cancellation in the PPL.

To learn how the runtime handles exceptions that are thrown by tasks and task groups, see Exception
Handling.

Using Lambda Expressions

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/task-parallelism-concurrency-runtime.md

 Using Lambda Expressions

The task Class

Continuation Tasks

Value-Based Versus Task-Based Continuations

Composing Tasks

The when_all Function

The when_any Function

Delayed Task Execution

Task Groups

Comparing task_group to structured_task_group

Example

Robust Programming

Because of their succinct syntax, lambda expressions are a common way to define the work that is performed
by tasks and task groups. Here are some usage tips:

Because tasks typically run on background threads, be aware of the object lifetime when you capture
variables in lambda expressions. When you capture a variable by value, a copy of that variable is made
in the lambda body. When you capture by reference, a copy is not made. Therefore, ensure that the
lifetime of any variable that you capture by reference outlives the task that uses it.

When you pass a lambda expression to a task, don’t capture variables that are allocated on the stack
by reference.

Be explicit about the variables you capture in lambda expressions so that you can identify what you’re
capturing by value versus by reference. For this reason we recommend that you do not use the [=] or
[&] options for lambda expressions.

A common pattern is when one task in a continuation chain assigns to a variable, and another task reads that
variable. You can’t capture by value because each continuation task would hold a different copy of the
variable. For stack-allocated variables, you also can’t capture by reference because the variable may no longer
be valid.

To solve this problem, use a smart pointer, such as std::shared_ptr, to wrap the variable and pass the smart
pointer by value. In this way, the underlying object can be assigned to and read from, and will outlive the
tasks that use it. Use this technique even when the variable is a pointer or a reference-counted handle (^) to
a Windows Runtime object. Here’s a basic example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/shared-ptr-class

// lambda-task-lifetime.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>
#include <string>

using namespace concurrency;
using namespace std;

task<wstring> write_to_string()
{
 // Create a shared pointer to a string that is
 // assigned to and read by multiple tasks.
 // By using a shared pointer, the string outlives
 // the tasks, which can run in the background after
 // this function exits.
 auto s = make_shared<wstring>(L"Value 1");

 return create_task([s]
 {
 // Print the current value.
 wcout << L"Current value: " << *s << endl;
 // Assign to a new value.
 *s = L"Value 2";

 }).then([s]
 {
 // Print the current value.
 wcout << L"Current value: " << *s << endl;
 // Assign to a new value and return the string.
 *s = L"Value 3";
 return *s;
 });
}

int wmain()
{
 // Create a chain of tasks that work with a string.
 auto t = write_to_string();

 // Wait for the tasks to finish and print the result.
 wcout << L"Final value: " << t.get() << endl;
}

/* Output:
 Current value: Value 1
 Current value: Value 2
 Final value: Value 3
*/

The task Class

For more information about lambda expressions, see Lambda Expressions.

You can use the concurrency::task class to compose tasks into a set of dependent operations. This
composition model is supported by the notion of continuations. A continuation enables code to be executed
when the previous, or antecedent, task completes. The result of the antecedent task is passed as the input to
the one or more continuation tasks. When an antecedent task completes, any continuation tasks that are
waiting on it are scheduled for execution. Each continuation task receives a copy of the result of the
antecedent task. In turn, those continuation tasks may also be antecedent tasks for other continuations,
thereby creating a chain of tasks. Continuations help you create arbitrary-length chains of tasks that have
specific dependencies among them. In addition, a task can participate in cancellation either before a tasks
starts or in a cooperative manner while it is running. For more information about this cancellation model, see

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp

// basic-task.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create a task.
 task<int> t([]()
 {
 return 42;
 });

 // In this example, you don't necessarily need to call wait() because
 // the call to get() also waits for the result.
 t.wait();

 // Print the result.
 wcout << t.get() << endl;
}

/* Output:
 42
*/

Cancellation in the PPL.

task is a template class. The type parameter T is the type of the result that is produced by the task. This
type can be void if the task does not return a value. T cannot use the const modifier.

When you create a task, you provide a work function that performs the task body. This work function comes
in the form of a lambda function, function pointer, or function object. To wait for a task to finish without
obtaining the result, call the concurrency::task::wait method. The task::wait method returns a
concurrency::task_status value that describes whether the task was completed or canceled. To get the result of
the task, call the concurrency::task::get method. This method calls task::wait to wait for the task to finish,
and therefore blocks execution of the current thread until the result is available.

The following example shows how to create a task, wait for its result, and display its value. The examples in
this documentation use lambda functions because they provide a more succinct syntax. However, you can
also use function pointers and function objects when you use tasks.

When you use the concurrency::create_task function, you can use the auto keyword instead of declaring the
type. For example, consider this code that creates and prints the identity matrix:

// create-task.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <string>
#include <iostream>
#include <array>

using namespace concurrency;
using namespace std;

int wmain()
{
 task<array<array<int, 10>, 10>> create_identity_matrix([]
 {
 array<array<int, 10>, 10> matrix;
 int row = 0;
 for_each(begin(matrix), end(matrix), [&row](array<int, 10>& matrixRow)
 {
 fill(begin(matrixRow), end(matrixRow), 0);
 matrixRow[row] = 1;
 row++;
 });
 return matrix;
 });

 auto print_matrix = create_identity_matrix.then([](array<array<int, 10>, 10> matrix)
 {
 for_each(begin(matrix), end(matrix), [](array<int, 10>& matrixRow)
 {
 wstring comma;
 for_each(begin(matrixRow), end(matrixRow), [&comma](int n)
 {
 wcout << comma << n;
 comma = L", ";
 });
 wcout << endl;
 });
 });

 print_matrix.wait();
}
/* Output:
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
*/

You can use the create_task function to create the equivalent operation.

auto create_identity_matrix = create_task([]
{
 array<array<int, 10>, 10> matrix;
 int row = 0;
 for_each(begin(matrix), end(matrix), [&row](array<int, 10>& matrixRow)
 {
 fill(begin(matrixRow), end(matrixRow), 0);
 matrixRow[row] = 1;
 row++;
 });
 return matrix;
});

TIP

Continuation Tasks

If an exception is thrown during the execution of a task, the runtime marshals that exception in the
subsequent call to task::get or task::wait , or to a task-based continuation. For more information about
the task exception-handling mechanism, see Exception Handling.

For an example that uses task , concurrency::task_completion_event, cancellation, see Walkthrough:
Connecting Using Tasks and XML HTTP Requests. (The task_completion_event class is described later in this
document.)

To learn details that are specific to tasks in UWP apps, see Asynchronous programming in C++ and Creating
Asynchronous Operations in C++ for UWP Apps.

In asynchronous programming, it is very common for one asynchronous operation, on completion, to invoke
a second operation and pass data to it. Traditionally, this is done by using callback methods. In the
Concurrency Runtime, the same functionality is provided by continuation tasks. A continuation task (also
known just as a continuation) is an asynchronous task that is invoked by another task, which is known as the
antecedent, when the antecedent completes. By using continuations, you can:

Pass data from the antecedent to the continuation.

Specify the precise conditions under which the continuation is invoked or not invoked.

Cancel a continuation either before it starts or cooperatively while it is running.

Provide hints about how the continuation should be scheduled. (This applies to Universal Windows
Platform (UWP) apps only. For more information, see Creating Asynchronous Operations in C++ for
UWP Apps.)

Invoke multiple continuations from the same antecedent.

Invoke one continuation when all or any of multiple antecedents complete.

Chain continuations one after another to any length.

Use a continuation to handle exceptions that are thrown by the antecedent.

These features enable you to execute one or more tasks when the first task completes. For example, you can
create a continuation that compresses a file after the first task reads it from disk.

The following example modifies the previous one to use the concurrency::task::then method to schedule a
continuation that prints the value of the antecedent task when it is available.

https://docs.microsoft.com/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps

// basic-continuation.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 auto t = create_task([]() -> int
 {
 return 42;
 });

 t.then([](int result)
 {
 wcout << result << endl;
 }).wait();

 // Alternatively, you can chain the tasks directly and
 // eliminate the local variable.
 /*create_task([]() -> int
 {
 return 42;
 }).then([](int result)
 {
 wcout << result << endl;
 }).wait();*/
}

/* Output:
 42
*/

// continuation-chain.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 auto t = create_task([]() -> int
 {
 return 0;
 });

 // Create a lambda that increments its input value.
 auto increment = [](int n) { return n + 1; };

 // Run a chain of continuations and print the result.
 int result = t.then(increment).then(increment).then(increment).get();
 wcout << result << endl;
}

/* Output:
 3
*/

You can chain and nest tasks to any length. A task can also have multiple continuations. The following
example illustrates a basic continuation chain that increments the value of the previous task three times.

// async-unwrapping.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 auto t = create_task([]()
 {
 wcout << L"Task A" << endl;

 // Create an inner task that runs before any continuation
 // of the outer task.
 return create_task([]()
 {
 wcout << L"Task B" << endl;
 });
 });

 // Run and wait for a continuation of the outer task.
 t.then([]()
 {
 wcout << L"Task C" << endl;
 }).wait();
}

/* Output:
 Task A
 Task B
 Task C
*/

IMPORTANT

Value-Based Versus Task-Based Continuations

A continuation can also return another task. If there is no cancellation, then this task is executed before the
subsequent continuation. This technique is known as asynchronous unwrapping. Asynchronous unwrapping
is useful when you want to perform additional work in the background, but do not want the current task to
block the current thread. (This is common in UWP apps, where continuations can run on the UI thread). The
following example shows three tasks. The first task returns another task that is run before a continuation task.

When a continuation of a task returns a nested task of type N , the resulting task has the type N , not task<N> , and
completes when the nested task completes. In other words, the continuation performs the unwrapping of the nested
task.

Given a task object whose return type is T , you can provide a value of type T or task<T> to its
continuation tasks. A continuation that takes type T is known as a value-based continuation. A value-based
continuation is scheduled for execution when the antecedent task completes without error and is not
canceled. A continuation that takes type task<T> as its parameter is known as a task-based continuation. A
task-based continuation is always scheduled for execution when the antecedent task finishes, even when the
antecedent task is canceled or throws an exception. You can then call task::get to get the result of the
antecedent task. If the antecedent task was canceled, task::get throws concurrency::task_canceled. If the
antecedent task threw an exception, task::get rethrows that exception. A task-based continuation is not
marked as canceled when its antecedent task is canceled.

Composing Tasks

The when_all Function

// join-tasks.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <array>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Start multiple tasks.
 array<task<void>, 3> tasks =
 {
 create_task([] { wcout << L"Hello from taskA." << endl; }),
 create_task([] { wcout << L"Hello from taskB." << endl; }),
 create_task([] { wcout << L"Hello from taskC." << endl; })
 };

 auto joinTask = when_all(begin(tasks), end(tasks));

 // Print a message from the joining thread.
 wcout << L"Hello from the joining thread." << endl;

 // Wait for the tasks to finish.
 joinTask.wait();
}

/* Sample output:
 Hello from the joining thread.
 Hello from taskA.
 Hello from taskC.
 Hello from taskB.
*/

NOTE

This section describes the concurrency::when_all and concurrency::when_any functions, which can help you
compose multiple tasks to implement common patterns.

The when_all function produces a task that completes after a set of tasks complete. This function returns a
std::vector object that contains the result of each task in the set. The following basic example uses when_all

to create a task that represents the completion of three other tasks.

The tasks that you pass to when_all must be uniform. In other words, they must all return the same type.

You can also use the && syntax to produce a task that completes after a set of tasks complete, as shown in
the following example.

auto t = t1 && t2; // same as when_all

It is common to use a continuation together with when_all to perform an action after a set of tasks finishes.
The following example modifies the previous one to print the sum of three tasks that each produce an int

result.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

// Start multiple tasks.
array<task<int>, 3> tasks =
{
 create_task([]() -> int { return 88; }),
 create_task([]() -> int { return 42; }),
 create_task([]() -> int { return 99; })
};

auto joinTask = when_all(begin(tasks), end(tasks)).then([](vector<int> results)
{
 wcout << L"The sum is "
 << accumulate(begin(results), end(results), 0)
 << L'.' << endl;
});

// Print a message from the joining thread.
wcout << L"Hello from the joining thread." << endl;

// Wait for the tasks to finish.
joinTask.wait();

/* Output:
 Hello from the joining thread.
 The sum is 229.
*/

In this example, you can also specify task<vector<int>> to produce a task-based continuation.

If any task in a set of tasks is canceled or throws an exception, when_all immediately completes and does not
wait for the remaining tasks to finish. If an exception is thrown, the runtime rethrows the exception when you
call task::get or task::wait on the task object that when_all returns. If more than one task throws, the
runtime chooses one of them. Therefore, ensure that you observe all exceptions after all tasks complete; an
unhandled task exception causes the app to terminate.

Here’s a utility function that you can use to ensure that your program observes all exceptions. For each task
in the provided range, observe_all_exceptions triggers any exception that occurred to be rethrown and then
swallows that exception.

// Observes all exceptions that occurred in all tasks in the given range.
template<class T, class InIt>
void observe_all_exceptions(InIt first, InIt last)
{
 std::for_each(first, last, [](concurrency::task<T> t)
 {
 t.then([](concurrency::task<T> previousTask)
 {
 try
 {
 previousTask.get();
 }
 // Although you could catch (...), this demonstrates how to catch specific exceptions. Your
app
 // might handle different exception types in different ways.
 catch (Platform::Exception^)
 {
 // Swallow the exception.
 }
 catch (const std::exception&)
 {
 // Swallow the exception.
 }
 });
 });
}

Consider a UWP app that uses C++ and XAML and writes a set of files to disk. The following example shows
how to use when_all and observe_all_exceptions to ensure that the program observes all exceptions.

// Writes content to files in the provided storage folder.
// The first element in each pair is the file name. The second element holds the file contents.
task<void> MainPage::WriteFilesAsync(StorageFolder^ folder, const vector<pair<String^, String^>>&
fileContents)
{
 // For each file, create a task chain that creates the file and then writes content to it. Then add
the task chain to a vector of tasks.
 vector<task<void>> tasks;
 for (auto fileContent : fileContents)
 {
 auto fileName = fileContent.first;
 auto content = fileContent.second;

 // Create the file. The CreationCollisionOption::FailIfExists flag specifies to fail if the file
already exists.
 tasks.emplace_back(create_task(folder->CreateFileAsync(fileName,
CreationCollisionOption::FailIfExists)).then([content](StorageFile^ file)
 {
 // Write its contents.
 return create_task(FileIO::WriteTextAsync(file, content));
 }));
 }

 // When all tasks finish, create a continuation task that observes any exceptions that occurred.
 return when_all(begin(tasks), end(tasks)).then([tasks](task<void> previousTask)
 {
 task_status status = completed;
 try
 {
 status = previousTask.wait();
 }
 catch (COMException^ e)
 {
 // We'll handle the specific errors below.
 }
 // TODO: If other exception types might happen, add catch handlers here.

 // Ensure that we observe all exceptions.
 observe_all_exceptions<void>(begin(tasks), end(tasks));

 // Cancel any continuations that occur after this task if any previous task was canceled.
 // Although cancellation is not part of this example, we recommend this pattern for cases that
do.
 if (status == canceled)
 {
 cancel_current_task();
 }
 });
}

To r u n t h i s e x a m p l e

<Button x:Name="Button1" Click="Button_Click">Write files</Button>

void Button_Click(Platform::Object^ sender, Windows::UI::Xaml::RoutedEventArgs^ e);
concurrency::task<void> WriteFilesAsync(Windows::Storage::StorageFolder^ folder, const
std::vector<std::pair<Platform::String^, Platform::String^>>& fileContents);

1. In MainPage.xaml, add a Button control.

1. In MainPage.xaml.h, add these forward declarations to the private section of the MainPage class
declaration.

// A button click handler that demonstrates the scenario.
void MainPage::Button_Click(Object^ sender, RoutedEventArgs^ e)
{
 // In this example, the same file name is specified two times. WriteFilesAsync fails if one of the
files already exists.
 vector<pair<String^, String^>> fileContents;
 fileContents.emplace_back(make_pair(ref new String(L"file1.txt"), ref new String(L"Contents of file
1")));
 fileContents.emplace_back(make_pair(ref new String(L"file2.txt"), ref new String(L"Contents of file
2")));
 fileContents.emplace_back(make_pair(ref new String(L"file1.txt"), ref new String(L"Contents of file
3")));

 Button1->IsEnabled = false; // Disable the button during the operation.
 WriteFilesAsync(ApplicationData::Current->TemporaryFolder, fileContents).then([this](task<void>
previousTask)
 {
 try
 {
 previousTask.get();
 }
 // Although cancellation is not part of this example, we recommend this pattern for cases that
do.
 catch (const task_canceled&)
 {
 // Your app might show a message to the user, or handle the error in some other way.
 }

 Button1->IsEnabled = true; // Enable the button.
 });
}

TIP

The when_any Function

1. In MainPage.xaml.cpp, implement the Button_Click event handler.

1. In MainPage.xaml.cpp, implement WriteFilesAsync as shown in the example.

when_all is a non-blocking function that produces a task as its result. Unlike task::wait, it is safe to call this
function in a UWP app on the ASTA (Application STA) thread.

The when_any function produces a task that completes when the first task in a set of tasks completes. This
function returns a std::pair object that contains the result of the completed task and the index of that task in
the set.

The when_any function is especially useful in the following scenarios:

Redundant operations. Consider an algorithm or operation that can be performed in many ways. You
can use the when_any function to select the operation that finishes first and then cancel the remaining
operations.

Interleaved operations. You can start multiple operations that all must finish and use the when_any

function to process results as each operation finishes. After one operation finishes, you can start one
or more additional tasks.

Throttled operations. You can use the when_any function to extend the previous scenario by limiting
the number of concurrent operations.

Expired operations. You can use the when_any function to select between one or more tasks and a task

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

// select-task.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <array>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Start multiple tasks.
 array<task<int>, 3> tasks = {
 create_task([]() -> int { return 88; }),
 create_task([]() -> int { return 42; }),
 create_task([]() -> int { return 99; })
 };

 // Select the first to finish.
 when_any(begin(tasks), end(tasks)).then([](pair<int, size_t> result)
 {
 wcout << "First task to finish returns "
 << result.first
 << L" and has index "
 << result.second
 << L'.' << endl;
 }).wait();
}

/* Sample output:
 First task to finish returns 42 and has index 1.
*/

NOTE

TIP

Delayed Task Execution

that finishes after a specific time.

As with when_all , it is common to use a continuation that has when_any to perform action when the first in a
set of tasks finish. The following basic example uses when_any to create a task that completes when the first
of three other tasks completes.

In this example, you can also specify task<pair<int, size_t>> to produce a task-based continuation.

As with when_all , the tasks that you pass to when_any must all return the same type.

You can also use the || syntax to produce a task that completes after the first task in a set of tasks
completes, as shown in the following example.

auto t = t1 || t2; // same as when_any

As with when_all , when_any is non-blocking and is safe to call in a UWP app on the ASTA thread.

It is sometimes necessary to delay the execution of a task until a condition is satisfied, or to start a task in
response to an external event. For example, in asynchronous programming, you might have to start a task in
response to an I/O completion event.

 Task Groups

IMPORTANT

Two ways to accomplish this are to use a continuation or to start a task and wait on an event inside the task’s
work function. However, there are cases where is it not possible to use one of these techniques. For example,
to create a continuation, you must have the antecedent task. However, if you do not have the antecedent task,
you can create a task completion event and later chain that completion event to the antecedent task when it
becomes available. In addition, because a waiting task also blocks a thread, you can use task completion
events to perform work when an asynchronous operation completes, and thereby free a thread.

The concurrency::task_completion_event class helps simplify such composition of tasks. Like the task class,
the type parameter T is the type of the result that is produced by the task. This type can be void if the task
does not return a value. T cannot use the const modifier. Typically, a task_completion_event object is
provided to a thread or task that will signal it when the value for it becomes available. At the same time, one
or more tasks are set as listeners of that event. When the event is set, the listener tasks complete and their
continuations are scheduled to run.

For an example that uses task_completion_event to implement a task that completes after a delay, see How
to: Create a Task that Completes After a Delay.

A task group organizes a collection of tasks. Task groups push tasks on to a work-stealing queue. The
scheduler removes tasks from this queue and executes them on available computing resources. After you add
tasks to a task group, you can wait for all tasks to finish or cancel tasks that have not yet started.

The PPL uses the concurrency::task_group and concurrency::structured_task_group classes to represent task
groups, and the concurrency::task_handle class to represent the tasks that run in these groups. The
task_handle class encapsulates the code that performs work. Like the task class, the work function comes

in the form of a lambda function, function pointer, or function object. You typically do not need to work with
task_handle objects directly. Instead, you pass work functions to a task group, and the task group creates and

manages the task_handle objects.

The PPL divides task groups into these two categories: unstructured task groups and structured task groups.
The PPL uses the task_group class to represent unstructured task groups and the structured_task_group

class to represent structured task groups.

The PPL also defines the concurrency::parallel_invoke algorithm, which uses the structured_task_group class to
execute a set of tasks in parallel. Because the parallel_invoke algorithm has a more succinct syntax, we recommend
that you use it instead of the structured_task_group class when you can. The topic Parallel Algorithms describes
parallel_invoke in greater detail.

Use parallel_invoke when you have several independent tasks that you want to execute at the same time,
and you must wait for all tasks to finish before you continue. This technique is often referred to as fork and
join parallelism. Use task_group when you have several independent tasks that you want to execute at the
same time, but you want to wait for the tasks to finish at a later time. For example, you can add tasks to a
task_group object and wait for the tasks to finish in another function or from another thread.

Task groups support the concept of cancellation. Cancellation enables you to signal to all active tasks that you
want to cancel the overall operation. Cancellation also prevents tasks that have not yet started from starting.
For more information about cancellation, see Cancellation in the PPL.

The runtime also provides an exception-handling model that enables you to throw an exception from a task
and handle that exception when you wait for the associated task group to finish. For more information about
this exception-handling model, see Exception Handling.

 Comparing task_group to structured_task_group

// make-task-structure.cpp
// compile with: /EHsc
#include <ppl.h>

using namespace concurrency;

int wmain()
{
 // Use the make_task function to define several tasks.
 auto task1 = make_task([] { /*TODO: Define the task body.*/ });
 auto task2 = make_task([] { /*TODO: Define the task body.*/ });
 auto task3 = make_task([] { /*TODO: Define the task body.*/ });

 // Create a structured task group and run the tasks concurrently.

 structured_task_group tasks;

 tasks.run(task1);
 tasks.run(task2);
 tasks.run_and_wait(task3);
}

Although we recommend that you use task_group or parallel_invoke instead of the structured_task_group

class, there are cases where you want to use structured_task_group , for example, when you write a parallel
algorithm that performs a variable number of tasks or requires support for cancellation. This section explains
the differences between the task_group and structured_task_group classes.

The task_group class is thread-safe. Therefore you can add tasks to a task_group object from multiple
threads and wait on or cancel a task_group object from multiple threads. The construction and destruction of
a structured_task_group object must occur in the same lexical scope. In addition, all operations on a
structured_task_group object must occur on the same thread. The exception to this rule is the

concurrency::structured_task_group::cancel and concurrency::structured_task_group::is_canceling methods. A
child task can call these methods to cancel the parent task group or check for cancelation at any time.

You can run additional tasks on a task_group object after you call the concurrency::task_group::wait or
concurrency::task_group::run_and_wait method. Conversely, if you run additional tasks on a
structured_task_group object after you call the concurrency::structured_task_group::wait or

concurrency::structured_task_group::run_and_wait methods, then the behavior is undefined.

Because the structured_task_group class does not synchronize across threads, it has less execution overhead
than the task_group class. Therefore, if your problem does not require that you schedule work from multiple
threads and you cannot use the parallel_invoke algorithm, the structured_task_group class can help you
write better performing code.

If you use one structured_task_group object inside another structured_task_group object, the inner object
must finish and be destroyed before the outer object finishes. The task_group class does not require for
nested task groups to finish before the outer group finishes.

Unstructured task groups and structured task groups work with task handles in different ways. You can pass
work functions directly to a task_group object; the task_group object will create and manage the task handle
for you. The structured_task_group class requires you to manage a task_handle object for each task. Every
task_handle object must remain valid throughout the lifetime of its associated structured_task_group object.

Use the concurrency::make_task function to create a task_handle object, as shown in the following basic
example:

To manage task handles for cases where you have a variable number of tasks, use a stack-allocation routine

 Example

// using-task-groups.cpp
// compile with: /EHsc
#include <ppl.h>
#include <sstream>
#include <iostream>

using namespace concurrency;
using namespace std;

// Prints a message to the console.
template<typename T>
void print_message(T t)
{
 wstringstream ss;
 ss << L"Message from task: " << t << endl;
 wcout << ss.str();
}

int wmain()
{
 // A task_group object that can be used from multiple threads.
 task_group tasks;

 // Concurrently add several tasks to the task_group object.
 parallel_invoke(
 [&] {
 // Add a few tasks to the task_group object.
 tasks.run([] { print_message(L"Hello"); });
 tasks.run([] { print_message(42); });
 },
 [&] {
 // Add one additional task to the task_group object.
 tasks.run([] { print_message(3.14); });
 }
);

 // Wait for all tasks to finish.
 tasks.wait();
}

Message from task: Hello
Message from task: 3.14
Message from task: 42

such as _malloca or a container class, such as std::vector.

Both task_group and structured_task_group support cancellation. For more information about cancellation,
see Cancellation in the PPL.

The following basic example shows how to work with task groups. This example uses the parallel_invoke

algorithm to perform two tasks concurrently. Each task adds sub-tasks to a task_group object. Note that the
task_group class allows for multiple tasks to add tasks to it concurrently.

The following is sample output for this example:

Because the parallel_invoke algorithm runs tasks concurrently, the order of the output messages could vary.

For complete examples that show how to use the parallel_invoke algorithm, see How to: Use
parallel_invoke to Write a Parallel Sort Routine and How to: Use parallel_invoke to Execute Parallel

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloca
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

 Robust Programming

Related Topics
TITLE DESCRIPTION

How to: Use parallel_invoke to Write a Parallel Sort Routine Shows how to use the parallel_invoke algorithm to
improve the performance of the bitonic sort algorithm.

How to: Use parallel_invoke to Execute Parallel Operations Shows how to use the parallel_invoke algorithm to
improve the performance of a program that performs
multiple operations on a shared data source.

How to: Create a Task that Completes After a Delay Shows how to use the task ,
cancellation_token_source , cancellation_token , and
task_completion_event classes to create a task that

completes after a delay.

Walkthrough: Implementing Futures Shows how to combine existing functionality in the
Concurrency Runtime into something that does more.

Parallel Patterns Library (PPL) Describes the PPL, which provides an imperative
programming model for developing concurrent
applications.

Reference

Operations. For a complete example that uses the task_group class to implement asynchronous futures, see
Walkthrough: Implementing Futures.

Make sure that you understand the role of cancellation and exception handling when you use tasks, task
groups, and parallel algorithms. For example, in a tree of parallel work, a task that is canceled prevents child
tasks from running. This can cause problems if one of the child tasks performs an operation that is important
to your application, such as freeing a resource. In addition, if a child task throws an exception, that exception
could propagate through an object destructor and cause undefined behavior in your application. For an
example that illustrates these points, see the Understand how Cancellation and Exception Handling Affect
Object Destruction section in the Best Practices in the Parallel Patterns Library document. For more
information about the cancellation and exception-handling models in the PPL, see Cancellation and Exception
Handling.

task Class (Concurrency Runtime)

task_completion_event Class

when_all Function

when_any Function

task_group Class

parallel_invoke Function

structured_task_group Class

How to: Use parallel_invoke to Write a Parallel Sort
Routine
3/4/2019 • 8 minutes to read • Edit Online

NOTE

Sections

Performing Bitonic Sort Serially

This document describes how to use the parallel_invoke algorithm to improve the performance of the bitonic sort
algorithm. The bitonic sort algorithm recursively divides the input sequence into smaller sorted partitions. The
bitonic sort algorithm can run in parallel because each partition operation is independent of all other operations.

Although the bitonic sort is an example of a sorting network that sorts all combinations of input sequences, this
example sorts sequences whose lengths are a power of two.

This example uses a parallel sort routine for illustration. You can also use the built-in sorting algorithms that the PPL
provides: concurrency::parallel_sort, concurrency::parallel_buffered_sort, and concurrency::parallel_radixsort. For more
information, see Parallel Algorithms.

This document describes the following tasks:

Performing Bitonic Sort Serially

Using parallel_invoke to Perform Bitonic Sort in Parallel

The following example shows the serial version of the bitonic sort algorithm. The bitonic_sort function divides
the sequence into two partitions, sorts those partitions in opposite directions, and then merges the results. This
function calls itself two times recursively to sort each partition.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-parallel-invoke-to-write-a-parallel-sort-routine.md

const bool INCREASING = true;
const bool DECREASING = false;

// Comparator function for the bitonic sort algorithm.
template <class T>
void compare(T* items, int i, int j, bool dir)
{
 if (dir == (items[i] > items[j]))
 {
 swap(items[i], items[j]);
 }
}

// Sorts a bitonic sequence in the specified order.
template <class T>
void bitonic_merge(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 int m = n / 2;
 for (int i = lo; i < lo + m; ++i)
 {
 compare(items, i, i + m, dir);
 }
 bitonic_merge(items, lo, m, dir);
 bitonic_merge(items, lo + m, m, dir);
 }
}

// Sorts the given sequence in the specified order.
template <class T>
void bitonic_sort(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;
 bitonic_sort(items, lo, m, INCREASING);
 bitonic_sort(items, lo + m, m, DECREASING);

 // Merge the results.
 bitonic_merge(items,lo, n, dir);
 }
}

// Sorts the given sequence in increasing order.
template <class T>
void bitonic_sort(T* items, int size)
{
 bitonic_sort(items, 0, size, INCREASING);
}

Using parallel_invoke to Perform Bitonic Sort in Parallel

Procedures
To p e r fo r m t h e b i t o n i c so r t a l g o r i t h m i n p a r a l l e l

[Top]

This section describes how to use the parallel_invoke algorithm to perform the bitonic sort algorithm in parallel.

1. Add a #include directive for the header file ppl.h.

#include <ppl.h>

using namespace concurrency;

// Sorts a bitonic sequence in the specified order.
template <class T>
void parallel_bitonic_merge(T* items, int lo, int n, bool dir)
{
 // Merge the sequences concurrently if there is sufficient work to do.
 if (n > 500)
 {
 int m = n / 2;
 for (int i = lo; i < lo + m; ++i)
 {
 compare(items, i, i + m, dir);
 }

 // Use the parallel_invoke algorithm to merge the sequences in parallel.
 parallel_invoke(
 [&items,lo,m,dir] { parallel_bitonic_merge(items, lo, m, dir); },
 [&items,lo,m,dir] { parallel_bitonic_merge(items, lo + m, m, dir); }
);
 }
 // Otherwise, perform the work serially.
 else if (n > 1)
 {
 bitonic_merge(items, lo, n, dir);
 }
}

// Sorts the given sequence in the specified order.
template <class T>
void parallel_bitonic_sort(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;

 // Sort the partitions in parallel.
 parallel_invoke(
 [&items,lo,m] { parallel_bitonic_sort(items, lo, m, INCREASING); },
 [&items,lo,m] { parallel_bitonic_sort(items, lo + m, m, DECREASING); }
);

 // Merge the results.
 parallel_bitonic_merge(items, lo, n, dir);
 }
}

1. Add a using directive for the concurrency namespace.

1. Create a new function, called parallel_bitonic_mege , which uses the parallel_invoke algorithm to merge the
sequences in parallel if there is sufficient amount of work to do. Otherwise, call bitonic_merge to merge the
sequences serially.

1. Perform a process that resembles the one in the previous step, but for the bitonic_sort function.

1. Create an overloaded version of the parallel_bitonic_sort function that sorts the array in increasing order.

// Sorts the given sequence in increasing order.
template <class T>
void parallel_bitonic_sort(T* items, int size)
{
 parallel_bitonic_sort(items, 0, size, INCREASING);
}

// Sort the partitions in parallel.
parallel_invoke(
 [&items,lo,m] { parallel_bitonic_sort(items, lo, m, INCREASING); },
 [&items,lo,m] { parallel_bitonic_sort(items, lo + m, m, DECREASING); }
);

// parallel-bitonic-sort.cpp
// compile with: /EHsc
#include <windows.h>
#include <algorithm>
#include <iostream>
#include <random>
#include <ppl.h>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

const bool INCREASING = true;
const bool DECREASING = false;

// Comparator function for the bitonic sort algorithm.
template <class T>
void compare(T* items, int i, int j, bool dir)
{
 if (dir == (items[i] > items[j]))
 {
 swap(items[i], items[j]);
 }
}

// Sorts a bitonic sequence in the specified order.
template <class T>
void bitonic_merge(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 int m = n / 2;
 for (int i = lo; i < lo + m; ++i)
 {
 compare(items, i, i + m, dir);

The parallel_invoke algorithm reduces overhead by performing the last of the series of tasks on the calling
context. For example, in the parallel_bitonic_sort function, the first task runs on a separate context, and the
second task runs on the calling context.

The following complete example performs both the serial and the parallel versions of the bitonic sort algorithm.
The example also prints to the console the time that is required to perform each computation.

 compare(items, i, i + m, dir);
 }
 bitonic_merge(items, lo, m, dir);
 bitonic_merge(items, lo + m, m, dir);
 }
}

// Sorts the given sequence in the specified order.
template <class T>
void bitonic_sort(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;
 bitonic_sort(items, lo, m, INCREASING);
 bitonic_sort(items, lo + m, m, DECREASING);

 // Merge the results.
 bitonic_merge(items,lo, n, dir);
 }
}

// Sorts the given sequence in increasing order.
template <class T>
void bitonic_sort(T* items, int size)
{
 bitonic_sort(items, 0, size, INCREASING);
}

// Sorts a bitonic sequence in the specified order.
template <class T>
void parallel_bitonic_merge(T* items, int lo, int n, bool dir)
{
 // Merge the sequences concurrently if there is sufficient work to do.
 if (n > 500)
 {
 int m = n / 2;
 for (int i = lo; i < lo + m; ++i)
 {
 compare(items, i, i + m, dir);
 }

 // Use the parallel_invoke algorithm to merge the sequences in parallel.
 parallel_invoke(
 [&items,lo,m,dir] { parallel_bitonic_merge(items, lo, m, dir); },
 [&items,lo,m,dir] { parallel_bitonic_merge(items, lo + m, m, dir); }
);
 }
 // Otherwise, perform the work serially.
 else if (n > 1)
 {
 bitonic_merge(items, lo, n, dir);
 }
}

// Sorts the given sequence in the specified order.
template <class T>
void parallel_bitonic_sort(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;

 // Sort the partitions in parallel.
 parallel_invoke(

 [&items,lo,m] { parallel_bitonic_sort(items, lo, m, INCREASING); },
 [&items,lo,m] { parallel_bitonic_sort(items, lo + m, m, DECREASING); }
);

 // Merge the results.
 parallel_bitonic_merge(items, lo, n, dir);
 }
}

// Sorts the given sequence in increasing order.
template <class T>
void parallel_bitonic_sort(T* items, int size)
{
 parallel_bitonic_sort(items, 0, size, INCREASING);
}

int wmain()
{
 // For this example, the size must be a power of two.
 const int size = 0x200000;

 // Create two large arrays and fill them with random values.
 int* a1 = new int[size];
 int* a2 = new int[size];

 mt19937 gen(42);
 for(int i = 0; i < size; ++i)
 {
 a1[i] = a2[i] = gen();
 }

 __int64 elapsed;

 // Perform the serial version of the sort.
 elapsed = time_call([&] { bitonic_sort(a1, size); });
 wcout << L"serial time: " << elapsed << endl;

 // Now perform the parallel version of the sort.
 elapsed = time_call([&] { parallel_bitonic_sort(a2, size); });
 wcout << L"parallel time: " << elapsed << endl;

 delete[] a1;
 delete[] a2;
}

serial time: 4353
parallel time: 1248

Compiling the Code

Robust Programming

The following sample output is for a computer that has four processors.

[Top]

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-bitonic-sort.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-bitonic-sort.cpp

This example uses the parallel_invoke algorithm instead of the concurrency::task_group class because the
lifetime of each task group does not extend beyond a function. We recommend that you use parallel_invoke

template <class T>
void quick_sort(T* items, int lo, int n)
{
 // TODO: The function body is omitted for brevity.
}

template <class T>
void parallel_bitonic_sort(T* items, int lo, int n, bool dir)
{
 // Use the serial quick sort algorithm if there are relatively few
 // items to sort. The associated overhead for running few tasks in
 // parallel may not overcome the benefits of parallel processing.
 if (n - lo + 1 <= 500)
 {
 quick_sort(items, lo, n);
 }
 else if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;

 // Sort the partitions in parallel.
 parallel_invoke(
 [&items,lo,m] { parallel_bitonic_sort(items, lo, m, INCREASING); },
 [&items,lo,m] { parallel_bitonic_sort(items, lo + m, m, DECREASING); }
);

 // Merge the results.
 parallel_bitonic_merge(items, lo, n, dir);
 }
}

See also

when you can because it has less execution overhead than task group objects, and therefore lets you write better
performing code.

The parallel versions of some algorithms perform better only when there is sufficient work to do. For example, the
parallel_bitonic_merge function calls the serial version, bitonic_merge , if there are 500 or fewer elements in the

sequence. You can also plan your overall sorting strategy based on the amount of work. For example, it might be
more efficient to use the serial version of the quick sort algorithm if the array contains fewer than 500 items, as
shown in the following example:

As with any parallel algorithm, we recommend that you profile and tune your code as appropriate.

Task Parallelism
parallel_invoke Function

How to: Use parallel_invoke to Execute Parallel
Operations
3/4/2019 • 7 minutes to read • Edit Online

Example

MyDataType data;
initialize_data(data);

lengthy_operation1(data);
lengthy_operation2(data);
lengthy_operation3(data);

Example

MyDataType data;
initialize_data(data);

concurrency::parallel_invoke(
 [&data] { lengthy_operation1(data); },
 [&data] { lengthy_operation2(data); },
 [&data] { lengthy_operation3(data); }
);

Example

// parallel-word-mining.cpp
// compile with: /EHsc /MD /DUNICODE /D_AFXDLL
#define _WIN32_WINNT 0x0501
#include <afxinet.h>
#include <ppl.h>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>

This example shows how to use the concurrency::parallel_invoke algorithm to improve the performance of a
program that performs multiple operations on a shared data source. Because no operations modify the source,
they can be executed in parallel in a straightforward manner.

Consider the following code example that creates a variable of type MyDataType , calls a function to initialize that
variable, and then performs multiple lengthy operations on that data.

If the lengthy_operation1 , lengthy_operation2 , and lengthy_operation3 functions do not modify the MyDataType

variable, these functions can be executed in parallel without additional modifications.

The following example modifies the previous example to run in parallel. The parallel_invoke algorithm executes
each task in parallel and returns after all tasks are finished.

The following example downloads The Iliad by Homer from gutenberg.org and performs multiple operations on
that file. The example first performs these operations serially and then performs the same operations in parallel.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-parallel-invoke-to-execute-parallel-operations.md

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url);

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words);

// Finds the most common words whose length are greater than or equal to the
// provided minimum.
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words,
 size_t min_length, size_t count);

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words);

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words,
 size_t min_length);

int wmain()
{
 // Manages the network connection.
 CInternetSession session(L"Microsoft Internet Browser");

 // Download 'The Iliad' from gutenberg.org.
 wcout << L"Downloading 'The Iliad'..." << endl;
 wstring file = get_http_file(session, L"http://www.gutenberg.org/files/6130/6130-0.txt");
 wcout << endl;

 // Convert the text to a list of individual words.
 vector<wstring> words;
 make_word_list(file, words);

 // Compare the time that it takes to perform several operations on the data
 // serially and in parallel.
 __int64 elapsed;

 vector<pair<wstring, size_t>> common_words;
 vector<wstring> longest_sequence;
 vector<pair<wstring, wstring>> palindromes;

 wcout << L"Running serial version...";
 elapsed = time_call([&] {
 common_words = find_common_words(words, 5, 9);
 longest_sequence = find_longest_sequence(words);
 palindromes = find_palindromes(words, 5);
 });
 wcout << L" took " << elapsed << L" ms." << endl;

 wcout << L"Running parallel version...";
 elapsed = time_call([&] {
 parallel_invoke(
 [&] { common_words = find_common_words(words, 5, 9); },
 [&] { longest_sequence = find_longest_sequence(words); },
 [&] { palindromes = find_palindromes(words, 5); }

);
 });
 wcout << L" took " << elapsed << L" ms." << endl;
 wcout << endl;

 // Print results.

 wcout << L"The most common words that have five or more letters are:"
 << endl;
 for_each(begin(common_words), end(common_words),
 [](const pair<wstring, size_t>& p) {
 wcout << L" " << p.first << L" (" << p.second << L")" << endl;
 });

 wcout << L"The longest sequence of words that have the same first letter is:"
 << endl << L" ";
 for_each(begin(longest_sequence), end(longest_sequence),
 [](const wstring& s) {
 wcout << s << L' ';
 });
 wcout << endl;

 wcout << L"The following palindromes appear in the text:" << endl;
 for_each(begin(palindromes), end(palindromes),
 [](const pair<wstring, wstring>& p) {
 wcout << L" " << p.first << L" " << p.second << endl;
 });
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url)
{
 CString result;

 // Reads data from an HTTP server.
 CHttpFile* http_file = NULL;

 try
 {
 // Open URL.
 http_file = reinterpret_cast<CHttpFile*>(session.OpenURL(url, 1));

 // Read the file.
 if(http_file != NULL)
 {
 UINT bytes_read;
 do
 {
 char buffer[10000];
 bytes_read = http_file->Read(buffer, sizeof(buffer));
 result += buffer;
 }
 while (bytes_read > 0);
 }
 }
 catch (CInternetException)
 {
 // TODO: Handle exception
 }

 // Clean up and return.
 delete http_file;

 return result;
}

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words)
{

{
 // Add continuous sequences of alphanumeric characters to the
 // string vector.
 wstring current_word;
 for_each(begin(text), end(text), [&](wchar_t ch) {
 if (!iswalnum(ch))
 {
 if (current_word.length() > 0)
 {
 words.push_back(current_word);
 current_word.clear();
 }
 }
 else
 {
 current_word += ch;
 }
 });
}

// Finds the most common words whose length are greater than or equal to the
// provided minimum.
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words,
 size_t min_length, size_t count)
{
 typedef pair<wstring, size_t> pair;

 // Counts the occurrences of each word.
 map<wstring, size_t> counts;

 for_each(begin(words), end(words), [&](const wstring& word) {
 // Increment the count of words that are at least the minimum length.
 if (word.length() >= min_length)
 {
 auto find = counts.find(word);
 if (find != end(counts))
 find->second++;
 else
 counts.insert(make_pair(word, 1));
 }
 });

 // Copy the contents of the map to a vector and sort the vector by
 // the number of occurrences of each word.
 vector<pair> wordvector;
 copy(begin(counts), end(counts), back_inserter(wordvector));

 sort(begin(wordvector), end(wordvector), [](const pair& x, const pair& y) {
 return x.second > y.second;
 });

 size_t size = min(wordvector.size(), count);
 wordvector.erase(begin(wordvector) + size, end(wordvector));

 return wordvector;
}

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words)
{
 // The current sequence of words that have the same first letter.
 vector<wstring> candidate_list;
 // The longest sequence of words that have the same first letter.
 vector<wstring> longest_run;

 for_each(begin(words), end(words), [&](const wstring& word) {
 // Initialize the candidate list if it is empty.
 if (candidate_list.size() == 0)
 {
 candidate_list.push_back(word);

 candidate_list.push_back(word);
 }
 // Add the word to the candidate sequence if the first letter
 // of the word is the same as each word in the sequence.
 else if (word[0] == candidate_list[0][0])
 {
 candidate_list.push_back(word);
 }
 // The initial letter has changed; reset the candidate list.
 else
 {
 // Update the longest sequence if needed.
 if (candidate_list.size() > longest_run.size())
 longest_run = candidate_list;

 candidate_list.clear();
 candidate_list.push_back(word);
 }
 });

 return longest_run;
}

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words,
 size_t min_length)
{
 typedef pair<wstring, wstring> pair;
 vector<pair> result;

 // Copy the words to a new vector object and sort that vector.
 vector<wstring> wordvector;
 copy(begin(words), end(words), back_inserter(wordvector));
 sort(begin(wordvector), end(wordvector));

 // Add each word in the original collection to the result whose palindrome
 // also exists in the collection.
 for_each(begin(words), end(words), [&](const wstring& word) {
 if (word.length() >= min_length)
 {
 wstring rev = word;
 reverse(begin(rev), end(rev));

 if (rev != word && binary_search(begin(wordvector), end(wordvector), rev))
 {
 auto candidate1 = make_pair(word, rev);
 auto candidate2 = make_pair(rev, word);
 if (find(begin(result), end(result), candidate1) == end(result) &&
 find(begin(result), end(result), candidate2) == end(result))
 result.push_back(candidate1);
 }
 }
 });

 return result;
}

This example produces the following sample output.

Downloading 'The Iliad'...

Running serial version... took 953 ms.
Running parallel version... took 656 ms.

The most common words that have five or more letters are:
 their (953)
 shall (444)
 which (431)
 great (398)
 Hector (349)
 Achilles (309)
 through (301)
 these (268)
 chief (259)
The longest sequence of words that have the same first letter is:
 through the tempest to the tented
The following palindromes appear in the text:
 spots stops
 speed deeps
 keels sleek

Compiling the Code

See also

This example uses the parallel_invoke algorithm to call multiple functions that act on the same data source. You
can use the parallel_invoke algorithm to call any set of functions in parallel, not only those that act on the same
data.

Because the parallel_invoke algorithm calls each work function in parallel, its performance is bounded by the
function that takes the longest time to finish (that is, if the runtime processes each function on a separate
processor). If this example performs more tasks in parallel than the number of available processors, multiple tasks
can run on each processor. In this case, performance is bounded by the group of tasks that takes the longest time
to finish.

Because this example performs three tasks in parallel, you should not expect performance to scale on computers
that have more than three processors. To improve performance more, you can break the longest-running tasks
into smaller tasks and run those tasks in parallel.

You can use the parallel_invoke algorithm instead of the concurrency::task_group and
concurrency::structured_task_group classes if you do not require support for cancellation. For an example that
compares the usage of the parallel_invoke algorithm versus task groups, see How to: Use parallel_invoke to
Write a Parallel Sort Routine.

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-word-mining.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc /MD /DUNICODE /D_AFXDLL parallel-word-mining.cpp

Parallel Algorithms
parallel_invoke Function

How to: Create a Task that Completes After a Delay
3/4/2019 • 8 minutes to read • Edit Online

Example

TIP

This example shows how to use the concurrency::task, concurrency::cancellation_token_source,
concurrency::cancellation_token, concurrency::task_completion_event, concurrency::timer, and concurrency::call
classes to create a task that completes after a delay. You can use this method to build loops that occasionally poll
for data, introduce timeouts, delay handling of user input for a predetermined time, and so on.

The following example shows the complete_after and cancel_after_timeout functions. The complete_after

function creates a task object that completes after the specified delay. It uses a timer object and a call object
to set a task_completion_event object after the specified delay. By using the task_completion_event class, you can
define a task that completes after a thread or another task signals that a value is available. When the event is set,
listener tasks complete and their continuations are scheduled to run.

For more information about the timer and call classes, which are part of the Asynchronous Agents Library, see
Asynchronous Message Blocks.

The cancel_after_timeout function builds on the complete_after function to cancel a task if that task does not
complete before a given timeout. The cancel_after_timeout function creates two tasks. The first task indicates
success and completes after the provided task completes; the second task indicates failure and completes after the
specified timeout. The cancel_after_timeout function creates a continuation task that runs when the success or
failure task completes. If the failure task completes first, the continuation cancels the token source to cancel the
overall task.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-create-a-task-that-completes-after-a-delay.md

// Creates a task that completes after the specified delay.
task<void> complete_after(unsigned int timeout)
{
 // A task completion event that is set when a timer fires.
 task_completion_event<void> tce;

 // Create a non-repeating timer.
 auto fire_once = new timer<int>(timeout, 0, nullptr, false);
 // Create a call object that sets the completion event after the timer fires.
 auto callback = new call<int>([tce](int)
 {
 tce.set();
 });

 // Connect the timer to the callback and start the timer.
 fire_once->link_target(callback);
 fire_once->start();

 // Create a task that completes after the completion event is set.
 task<void> event_set(tce);

 // Create a continuation task that cleans up resources and
 // and return that continuation task.
 return event_set.then([callback, fire_once]()
 {
 delete callback;
 delete fire_once;
 });
}

// Cancels the provided task after the specifed delay, if the task
// did not complete.
template<typename T>
task<T> cancel_after_timeout(task<T> t, cancellation_token_source cts, unsigned int timeout)
{
 // Create a task that returns true after the specified task completes.
 task<bool> success_task = t.then([](T)
 {
 return true;
 });
 // Create a task that returns false after the specified timeout.
 task<bool> failure_task = complete_after(timeout).then([]
 {
 return false;
 });

 // Create a continuation task that cancels the overall task
 // if the timeout task finishes first.
 return (failure_task || success_task).then([t, cts](bool success)
 {
 if(!success)
 {
 // Set the cancellation token. The task that is passed as the
 // t parameter should respond to the cancellation and stop
 // as soon as it can.
 cts.cancel();
 }

 // Return the original task.
 return t;
 });
}

Example

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

// Counts the number of primes in the range [0, max_value].
// The operation fails if it exceeds the specified timeout.
bool count_primes(unsigned int max_value, unsigned int timeout)
{
 cancellation_token_source cts;

 // Create a task that computes the count of prime numbers.
 // The task is canceled after the specified timeout.
 auto t = cancel_after_timeout(task<size_t>([max_value, timeout]
 {
 combinable<size_t> counts;
 parallel_for<unsigned int>(0, max_value + 1, [&counts](unsigned int n)
 {
 // Respond if the overall task is cancelled by canceling
 // the current task.
 if (cts.get_token().is_canceled())
 {
 cancel_current_task();
 }
 // NOTE: You can replace the calls to is_canceled
 // and cancel_current_task with a call to interruption_point.
 // interruption_point();

 // Increment the local counter if the value is prime.
 if (is_prime(n))
 {
 counts.local()++;
 }
 });
 // Return the sum of counts across all threads.
 return counts.combine(plus<size_t>());
 }, cts.get_token()), cts, timeout);

 // Print the result.
 try
 {
 auto primes = t.get();
 wcout << L"Found " << primes << L" prime numbers within "
 << timeout << L" ms." << endl;
 return true;
 }
 catch (const task_canceled& e)
 {
 wcout << L"The task timed out." << endl;
 return false;
 }
}

The following example computes the count of prime numbers in the range [0, 100000] multiple times. The
operation fails if it does not complete in a given time limit. The count_primes function demonstrates how to use
the cancel_after_timeout function. It counts the number of primes in the given range and fails if the task does not
complete in the provided time. The wmain function calls the count_primes function multiple times. Each time, it
halves the time limit. The program finishes after the operation does not complete in the current time limit.

int wmain()
{
 // Compute the count of prime numbers in the range [0, 100000]
 // until the operation fails.
 // Each time the test succeeds, the time limit is halved.

 unsigned int max = 100000;
 unsigned int timeout = 5000;

 bool success = true;
 do
 {
 success = count_primes(max, timeout);
 timeout /= 2;
 } while (success);
}
/* Sample output:
 Found 9592 prime numbers within 5000 ms.
 Found 9592 prime numbers within 2500 ms.
 Found 9592 prime numbers within 1250 ms.
 Found 9592 prime numbers within 625 ms.
 The task timed out.
*/

Example

// task-delay.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Creates a task that completes after the specified delay.
task<void> complete_after(unsigned int timeout)
{
 // A task completion event that is set when a timer fires.
 task_completion_event<void> tce;

 // Create a non-repeating timer.
 auto fire_once = new timer<int>(timeout, 0, nullptr, false);
 // Create a call object that sets the completion event after the timer fires.
 auto callback = new call<int>([tce](int)
 {
 tce.set();
 });

 // Connect the timer to the callback and start the timer.
 fire_once->link_target(callback);
 fire_once->start();

 // Create a task that completes after the completion event is set.
 task<void> event_set(tce);

 // Create a continuation task that cleans up resources and
 // and return that continuation task.
 return event_set.then([callback, fire_once]()

When you use this technique to cancel tasks after a delay, any unstarted tasks will not start after the overall task is
canceled. However, it is important for any long-running tasks to respond to cancellation in a timely manner. For
more information about task cancellation, see Cancellation in the PPL.

Here is the complete code for this example:

 return event_set.then([callback, fire_once]()
 {
 delete callback;
 delete fire_once;
 });
}

// Cancels the provided task after the specifed delay, if the task
// did not complete.
template<typename T>
task<T> cancel_after_timeout(task<T> t, cancellation_token_source cts, unsigned int timeout)
{
 // Create a task that returns true after the specified task completes.
 task<bool> success_task = t.then([](T)
 {
 return true;
 });
 // Create a task that returns false after the specified timeout.
 task<bool> failure_task = complete_after(timeout).then([]
 {
 return false;
 });

 // Create a continuation task that cancels the overall task
 // if the timeout task finishes first.
 return (failure_task || success_task).then([t, cts](bool success)
 {
 if(!success)
 {
 // Set the cancellation token. The task that is passed as the
 // t parameter should respond to the cancellation and stop
 // as soon as it can.
 cts.cancel();
 }

 // Return the original task.
 return t;
 });
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

// Counts the number of primes in the range [0, max_value].
// The operation fails if it exceeds the specified timeout.
bool count_primes(unsigned int max_value, unsigned int timeout)
{
 cancellation_token_source cts;

 // Create a task that computes the count of prime numbers.
 // The task is canceled after the specified timeout.
 auto t = cancel_after_timeout(task<size_t>([max_value, timeout]
 {
 combinable<size_t> counts;
 parallel_for<unsigned int>(0, max_value + 1, [&counts](unsigned int n)
 {
 // Respond if the overall task is cancelled by canceling
 // the current task.
 if (cts.get_token().is_canceled())
 {

 {
 cancel_current_task();
 }
 // NOTE: You can replace the calls to is_canceled
 // and cancel_current_task with a call to interruption_point.
 // interruption_point();

 // Increment the local counter if the value is prime.
 if (is_prime(n))
 {
 counts.local()++;
 }
 });
 // Return the sum of counts across all threads.
 return counts.combine(plus<size_t>());
 }, cts.get_token()), cts, timeout);

 // Print the result.
 try
 {
 auto primes = t.get();
 wcout << L"Found " << primes << L" prime numbers within "
 << timeout << L" ms." << endl;
 return true;
 }
 catch (const task_canceled& e)
 {
 wcout << L"The task timed out." << endl;
 return false;
 }
}

int wmain()
{
 // Compute the count of prime numbers in the range [0, 100000]
 // until the operation fails.
 // Each time the test succeeds, the time limit is halved.

 unsigned int max = 100000;
 unsigned int timeout = 5000;

 bool success = true;
 do
 {
 success = count_primes(max, timeout);
 timeout /= 2;
 } while (success);
}
/* Sample output:
 Found 9592 prime numbers within 5000 ms.
 Found 9592 prime numbers within 2500 ms.
 Found 9592 prime numbers within 1250 ms.
 Found 9592 prime numbers within 625 ms.
 The task timed out.
*/

Compiling the Code

See also

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
task-delay.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc task-delay.cpp

Task Parallelism

task Class (Concurrency Runtime)
cancellation_token_source Class
cancellation_token Class
task_completion_event Class
timer Class
call Class
Asynchronous Message Blocks
Cancellation in the PPL

Parallel Algorithms
3/4/2019 • 26 minutes to read • Edit Online

Sections

The parallel_for Algorithm

The Parallel Patterns Library (PPL) provides algorithms that concurrently perform work on collections of
data. These algorithms resemble those provided by the C++ Standard Library.

The parallel algorithms are composed from existing functionality in the Concurrency Runtime. For example,
the concurrency::parallel_for algorithm uses a concurrency::structured_task_group object to perform the
parallel loop iterations. The parallel_for algorithm partitions work in an optimal way given the available
number of computing resources.

The parallel_for Algorithm

The parallel_for_each Algorithm

The parallel_invoke Algorithm

The parallel_transform and parallel_reduce Algorithms

The parallel_transform Algorithm

The parallel_reduce Algorithm

Example: Performing Map and Reduce in Parallel

Partitioning Work

Parallel Sorting

Choosing a Sorting Algorithm

The concurrency::parallel_for algorithm repeatedly performs the same task in parallel. Each of these tasks is
parameterized by an iteration value. This algorithm is useful when you have a loop body that does not share
resources among iterations of that loop.

The parallel_for algorithm partitions tasks in an optimum way for parallel execution. It uses a work-
stealing algorithm and range stealing to balance these partitions when workloads are unbalanced. When
one loop iteration blocks cooperatively, the runtime redistributes the range of iterations that is assigned to
the current thread to other threads or processors. Similarly, when a thread completes a range of iterations,
the runtime redistributes work from other threads to that thread. The parallel_for algorithm also supports
nested parallelism. When one parallel loop contains another parallel loop, the runtime coordinates
processing resources between the loop bodies in an efficient way for parallel execution.

The parallel_for algorithm has several overloaded versions. The first version takes a start value, an end
value, and a work function (a lambda expression, function object, or function pointer). The second version
takes a start value, an end value, a value by which to step, and a work function. The first version of this
function uses 1 as the step value. The remaining versions take partitioner objects, which enable you to
specify how parallel_for should partition ranges among threads. Partitioners are explained in greater
detail in the section Partitioning Work in this document.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/parallel-algorithms.md

NOTE

Example

// parallel-for-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Print each value from 1 to 5 in parallel.
 parallel_for(1, 6, [](int value) {
 wstringstream ss;
 ss << value << L' ';
 wcout << ss.str();
 });
}

You can convert many for loops to use parallel_for . However, the parallel_for algorithm differs from
the for statement in the following ways:

The parallel_for algorithm parallel_for does not execute the tasks in a pre-determined order.

The parallel_for algorithm does not support arbitrary termination conditions. The parallel_for

algorithm stops when the current value of the iteration variable is one less than last .

The _Index_type type parameter must be an integral type. This integral type can be signed or
unsigned.

The loop iteration must be forward. The parallel_for algorithm throws an exception of type
std::invalid_argument if the _Step parameter is less than 1.

The exception-handling mechanism for the parallel_for algorithm differs from that of a for loop.
If multiple exceptions occur simultaneously in a parallel loop body, the runtime propagates only one
of the exceptions to the thread that called parallel_for . In addition, when one loop iteration throws
an exception, the runtime does not immediately stop the overall loop. Instead, the loop is placed in
the cancelled state and the runtime discards any tasks that have not yet started. For more information
about exception-handling and parallel algorithms, see Exception Handling.

Although the parallel_for algorithm does not support arbitrary termination conditions, you can use
cancellation to stop all tasks. For more information about cancellation, see Cancellation in the PPL.

The scheduling cost that results from load balancing and support for features such as cancellation might not
overcome the benefits of executing the loop body in parallel, especially when the loop body is relatively small. You can
minimize this overhead by using a partitioner in your parallel loop. For more information, see Partitioning Work later
in this document.

The following example shows the basic structure of the parallel_for algorithm. This example prints to the
console each value in the range [1, 5] in parallel.

This example produces the following sample output:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

1 2 4 3 5

The parallel_for_each Algorithm

Example

// parallel-for-each-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an array of integer values.
 array<int, 5> values = { 1, 2, 3, 4, 5 };

 // Print each value in the array in parallel.
 parallel_for_each(begin(values), end(values), [](int value) {
 wstringstream ss;
 ss << value << L' ';
 wcout << ss.str();
 });
}
/* Sample output:
 5 4 3 1 2
*/

4 5 1 2 3

Because the parallel_for algorithm acts on each item in parallel, the order in which the values are printed
to the console will vary.

For a complete example that uses the parallel_for algorithm, see How to: Write a parallel_for Loop.

[Top]

The concurrency::parallel_for_each algorithm performs tasks on an iterative container, such as those
provided by the C++ Standard Library, in parallel. It uses the same partitioning logic that the parallel_for

algorithm uses.

The parallel_for_each algorithm resembles the C++ Standard Library std::for_each algorithm, except that
the parallel_for_each algorithm executes the tasks concurrently. Like other parallel algorithms,
parallel_for_each does not execute the tasks in a specific order.

Although the parallel_for_each algorithm works on both forward iterators and random access iterators, it
performs better with random access iterators.

The following example shows the basic structure of the parallel_for_each algorithm. This example prints to
the console each value in a std::array object in parallel.

This example produces the following sample output:

Because the parallel_for_each algorithm acts on each item in parallel, the order in which the values are
printed to the console will vary.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl

 The parallel_invoke Algorithm

Example

// parallel-invoke-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <string>
#include <iostream>

using namespace concurrency;
using namespace std;

// Returns the result of adding a value to itself.
template <typename T>
T twice(const T& t) {
 return t + t;
}

int wmain()
{
 // Define several values.
 int n = 54;
 double d = 5.6;
 wstring s = L"Hello";

 // Call the twice function on each value concurrently.
 parallel_invoke(
 [&n] { n = twice(n); },
 [&d] { d = twice(d); },
 [&s] { s = twice(s); }
);

 // Print the values to the console.
 wcout << n << L' ' << d << L' ' << s << endl;
}

108 11.2 HelloHello

For a complete example that uses the parallel_for_each algorithm, see How to: Write a parallel_for_each
Loop.

[Top]

The concurrency::parallel_invoke algorithm executes a set of tasks in parallel. It does not return until each
task finishes. This algorithm is useful when you have several independent tasks that you want to execute at
the same time.

The parallel_invoke algorithm takes as its parameters a series of work functions (lambda functions,
function objects, or function pointers). The parallel_invoke algorithm is overloaded to take between two
and ten parameters. Every function that you pass to parallel_invoke must take zero parameters.

Like other parallel algorithms, parallel_invoke does not execute the tasks in a specific order. The topic Task
Parallelism explains how the parallel_invoke algorithm relates to tasks and task groups.

The following example shows the basic structure of the parallel_invoke algorithm. This example
concurrently calls the twice function on three local variables and prints the result to the console.

This example produces the following output:

For complete examples that use the parallel_invoke algorithm, see How to: Use parallel_invoke to Write a

The parallel_transform and parallel_reduce Algorithms

IMPORTANT

The parallel_transform Algorithm

Parallel Sort Routine and How to: Use parallel_invoke to Execute Parallel Operations.

[Top]

The concurrency::parallel_transform and concurrency::parallel_reduce algorithms are parallel versions of the
C++ Standard Library algorithms std::transform and std::accumulate, respectively. The Concurrency
Runtime versions behave like the C++ Standard Library versions except that the operation order is not
determined because they execute in parallel. Use these algorithms when you work with a set that is large
enough to get performance and scalability benefits from being processed in parallel.

The parallel_transform and parallel_reduce algorithms support only random access, bi-directional, and
forward iterators because these iterators produce stable memory addresses. Also, these iterators must produce non-
const l-values.

You can use the parallel transform algorithm to perform many data parallelization operations. For
example, you can:

Adjust the brightness of an image, and perform other image processing operations.

Sum or take the dot product between two vectors, and perform other numeric calculations on
vectors.

Perform 3-D ray tracing, where each iteration refers to one pixel that must be rendered.

The following example shows the basic structure that is used to call the parallel_transform algorithm. This
example negates each element of a std::vector object in two ways. The first way uses a lambda expression.
The second way uses std::negate, which derives from std::unary_function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/numeric-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/negate-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unary-function-struct

// basic-parallel-transform.cpp
// compile with: /EHsc
#include <ppl.h>
#include <random>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create a large vector that contains random integer data.
 vector<int> values(1250000);
 generate(begin(values), end(values), mt19937(42));

 // Create a vector to hold the results.
 // Depending on your requirements, you can also transform the
 // vector in-place.
 vector<int> results(values.size());

 // Negate each element in parallel.
 parallel_transform(begin(values), end(values), begin(results), [](int n) {
 return -n;
 });

 // Alternatively, use the negate class to perform the operation.
 parallel_transform(begin(values), end(values), begin(values), negate<int>());
}

WARNING
This example demonstrates the basic use of parallel_transform . Because the work function does not perform a
significant amount of work, a significant increase in performance is not expected in this example.

The parallel_transform algorithm has two overloads. The first overload takes one input range and a unary
function. The unary function can be a lambda expression that takes one argument, a function object, or a
type that derives from unary_function . The second overload takes two input ranges and a binary function.
The binary function can be a lambda expression that takes two arguments, a function object, or a type that
derives from std::binary_function. The following example illustrates these differences.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/binary-function-struct

//
// Demonstrate use of parallel_transform together with a unary function.

// This example uses a lambda expression.
parallel_transform(begin(values), end(values),
 begin(results), [](int n) {
 return -n;
 });

// Alternatively, use the negate class:
parallel_transform(begin(values), end(values),
 begin(results), negate<int>());

//
// Demonstrate use of parallel_transform together with a binary function.

// This example uses a lambda expression.
parallel_transform(begin(values), end(values), begin(results),
 begin(results), [](int n, int m) {
 return n * m;
 });

// Alternatively, use the multiplies class:
parallel_transform(begin(values), end(values), begin(results),
 begin(results), multiplies<int>());

IMPORTANT

The parallel_reduce Algorithm

The iterator that you supply for the output of parallel_transform must completely overlap the input iterator or
not overlap at all. The behavior of this algorithm is unspecified if the input and output iterators partially overlap.

The parallel_reduce algorithm is useful when you have a sequence of operations that satisfy the
associative property. (This algorithm does not require the commutative property.) Here are some of the
operations that you can perform with parallel_reduce :

Multiply sequences of matrices to produce a matrix.

Multiply a vector by a sequence of matrices to produce a vector.

Compute the length of a sequence of strings.

Combine a list of elements, such as strings, into one element.

The following basic example shows how to use the parallel_reduce algorithm to combine a sequence of
strings into one string. As with the examples for parallel_transform , performance gains are not expected in
this basic example.

// basic-parallel-reduce.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include <string>
#include <vector>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create a vector of strings.
 vector<wstring> words{
 L"Lorem ",
 L"ipsum ",
 L"dolor ",
 L"sit ",
 L"amet, ",
 L"consectetur ",
 L"adipiscing ",
 L"elit."};

 // Reduce the vector to one string in parallel.
 wcout << parallel_reduce(begin(words), end(words), wstring()) << endl;
}

/* Output:
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
*/

Example: Performing Map and Reduce in Parallel

// parallel-map-reduce-sum-of-primes.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <array>
#include <numeric>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

In many cases, you can think of parallel_reduce as shorthand for the use of the parallel_for_each

algorithm together with the concurrency::combinable class.

A map operation applies a function to each value in a sequence. A reduce operation combines the elements
of a sequence into one value. You can use the C++ Standard Library std::transform and std::accumulate
functions to perform map and reduce operations. However, for many problems, you can use the
parallel_transform algorithm to perform the map operation in parallel and the parallel_reduce algorithm

perform the reduce operation in parallel.

The following example compares the time that it takes to compute the sum of prime numbers serially and in
parallel. The map phase transforms non-prime values to 0 and the reduce phase sums the values.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/numeric-functions

}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

int wmain()
{
 // Create an array object that contains 200000 integers.
 array<int, 200000> a;

 // Initialize the array such that a[i] == i.
 iota(begin(a), end(a), 0);

 int prime_sum;
 __int64 elapsed;

 // Compute the sum of the numbers in the array that are prime.
 elapsed = time_call([&] {
 transform(begin(a), end(a), begin(a), [](int i) {
 return is_prime(i) ? i : 0;
 });
 prime_sum = accumulate(begin(a), end(a), 0);
 });
 wcout << prime_sum << endl;
 wcout << L"serial time: " << elapsed << L" ms" << endl << endl;

 // Now perform the same task in parallel.
 elapsed = time_call([&] {
 parallel_transform(begin(a), end(a), begin(a), [](int i) {
 return is_prime(i) ? i : 0;
 });
 prime_sum = parallel_reduce(begin(a), end(a), 0);
 });
 wcout << prime_sum << endl;
 wcout << L"parallel time: " << elapsed << L" ms" << endl << endl;
}
/* Sample output:
 1709600813
 serial time: 7406 ms

 1709600813
 parallel time: 1969 ms
*/

Partitioning Work

For another example that performs a map and reduce operation in parallel, see How to: Perform Map and
Reduce Operations in Parallel.

[Top]

To parallelize an operation on a data source, an essential step is to partition the source into multiple sections
that can be accessed concurrently by multiple threads. A partitioner specifies how a parallel algorithm
should partition ranges among threads. As explained previously in this document, the PPL uses a default
partitioning mechanism that creates an initial workload and then uses a work-stealing algorithm and range

WARNING

stealing to balance these partitions when workloads are unbalanced. For example, when one loop iteration
completes a range of iterations, the runtime redistributes work from other threads to that thread. However,
for some scenarios, you might want to specify a different partitioning mechanism that is better suited to
your problem.

The parallel_for , parallel_for_each , and parallel_transform algorithms provide overloaded versions
that take an additional parameter, _Partitioner . This parameter defines the partitioner type that divides
work. Here are the kinds of partitioners that the PPL defines:

concurrency::affinity_partitioner
Divides work into a fixed number of ranges (typically the number of worker threads that are available to
work on the loop). This partitioner type resembles static_partitioner , but improves cache affinity by the
way it maps ranges to worker threads. This partitioner type can improve performance when a loop is
executed over the same data set multiple times (such as a loop within a loop) and the data fits in cache. This
partitioner does not fully participate in cancellation. It also does not use cooperative blocking semantics and
therefore cannot be used with parallel loops that have a forward dependency.

concurrency::auto_partitioner
Divides work into an initial number of ranges (typically the number of worker threads that are available to
work on the loop). The runtime uses this type by default when you do not call an overloaded parallel
algorithm that takes a _Partitioner parameter. Each range can be divided into sub-ranges, and thereby
enables load balancing to occur. When a range of work completes, the runtime redistributes sub-ranges of
work from other threads to that thread. Use this partitioner if your workload does not fall under one of the
other categories or you require full support for cancellation or cooperative blocking.

concurrency::simple_partitioner
Divides work into ranges such that each range has at least the number of iterations that are specified by the
given chunk size. This partitioner type participates in load balancing; however, the runtime does not divide
ranges into sub-ranges. For each worker, the runtime checks for cancellation and performs load-balancing
after _Chunk_size iterations complete.

concurrency::static_partitioner
Divides work into a fixed number of ranges (typically the number of worker threads that are available to
work on the loop). This partitioner type can improve performance because it does not use work-stealing and
therefore has less overhead. Use this partitioner type when each iteration of a parallel loop performs a fixed
and uniform amount of work and you do not require support for cancellation or forward cooperative
blocking.

The parallel_for_each and parallel_transform algorithms support only containers that use random access
iterators (such as std::vector) for the static, simple, and affinity partitioners. The use of containers that use
bidirectional and forward iterators produces a compile-time error. The default partitioner, auto_partitioner ,
supports all three of these iterator types.

Typically, these partitioners are used in the same way, except for affinity_partitioner . Most partitioner
types do not maintain state and are not modified by the runtime. Therefore you can create these partitioner
objects at the call site, as shown in the following example.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

// static-partitioner.cpp
// compile with: /EHsc
#include <ppl.h>

using namespace concurrency;

void DoWork(int n)
{
 // TODO: Perform a fixed amount of work...
}

int wmain()
{
 // Use a static partitioner to perform a fixed amount of parallel work.
 parallel_for(0, 100000, [](int n) {
 DoWork(n);
 }, static_partitioner());
}

// affinity-partitioner.cpp
// compile with: /EHsc
#include <ppl.h>
#include <array>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an array and fill it with zeroes.
 array<unsigned char, 8 * 1024> data;
 data.fill(0);

 // Use an affinity partitioner to perform parallel work on data
 // that is likely to remain in cache.
 // We use the same affinitiy partitioner throughout so that the
 // runtime can schedule work to occur at the same location for each
 // iteration of the outer loop.

 affinity_partitioner ap;
 for (int i = 0; i < 100000; i++)
 {
 parallel_for_each(begin(data), end(data), [](unsigned char& c)
 {
 c++;
 }, ap);
 }
}

C a u t i o n

However, you must pass an affinity_partitioner object as a non- const , l-value reference so that the
algorithm can store state for future loops to reuse. The following example shows a basic application that
performs the same operation on a data set in parallel multiple times. The use of affinity_partitioner can
improve performance because the array is likely to fit in cache.

Use caution when you modify existing code that relies on cooperative blocking semantics to use
static_partitioner or affinity_partitioner . These partitioner types do not use load balancing or range

stealing, and therefore can alter the behavior of your application.

The best way to determine whether to use a partitioner in any given scenario is to experiment and measure
how long it takes operations to complete under representative loads and computer configurations. For
example, static partitioning might provide significant speedup on a multi-core computer that has only a few

 Parallel Sorting

ALGORITHM DESCRIPTION
SORTING
MECHANISM

SORT
STABILITY

MEMORY
REQUIREMENT
S

TIME
COMPLEXITY

ITERATOR
ACCESS

parallel_sort General-
purpose
compare-
based sort.

Compare-
based
(ascending)

Unstable None O((N/P)log(N
/P) + 2N((P-
1)/P))

Random

parallel_buffered_sortFaster
general-
purpose
compare-
based sort
that requires
O(N) space.

Compare-
based
(ascending)

Unstable Requires
additional
O(N) space

O((N/P)log(N)
)

Random

parallel_radixsortInteger key-
based sort
that requires
O(N) space.

Hash-based Stable Requires
additional
O(N) space

O(N/P) Random

cores, but it might result in slowdowns on computers that have relatively many cores.

[Top]

The PPL provides three sorting algorithms: concurrency::parallel_sort, concurrency::parallel_buffered_sort,
and concurrency::parallel_radixsort. These sorting algorithms are useful when you have a data set that can
benefit from being sorted in parallel. In particular, sorting in parallel is useful when you have a large dataset
or when you use a computationally-expensive compare operation to sort your data. Each of these
algorithms sorts elements in place.

The parallel_sort and parallel_buffered_sort algorithms are both compare-based algorithms. That is,
they compare elements by value. The parallel_sort algorithm has no additional memory requirements,
and is suitable for general-purpose sorting. The parallel_buffered_sort algorithm can perform better than
parallel_sort , but it requires O(N) space.

The parallel_radixsort algorithm is hash-based. That is, it uses integer keys to sort elements. By using
keys, this algorithm can directly compute the destination of an element instead of using comparisons. Like
parallel_buffered_sort , this algorithm requires O(N) space.

The following table summarizes the important properties of the three parallel sorting algorithms.

The following illustration shows the important properties of the three parallel sorting algorithms more
graphically.

These parallel sorting algorithms follow the rules of cancellation and exception handling. For more

TIP

// basic-parallel-sort.cpp
// compile with: /EHsc
#include <ppl.h>
#include <random>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create and sort a large vector of random values.
 vector<int> values(25000000);
 generate(begin(values), end(values), mt19937(42));
 parallel_sort(begin(values), end(values));

 // Print a few values.
 wcout << "V(0) = " << values[0] << endl;
 wcout << "V(12500000) = " << values[12500000] << endl;
 wcout << "V(24999999) = " << values[24999999] << endl;
}
/* Output:
 V(0) = -2147483129
 V(12500000) = -427327
 V(24999999) = 2147483311
*/

information about cancellation and exception handling in the Concurrency Runtime, see Canceling Parallel
Algorithms and Exception Handling.

These parallel sorting algorithms support move semantics. You can define a move assignment operator to enable
swap operations to occur more efficiently. For more information about move semantics and the move assignment
operator, see Rvalue Reference Declarator: &&, and Move Constructors and Move Assignment Operators (C++). If
you do not provide a move assignment operator or swap function, the sorting algorithms use the copy constructor.

The following basic example shows how to use parallel_sort to sort a vector of int values. By default,
parallel_sort uses std::less to compare values.

This example shows how to provide a custom compare function. It uses the std::complex::real method to sort
std::complex<double> values in ascending order.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/move-constructors-and-move-assignment-operators-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/less-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/complex-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/complex-double

// For this example, ensure that you add the following #include directive:
// #include <complex>

// Create and sort a large vector of random values.
vector<complex<double>> values(25000000);
generate(begin(values), end(values), mt19937(42));
parallel_sort(begin(values), end(values),
 [](const complex<double>& left, const complex<double>& right) {
 return left.real() < right.real();
 });

// Print a few values.
wcout << "V(0) = " << values[0] << endl;
wcout << "V(12500000) = " << values[12500000] << endl;
wcout << "V(24999999) = " << values[24999999] << endl;
/* Output:
 V(0) = (383,0)
 V(12500000) = (2.1479e+009,0)
 V(24999999) = (4.29497e+009,0)
*/

// parallel-sort-points.cpp
// compile with: /EHsc
#include <ppl.h>
#include <random>
#include <iostream>

using namespace concurrency;
using namespace std;

// Defines a 3-D point.
struct Point
{
 int X;
 int Y;
 int Z;
};

// Computes the Euclidean distance between two points.
size_t euclidean_distance(const Point& p1, const Point& p2)
{
 int dx = p1.X - p2.X;
 int dy = p1.Y - p2.Y;
 int dz = p1.Z - p2.Z;
 return static_cast<size_t>(sqrt((dx*dx) + (dy*dy) + (dz*dz)));
}

int wmain()
{
 // The central point of reference.
 const Point center = { 3, 2, 7 };

 // Create a few random Point values.
 vector<Point> values(7);
 mt19937 random(42);
 generate(begin(values), end(values), [&random] {
 Point p = { random()%10, random()%10, random()%10 };
 return p;
 });

 // Print the values before sorting them.
 wcout << "Before sorting:" << endl;
 for_each(begin(values), end(values), [center](const Point& p) {

This example shows how to provide a hash function to the parallel_radixsort algorithm. This example
sorts 3-D points. The points are sorted based on their distance from a reference point.

 for_each(begin(values), end(values), [center](const Point& p) {
 wcout << L'(' << p.X << L"," << p.Y << L"," << p.Z
 << L") D = " << euclidean_distance(p, center) << endl;
 });
 wcout << endl;

 // Sort the values based on their distances from the reference point.
 parallel_radixsort(begin(values), end(values),
 [center](const Point& p) -> size_t {
 return euclidean_distance(p, center);
 });

 // Print the values after sorting them.
 wcout << "After sorting:" << endl;
 for_each(begin(values), end(values), [center](const Point& p) {
 wcout << L'(' << p.X << L"," << p.Y << L"," << p.Z
 << L") D = " << euclidean_distance(p, center) << endl;
 });
 wcout << endl;
}
/* Output:
 Before sorting:
 (2,7,6) D = 5
 (4,6,5) D = 4
 (0,4,0) D = 7
 (3,8,4) D = 6
 (0,4,1) D = 7
 (2,5,5) D = 3
 (7,6,9) D = 6

 After sorting:
 (2,5,5) D = 3
 (4,6,5) D = 4
 (2,7,6) D = 5
 (3,8,4) D = 6
 (7,6,9) D = 6
 (0,4,0) D = 7
 (0,4,1) D = 7
*/

// Functor class for computing the distance between points.
class hash_distance
{
public:
 hash_distance(const Point& reference)
 : m_reference(reference)
 {
 }

 size_t operator()(const Point& pt) const {
 return euclidean_distance(pt, m_reference);
 }

private:
 Point m_reference;
};

For illustration, this example uses a relatively small data set. You can increase the initial size of the vector to
experiment with performance improvements over larger sets of data.

This example uses a lambda expression as the hash function. You can also use one of the built-in
implementations of the std::hash class or define your own specialization. You can also use a custom hash
function object, as shown in this example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/hash-class

// Use hash_distance to compute the distance between points.
parallel_radixsort(begin(values), end(values), hash_distance(center));

Choosing a Sorting Algorithm

C a u t i o n

The hash function must return an integral type (std::is_integral::value must be true). This integral type must
be convertible to type size_t .

In many cases, parallel_sort provides the best balance of speed and memory performance. However, as
you increase the size of your data set, the number of available processors, or the complexity of your
compare function, parallel_buffered_sort or parallel_radixsort can perform better. The best way to
determine which sorting algorithm to use in any given scenario is to experiment and measure how long it
takes to sort typical data under representative computer configurations. Keep the following guidelines in
mind when you choose a sorting strategy.

The size of your data set. In this document, a small dataset contains fewer than 1,000 elements, a
medium dataset contains between 10,000 and 100,000 elements, and a large dataset contains more
than 100,000 elements.

The amount of work that your compare function or hash function performs.

The amount of available computing resources.

The characteristics of your data set. For example, one algorithm might perform well for data that is
already nearly sorted, but not as well for data that is completely unsorted.

The chunk size. The optional _Chunk_size argument specifies when the algorithm switches from a
parallel to a serial sort implementation as it subdivides the overall sort into smaller units of work. For
example, if you provide 512, the algorithm switches to serial implementation when a unit of work
contains 512 or fewer elements. A serial implementation can improve overall performance because it
eliminates the overhead that is required to process data in parallel.

It might not be worthwhile to sort a small dataset in parallel, even when you have a large number of
available computing resources or your compare function or hash function performs a relatively large
amount of work. You can use std::sort function to sort small datasets. (parallel_sort and
parallel_buffered_sort call sort when you specify a chunk size that is larger than the dataset; however,
parallel_buffered_sort would have to allocate O(N) space, which could take additional time due to lock

contention or memory allocation.)

If you must conserve memory or your memory allocator is subject to lock contention, use parallel_sort to
sort a medium-sized dataset. parallel_sort requires no additional space; the other algorithms require O(N)
space.

Use parallel_buffered_sort to sort medium-sized datasets and when your application meets the additional
O(N) space requirement. parallel_buffered_sort can be especially useful when you have a large number of
computing resources or an expensive compare function or hash function.

Use parallel_radixsort to sort large datasets and when your application meets the additional O(N) space
requirement. parallel_radixsort can be especially useful when the equivalent compare operation is more
expensive or when both operations are expensive.

Implementing a good hash function requires that you know the dataset range and how each element in the
dataset is transformed to a corresponding unsigned value. Because the hash operation works on unsigned
values, consider a different sorting strategy if unsigned hash values cannot be produced.

The following example compares the performance of sort , parallel_sort , parallel_buffered_sort , and

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/is-integral-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

// choosing-parallel-sort.cpp
// compile with: /EHsc
#include <ppl.h>
#include <random>
#include <iostream>
#include <windows.h>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

const size_t DATASET_SIZE = 10000000;

// Create
// Creates the dataset for this example. Each call
// produces the same predefined sequence of random data.
vector<size_t> GetData()
{
 vector<size_t> data(DATASET_SIZE);
 generate(begin(data), end(data), mt19937(42));
 return data;
}

int wmain()
{
 // Use std::sort to sort the data.
 auto data = GetData();
 wcout << L"Testing std::sort...";
 auto elapsed = time_call([&data] { sort(begin(data), end(data)); });
 wcout << L" took " << elapsed << L" ms." <<endl;

 // Use concurrency::parallel_sort to sort the data.
 data = GetData();
 wcout << L"Testing concurrency::parallel_sort...";
 elapsed = time_call([&data] { parallel_sort(begin(data), end(data)); });
 wcout << L" took " << elapsed << L" ms." <<endl;

 // Use concurrency::parallel_buffered_sort to sort the data.
 data = GetData();
 wcout << L"Testing concurrency::parallel_buffered_sort...";
 elapsed = time_call([&data] { parallel_buffered_sort(begin(data), end(data)); });
 wcout << L" took " << elapsed << L" ms." <<endl;

 // Use concurrency::parallel_radixsort to sort the data.
 data = GetData();
 wcout << L"Testing concurrency::parallel_radixsort...";
 elapsed = time_call([&data] { parallel_radixsort(begin(data), end(data)); });
 wcout << L" took " << elapsed << L" ms." <<endl;
}
/* Sample output (on a computer that has four cores):
 Testing std::sort... took 2906 ms.
 Testing concurrency::parallel_sort... took 2234 ms.
 Testing concurrency::parallel_buffered_sort... took 1782 ms.
 Testing concurrency::parallel_radixsort... took 907 ms.
*/

parallel_radixsort against the same large set of random data.

Related Topics
TITLE DESCRIPTION

How to: Write a parallel_for Loop Shows how to use the parallel_for algorithm to
perform matrix multiplication.

How to: Write a parallel_for_each Loop Shows how to use the parallel_for_each algorithm to
compute the count of prime numbers in a std::array object
in parallel.

How to: Use parallel_invoke to Write a Parallel Sort
Routine

Shows how to use the parallel_invoke algorithm to
improve the performance of the bitonic sort algorithm.

How to: Use parallel_invoke to Execute Parallel Operations Shows how to use the parallel_invoke algorithm to
improve the performance of a program that performs
multiple operations on a shared data source.

How to: Perform Map and Reduce Operations in Parallel Shows how to use the parallel_transform and
parallel_reduce algorithms to perform a map and

reduce operation that counts the occurrences of words in
files.

Parallel Patterns Library (PPL) Describes the PPL, which provides an imperative
programming model that promotes scalability and ease-
of-use for developing concurrent applications.

Cancellation in the PPL Explains the role of cancellation in the PPL, how to cancel
parallel work, and how to determine when a task group is
canceled.

Exception Handling Explains the role of exception handling in the Concurrency
Runtime.

Reference

In this example, which assumes that it is acceptable to allocate O(N) space during the sort,
parallel_radixsort performs the best on this dataset on this computer configuration.

[Top]

parallel_for Function

parallel_for_each Function

parallel_invoke Function

affinity_partitioner Class

auto_partitioner Class

simple_partitioner Class

static_partitioner Class

parallel_sort Function

parallel_buffered_sort Function

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl

parallel_radixsort Function

How to: Write a parallel_for Loop
3/4/2019 • 4 minutes to read • Edit Online

Example

// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
 for (size_t i = 0; i < size; i++)
 {
 for (size_t j = 0; j < size; j++)
 {
 double temp = 0;
 for (int k = 0; k < size; k++)
 {
 temp += m1[i][k] * m2[k][j];
 }
 result[i][j] = temp;
 }
 }
}

Example

// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
 parallel_for (size_t(0), size, [&](size_t i)
 {
 for (size_t j = 0; j < size; j++)
 {
 double temp = 0;
 for (int k = 0; k < size; k++)
 {
 temp += m1[i][k] * m2[k][j];
 }
 result[i][j] = temp;
 }
 });
}

Example

This example demonstrates how to use concurrency::parallel_for to compute the product of two matrices.

The following example shows the matrix_multiply function, which computes the product of two square matrices.

The following example shows the parallel_matrix_multiply function, which uses the parallel_for algorithm to
perform the outer loop in parallel.

This example parallelizes the outer loop only because it performs enough work to benefit from the overhead for
parallel processing. If you parallelize the inner loop, you will not receive a gain in performance because the small
amount of work that the inner loop performs does not overcome the overhead for parallel processing. Therefore,
parallelizing the outer loop only is the best way to maximize the benefits of concurrency on most systems.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-write-a-parallel-for-loop.md

// parallel-matrix-multiply.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size);

// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size);

// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen);

// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
 for (size_t i = 0; i < size; i++)
 {
 for (size_t j = 0; j < size; j++)
 {
 double temp = 0;
 for (int k = 0; k < size; k++)
 {
 temp += m1[i][k] * m2[k][j];
 }
 result[i][j] = temp;
 }
 }
}

// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
 parallel_for (size_t(0), size, [&](size_t i)
 {
 for (size_t j = 0; j < size; j++)
 {
 double temp = 0;
 for (int k = 0; k < size; k++)
 {
 temp += m1[i][k] * m2[k][j];
 }
 result[i][j] = temp;
 }
 });
}

The following more complete example compares the performance of the matrix_multiply function versus the
parallel_matrix_multiply function.

int wmain()
{
 // The number of rows and columns in each matrix.
 // TODO: Change this value to experiment with serial
 // versus parallel performance.
 const size_t size = 750;

 // Create a random number generator.
 mt19937 gen(42);

 // Create and initialize the input matrices and the matrix that
 // holds the result.
 double** m1 = initialize_matrix(create_matrix(size), size, gen);
 double** m2 = initialize_matrix(create_matrix(size), size, gen);
 double** result = create_matrix(size);

 // Print to the console the time it takes to multiply the
 // matrices serially.
 wcout << L"serial: " << time_call([&] {
 matrix_multiply(m1, m2, result, size);
 }) << endl;

 // Print to the console the time it takes to multiply the
 // matrices in parallel.
 wcout << L"parallel: " << time_call([&] {
 parallel_matrix_multiply(m1, m2, result, size);
 }) << endl;

 // Free the memory that was allocated for the matrices.
 destroy_matrix(m1, size);
 destroy_matrix(m2, size);
 destroy_matrix(result, size);
}

// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size)
{
 double** m = new double*[size];
 for (size_t i = 0; i < size; ++i)
 {
 m[i] = new double[size];
 }
 return m;
}

// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size)
{
 for (size_t i = 0; i < size; ++i)
 {
 delete[] m[i];
 }
 delete m;
}

// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen)
{
 for (size_t i = 0; i < size; ++i)
 {
 for (size_t j = 0; j < size; ++j)
 {
 m[i][j] = static_cast<double>(gen());
 }
 }
 return m;
}

}

serial: 3853
parallel: 1311

Compiling the Code

See also

The following sample output is for a computer that has four processors.

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-matrix-multiply.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-matrix-multiply.cpp

Parallel Algorithms
parallel_for Function

How to: Write a parallel_for_each Loop
3/4/2019 • 2 minutes to read • Edit Online

Example

// parallel-count-primes.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>
#include <algorithm>
#include <array>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

int wmain()
{
 // Create an array object that contains 200000 integers.
 array<int, 200000> a;

 // Initialize the array such that a[i] == i.
 int n = 0;
 generate(begin(a), end(a), [&] {
 return n++;
 });

 LONG prime_count;
 __int64 elapsed;

This example shows how to use the concurrency::parallel_for_each algorithm to compute the count of prime
numbers in a std::array object in parallel.

The following example computes the count of prime numbers in an array two times. The example first uses the
std::for_each algorithm to compute the count serially. The example then uses the parallel_for_each algorithm to
perform the same task in parallel. The example also prints to the console the time that is required to perform both
computations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-write-a-parallel-for-each-loop.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

 __int64 elapsed;

 // Use the for_each algorithm to count the number of prime numbers
 // in the array serially.
 prime_count = 0L;
 elapsed = time_call([&] {
 for_each (begin(a), end(a), [&](int n) {
 if (is_prime(n))
 ++prime_count;
 });
 });
 wcout << L"serial version: " << endl
 << L"found " << prime_count << L" prime numbers" << endl
 << L"took " << elapsed << L" ms" << endl << endl;

 // Use the parallel_for_each algorithm to count the number of prime numbers
 // in the array in parallel.
 prime_count = 0L;
 elapsed = time_call([&] {
 parallel_for_each (begin(a), end(a), [&](int n) {
 if (is_prime(n))
 InterlockedIncrement(&prime_count);
 });
 });
 wcout << L"parallel version: " << endl
 << L"found " << prime_count << L" prime numbers" << endl
 << L"took " << elapsed << L" ms" << endl << endl;
}

serial version:
found 17984 prime numbers
took 6115 ms

parallel version:
found 17984 prime numbers
took 1653 ms

Compiling the Code

Robust Programming

See also

The following sample output is for a computer that has four processors.

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-count-primes.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-count-primes.cpp

The lambda expression that the example passes to the parallel_for_each algorithm uses the
InterlockedIncrement function to enable parallel iterations of the loop to increment the counter simultaneously. If

you use functions such as InterlockedIncrement to synchronize access to shared resources, you can present
performance bottlenecks in your code. You can use a lock-free synchronization mechanism, for example, the
concurrency::combinable class, to eliminate simultaneous access to shared resources. For an example that uses the
combinable class in this manner, see How to: Use combinable to Improve Performance.

Parallel Algorithms
parallel_for_each Function

How to: Perform Map and Reduce Operations in
Parallel
3/4/2019 • 2 minutes to read • Edit Online

Example

// parallel-map-reduce.cpp
// compile with: /EHsc
#include <ppl.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <numeric>
#include <unordered_map>
#include <windows.h>

using namespace concurrency;
using namespace std;

class MapFunc
{
public:
 unordered_map<wstring, size_t> operator()(vector<wstring>& elements) const
 {
 unordered_map<wstring, size_t> m;
 for_each(begin(elements), end(elements), [&m](const wstring& elem)
 {
 m[elem]++;
 });
 return m;
 }
};

struct ReduceFunc : binary_function<unordered_map<wstring, size_t>,
 unordered_map<wstring, size_t>, unordered_map<wstring, size_t>>
{
 unordered_map<wstring, size_t> operator() (
 const unordered_map<wstring, size_t>& x,
 const unordered_map<wstring, size_t>& y) const
 {
 unordered_map<wstring, size_t> ret(x);
 for_each(begin(y), end(y), [&ret](const pair<wstring, size_t>& pr) {

This example shows how to use the concurrency::parallel_transform and concurrency::parallel_reduce algorithms
and the concurrency::concurrent_unordered_map class to count the occurrences of words in files.

A map operation applies a function to each value in a sequence. A reduce operation combines the elements of a
sequence into one value. You can use the C++ Standard Library std::transform and std::accumulate functions to
perform map and reduce operations. However, to improve performance for many problems, you can use the
parallel_transform algorithm to perform the map operation in parallel and the parallel_reduce algorithm to

perform the reduce operation in parallel. In some cases, you can use concurrent_unordered_map to perform the
map and the reduce in one operation.

The following example counts the occurrences of words in files. It uses std::vector to represent the contents of two
files. The map operation computes the occurrences of each word in each vector. The reduce operation accumulates
the word counts across both vectors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-perform-map-and-reduce-operations-in-parallel.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/numeric-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

 auto key = pr.first;
 auto val = pr.second;
 ret[key] += val;
 });
 return ret;
 }
};

int wmain()
{
 // File 1
 vector<wstring> v1 {
 L"word1", // 1
 L"word1", // 1
 L"word2",
 L"word3",
 L"word4"
 };

 // File 2
 vector<wstring> v2 {
 L"word5",
 L"word6",
 L"word7",
 L"word8",
 L"word1" // 3
 };

 vector<vector<wstring>> v { v1, v2 };

 vector<unordered_map<wstring, size_t>> map(v.size());

 // The Map operation
 parallel_transform(begin(v), end(v), begin(map), MapFunc());

 // The Reduce operation
 unordered_map<wstring, size_t> result = parallel_reduce(
 begin(map), end(map), unordered_map<wstring, size_t>(), ReduceFunc());

 wcout << L"\"word1\" occurs " << result.at(L"word1") << L" times. " << endl;
}
/* Output:
 "word1" occurs 3 times.
*/

Compiling the Code

Robust Programming

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-map-reduce.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-map-reduce.cpp

In this example, you can use the concurrent_unordered_map class—which is defined in
concurrent_unordered_map.h—to perform the map and reduce in one operation.

// File 1
vector<wstring> v1 {
 L"word1", // 1
 L"word1", // 2
 L"word2",
 L"word3",
 L"word4",
};

// File 2
vector<wstring> v2 {
 L"word5",
 L"word6",
 L"word7",
 L"word8",
 L"word1", // 3
};

vector<vector<wstring>> v { v1, v2 };

concurrent_unordered_map<wstring, size_t> result;
for_each(begin(v), end(v), [&result](const vector<wstring>& words) {
 parallel_for_each(begin(words), end(words), [&result](const wstring& word) {
 InterlockedIncrement(&result[word]);
 });
});

wcout << L"\"word1\" occurs " << result.at(L"word1") << L" times. " << endl;

/* Output:
 "word1" occurs 3 times.
*/

See also

Typically, you parallelize only the outer or the inner loop. Parallelize the inner loop if you have relatively few files
and each file contains many words. Parallelize the outer loop if you have relatively many files and each file
contains few words.

Parallel Algorithms
parallel_transform Function
parallel_reduce Function
concurrent_unordered_map Class

Parallel Containers and Objects
3/28/2019 • 13 minutes to read • Edit Online

Sections

The Parallel Patterns Library (PPL) includes several containers and objects that provide thread-safe access to
their elements.

A concurrent container provides concurrency-safe access to the most important operations. The functionality
of these containers resembles those that are provided by the C++ Standard Library. For example, the
concurrency::concurrent_vector class resembles the std::vector class, except that the concurrent_vector class
lets you append elements in parallel. Use concurrent containers when you have parallel code that requires
both read and write access to the same container.

A concurrent object is shared concurrently among components. A process that computes the state of a
concurrent object in parallel produces the same result as another process that computes the same state
serially. The concurrency::combinable class is one example of a concurrent object type. The combinable class
lets you perform computations in parallel, and then combine those computations into a final result. Use
concurrent objects when you would otherwise use a synchronization mechanism, for example, a mutex, to
synchronize access to a shared variable or resource.

This topic describes the following parallel containers and objects in detail.

Concurrent containers:

concurrent_vector Class

Differences Between concurrent_vector and vector

Concurrency-Safe Operations

Exception Safety

concurrent_queue Class

Differences Between concurrent_queue and queue

Concurrency-Safe Operations

Iterator Support

concurrent_unordered_map Class

Differences Between concurrent_unordered_map and unordered_map

Concurrency-Safe Operations

concurrent_unordered_multimap Class

concurrent_unordered_set Class

concurrent_unordered_multiset Class

Concurrent objects:

combinable Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/parallel-containers-and-objects.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

concurrent_vector Class

Differences Between concurrent_vector and vector

Concurrency-Safe Operations

at end operator[]

begin front push_back

back grow_by rbegin

capacity grow_to_at_least rend

empty max_size size

Methods and Features

Examples

The concurrency::concurrent_vector class is a sequence container class that, just like the std::vector class, lets
you randomly access its elements. The concurrent_vector class enables concurrency-safe append and element
access operations. Append operations do not invalidate existing pointers or iterators. Iterator access and
traversal operations are also concurrency-safe.

The concurrent_vector class closely resembles the vector class. The complexity of append, element access,
and iterator access operations on a concurrent_vector object are the same as for a vector object. The
following points illustrate where concurrent_vector differs from vector :

Append, element access, iterator access, and iterator traversal operations on a concurrent_vector object
are concurrency-safe.

You can add elements only to the end of a concurrent_vector object. The concurrent_vector class does
not provide the insert method.

A concurrent_vector object does not use move semantics when you append to it.

The concurrent_vector class does not provide the erase or pop_back methods. As with vector , use
the clear method to remove all elements from a concurrent_vector object.

The concurrent_vector class does not store its elements contiguously in memory. Therefore, you
cannot use the concurrent_vector class in all the ways that you can use an array. For example, for a
variable named v of type concurrent_vector , the expression &v[0]+2 produces undefined behavior.

The concurrent_vector class defines the grow_by and grow_to_at_least methods. These methods
resemble the resize method, except that they are concurrency-safe.

A concurrent_vector object does not relocate its elements when you append to it or resize it. This
enables existing pointers and iterators to remain valid during concurrent operations.

The runtime does not define a specialized version of concurrent_vector for type bool .

All methods that append to or increase the size of a concurrent_vector object, or access an element in a
concurrent_vector object, are concurrency-safe. The exception to this rule is the resize method.

The following table shows the common concurrent_vector methods and operators that are concurrency-safe.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp

assign reserve

clear resize

operator= shrink_to_fit

// parallel-vector-sum.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_vector.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create a concurrent_vector object that contains a few
 // initial elements.
 concurrent_vector<int> v;
 v.push_back(2);
 v.push_back(3);
 v.push_back(4);

 // Perform two tasks in parallel.
 // The first task appends additional elements to the concurrent_vector object.
 // The second task computes the sum of all elements in the same object.

 parallel_invoke(
 [&v] {
 for(int i = 0; i < 10000; ++i)
 {
 v.push_back(i);
 }
 },
 [&v] {
 combinable<int> sums;
 for(auto i = begin(v); i != end(v); ++i)
 {
 sums.local() += *i;
 }
 wcout << L"sum = " << sums.combine(plus<int>()) << endl;
 }
);
}

Operations that the runtime provides for compatibility with the C++ Standard Library, for example, reserve ,
are not concurrency-safe. The following table shows the common methods and operators that are not
concurrency-safe.

Operations that modify the value of existing elements are not concurrency-safe. Use a synchronization object
such as a reader_writer_lock object to synchronize concurrent read and write operations to the same data
element. For more information about synchronization objects, see Synchronization Data Structures.

When you convert existing code that uses vector to use concurrent_vector , concurrent operations can cause
the behavior of your application to change. For example, consider the following program that concurrently
performs two tasks on a concurrent_vector object. The first task appends additional elements to a
concurrent_vector object. The second task computes the sum of all elements in the same object.

Although the end method is concurrency-safe, a concurrent call to the push_back method causes the value

Exception Safety

concurrent_queue Class

Differences Between concurrent_queue and queue

Concurrency-Safe Operations

empty push

get_allocator try_pop

that is returned by end to change. The number of elements that the iterator traverses is indeterminate.
Therefore, this program can produce a different result each time that you run it.

If a growth or assignment operation throws an exception, the state of the concurrent_vector object becomes
invalid. The behavior of a concurrent_vector object that is in an invalid state is undefined unless stated
otherwise. However, the destructor always frees the memory that the object allocates, even if the object is in
an invalid state.

The data type of the vector elements, T , must meet the following requirements. Otherwise, the behavior of
the concurrent_vector class is undefined.

The destructor must not throw.

If the default or copy constructor throws, the destructor must not be declared by using the virtual

keyword and it must work correctly with zero-initialized memory.

[Top]

The concurrency::concurrent_queue class, just like the std::queue class, lets you access its front and back
elements. The concurrent_queue class enables concurrency-safe enqueue and dequeue operations. The
concurrent_queue class also provides iterator support that is not concurrency-safe.

The concurrent_queue class closely resembles the queue class. The following points illustrate where
concurrent_queue differs from queue :

Enqueue and dequeue operations on a concurrent_queue object are concurrency-safe.

The concurrent_queue class provides iterator support that is not concurrency-safe.

The concurrent_queue class does not provide the front or pop methods. The concurrent_queue class
replaces these methods by defining the try_pop method.

The concurrent_queue class does not provide the back method. Therefore, you cannot reference the
end of the queue.

The concurrent_queue class provides the unsafe_size method instead of the size method. The
unsafe_size method is not concurrency-safe.

All methods that enqueue to or dequeue from a concurrent_queue object are concurrency-safe.

The following table shows the common concurrent_queue methods and operators that are concurrency-safe.

Although the empty method is concurrency-safe, a concurrent operation may cause the queue to grow or
shrink before the empty method returns.

The following table shows the common methods and operators that are not concurrency-safe.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/queue-class

clear unsafe_end

unsafe_begin unsafe_size

Iterator Support

OPERATOR DESCRIPTION

operator++ Advances to next item in the queue. This operator is
overloaded to provide both pre-increment and post-
increment semantics.

operator* Retrieves a reference to the current item.

operator-> Retrieves a pointer to the current item.

concurrent_unordered_map Class

The concurrent_queue provides iterators that are not concurrency-safe. We recommend that you use these
iterators for debugging only.

A concurrent_queue iterator traverses elements in the forward direction only. The following table shows the
operators that each iterator supports.

[Top]

The concurrency::concurrent_unordered_map class is an associative container class that, just like the
std::unordered_map class, controls a varying-length sequence of elements of type std::pair<const Key, Ty>.
Think of an unordered map as a dictionary that you can add a key and value pair to or look up a value by key.
This class is useful when you have multiple threads or tasks that have to concurrently access a shared
container, insert into it, or update it.

The following example shows the basic structure for using concurrent_unordered_map . This example inserts
character keys in the range ['a', 'i']. Because the order of operations is undetermined, the final value for each
key is also undetermined. However, it is safe to perform the insertions in parallel.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unordered-map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

// unordered-map-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_unordered_map.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 //
 // Insert a number of items into the map in parallel.

 concurrent_unordered_map<char, int> map;

 parallel_for(0, 1000, [&map](int i) {
 char key = 'a' + (i%9); // Geneate a key in the range [a,i].
 int value = i; // Set the value to i.
 map.insert(make_pair(key, value));
 });

 // Print the elements in the map.
 for_each(begin(map), end(map), [](const pair<char, int>& pr) {
 wcout << L"[" << pr.first << L", " << pr.second << L"] ";
 });
}
/* Sample output:
 [e, 751] [i, 755] [a, 756] [c, 758] [g, 753] [f, 752] [b, 757] [d, 750] [h, 754]
*/

Differences Between concurrent_unordered_map and unordered_map

Concurrency-Safe Operations

For an example that uses concurrent_unordered_map to perform a map and reduce operation in parallel, see
How to: Perform Map and Reduce Operations in Parallel.

The concurrent_unordered_map class closely resembles the unordered_map class. The following points illustrate
where concurrent_unordered_map differs from unordered_map :

The erase , bucket , bucket_count , and bucket_size methods are named unsafe_erase ,
unsafe_bucket , unsafe_bucket_count , and unsafe_bucket_size , respectively. The unsafe_ naming

convention indicates that these methods are not concurrency-safe. For more information about
concurrency safety, see Concurrency-Safe Operations.

Insert operations do not invalidate existing pointers or iterators, nor do they change the order of items
that already exist in the map. Insert and traverse operations can occur concurrently.

concurrent_unordered_map supports forward iteration only.

Insertion does not invalidate or update the iterators that are returned by equal_range . Insertion can
append unequal items to the end of the range. The begin iterator points to an equal item.

To help avoid deadlock, no method of concurrent_unordered_map holds a lock when it calls the memory
allocator, hash functions, or other user-defined code. Also, you must ensure that the hash function always
evaluates equal keys to the same value. The best hash functions distribute keys uniformly across the hash code
space.

The concurrent_unordered_map class enables concurrency-safe insert and element-access operations. Insert
operations do not invalidate existing pointers or iterators. Iterator access and traversal operations are also
concurrency-safe. The following table shows the commonly used concurrent_unordered_map methods and

at count find key_eq

begin empty get_allocator max_size

cbegin end hash_function operator[]

cend equal_range insert size

clear max_load_factor rehash

load_factor operator=

concurrent_unordered_multimap Class

operators that are concurrency-safe.

Although the count method can be called safely from concurrently running threads, different threads can
receive different results if a new value is simultaneously inserted into the container.

The following table shows the commonly used methods and operators that are not concurrency-safe.

In addition to these methods, any method that begins with unsafe_ is also not concurrency-safe.

[Top]

The concurrency::concurrent_unordered_multimap class closely resembles the concurrent_unordered_map class
except that it allows for multiple values to map to the same key. It also differs from concurrent_unordered_map

in the following ways:

The concurrent_unordered_multimap::insert method returns an iterator instead of
std::pair<iterator, bool> .

The concurrent_unordered_multimap class does not provide operator[] nor the at method.

The following example shows the basic structure for using concurrent_unordered_multimap . This example
inserts character keys in the range ['a', 'i']. concurrent_unordered_multimap enables a key to have multiple
values.

// unordered-multimap-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_unordered_map.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 //
 // Insert a number of items into the map in parallel.

 concurrent_unordered_multimap<char, int> map;

 parallel_for(0, 10, [&map](int i) {
 char key = 'a' + (i%9); // Geneate a key in the range [a,i].
 int value = i; // Set the value to i.
 map.insert(make_pair(key, value));
 });

 // Print the elements in the map.
 for_each(begin(map), end(map), [](const pair<char, int>& pr) {
 wcout << L"[" << pr.first << L", " << pr.second << L"] ";
 });
}
/* Sample output:
 [e, 4] [i, 8] [a, 9] [a, 0] [c, 2] [g, 6] [f, 5] [b, 1] [d, 3] [h, 7]
*/

concurrent_unordered_set Class

[Top]

The concurrency::concurrent_unordered_set class closely resembles the concurrent_unordered_map class except
that it manages values instead of key and value pairs. The concurrent_unordered_set class does not provide
operator[] nor the at method.

The following example shows the basic structure for using concurrent_unordered_set . This example inserts
character values in the range ['a', 'i']. It is safe to perform the insertions in parallel.

// unordered-set-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_unordered_set.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 //
 // Insert a number of items into the set in parallel.

 concurrent_unordered_set<char> set;

 parallel_for(0, 10000, [&set](int i) {
 set.insert('a' + (i%9)); // Geneate a value in the range [a,i].
 });

 // Print the elements in the set.
 for_each(begin(set), end(set), [](char c) {
 wcout << L"[" << c << L"] ";
 });
}
/* Sample output:
 [e] [i] [a] [c] [g] [f] [b] [d] [h]
*/

concurrent_unordered_multiset Class

[Top]

The concurrency::concurrent_unordered_multiset class closely resembles the concurrent_unordered_set class
except that it allows for duplicate values. It also differs from concurrent_unordered_set in the following ways:

The concurrent_unordered_multiset::insert method returns an iterator instead of
std::pair<iterator, bool> .

The concurrent_unordered_multiset class does not provide operator[] nor the at method.

The following example shows the basic structure for using concurrent_unordered_multiset . This example
inserts character values in the range ['a', 'i']. concurrent_unordered_multiset enables a value to occur multiple
times.

// unordered-set-structure.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_unordered_set.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 //
 // Insert a number of items into the set in parallel.

 concurrent_unordered_multiset<char> set;

 parallel_for(0, 40, [&set](int i) {
 set.insert('a' + (i%9)); // Geneate a value in the range [a,i].
 });

 // Print the elements in the set.
 for_each(begin(set), end(set), [](char c) {
 wcout << L"[" << c << L"] ";
 });
}
/* Sample output:
 [e] [e] [e] [e] [i] [i] [i] [i] [a] [a] [a] [a] [a] [c] [c] [c] [c] [c] [g] [g]
 [g] [g] [f] [f] [f] [f] [b] [b] [b] [b] [b] [d] [d] [d] [d] [d] [h] [h] [h] [h]
*/

combinable Class

Methods and Features

METHOD DESCRIPTION

local Retrieves a reference to the local variable that is associated
with the current thread context.

clear Removes all thread-local variables from the combinable

object.

combine

combine_each

Uses the provided combine function to generate a final
value from the set of all thread-local computations.

[Top]

The concurrency::combinable class provides reusable, thread-local storage that lets you perform fine-grained
computations and then merge those computations into a final result. You can think of a combinable object as a
reduction variable.

The combinable class is useful when you have a resource that is shared among several threads or tasks. The
combinable class helps you eliminate shared state by providing access to shared resources in a lock-free

manner. Therefore, this class provides an alternative to using a synchronization mechanism, for example, a
mutex, to synchronize access to shared data from multiple threads.

The following table shows some of the important methods of the combinable class. For more information
about all the combinable class methods, see combinable Class.

 Examples

Related Topics

Reference

The combinable class is a template class that is parameterized on the final merged result. If you call the default
constructor, the T template parameter type must have a default constructor and a copy constructor. If the T
template parameter type does not have a default constructor, call the overloaded version of the constructor
that takes an initialization function as its parameter.

You can store additional data in a combinable object after you call the combine or combine_each methods. You
can also call the combine and combine_each methods multiple times. If no local value in a combinable object
changes, the combine and combine_each methods produce the same result every time that they are called.

For examples about how to use the combinable class, see the following topics:

How to: Use combinable to Improve Performance

How to: Use combinable to Combine Sets

[Top]

How to: Use Parallel Containers to Increase Efficiency
Shows how to use parallel containers to efficiently store and access data in parallel.

How to: Use combinable to Improve Performance
Shows how to use the combinable class to eliminate shared state, and thereby improve performance.

How to: Use combinable to Combine Sets
Shows how to use a combine function to merge thread-local sets of data.

Parallel Patterns Library (PPL)
Describes the PPL, which provides an imperative programming model that promotes scalability and ease-of-
use for developing concurrent applications.

concurrent_vector Class

concurrent_queue Class

concurrent_unordered_map Class

concurrent_unordered_multimap Class

concurrent_unordered_set Class

concurrent_unordered_multiset Class

combinable Class

How to: Use Parallel Containers to Increase Efficiency
3/4/2019 • 6 minutes to read • Edit Online

Example

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n)
{
 if (n < 2)
 return false;

 int k = n;
 for (int i = 2; i <= k / i; ++i)
 {
 if (k % i == 0)
 {
 if ((k / i) % i == 0)
 return false;
 if ((n - 1) % (i - 1) != 0)
 return false;
 k /= i;
 i = 1;
 }
 }
 return k != n && (n - 1) % (k - 1) == 0;
}

Example

This topic shows how to use parallel containers to efficiently store and access data in parallel.

The example code computes the set of prime and Carmichael numbers in parallel. Then, for each Carmichael
number, the code computes the prime factors of that number.

The following example shows the is_prime function, which determines whether an input value is a prime number,
and the is_carmichael function, which determines whether the input value is a Carmichael number.

The following example uses the is_prime and is_carmichael functions to compute the sets of prime and
Carmichael numbers. The example uses the concurrency::parallel_invoke and concurrency::parallel_for algorithms
to compute each set in parallel. For more information about parallel algorithms, see Parallel Algorithms.

This example uses a concurrency::concurrent_queue object to hold the set of Carmichael numbers because it will
later use that object as a work queue. It uses a concurrency::concurrent_vector object to hold the set of prime
numbers because it will later iterate through this set to find prime factors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-parallel-containers-to-increase-efficiency.md

// The maximum number to test.
const int max = 10000000;

// Holds the Carmichael numbers that are in the range [0, max).
concurrent_queue<int> carmichaels;

// Holds the prime numbers that are in the range [0, sqrt(max)).
concurrent_vector<int> primes;

// Generate the set of Carmichael numbers and the set of prime numbers
// in parallel.
parallel_invoke(
 [&] {
 parallel_for(0, max, [&](int i) {
 if (is_carmichael(i)) {
 carmichaels.push(i);
 }
 });
 },
 [&] {
 parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
 if (is_prime(i)) {
 primes.push_back(i);
 }
 });
 });

Example

// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n,
 const concurrent_vector<int>& primes)
{
 // Holds the prime factors of n.
 concurrent_vector<int> prime_factors;

 // Use trial division to find the prime factors of n.
 // Every prime number that divides evenly into n is a prime factor of n.
 const int max = sqrt(static_cast<double>(n));
 parallel_for_each(begin(primes), end(primes), [&](int prime)
 {
 if (prime <= max)
 {
 if ((n % prime) == 0)
 prime_factors.push_back(prime);
 }
 });

 return prime_factors;
}

Example

The following example shows the prime_factors_of function, which uses trial division to find all prime factors of
the given value.

This function uses the concurrency::parallel_for_each algorithm to iterate through the collection of prime numbers.
The concurrent_vector object enables the parallel loop to concurrently add prime factors to the result.

This example processes each element in the queue of Carmichael numbers by calling the prime_factors_of

function to compute its prime factors. It uses a task group to perform this work in parallel. For more information

// Use a task group to compute the prime factors of each
// Carmichael number in parallel.
task_group tasks;

int carmichael;
while (carmichaels.try_pop(carmichael))
{
 tasks.run([carmichael,&primes]
 {
 // Compute the prime factors.
 auto prime_factors = prime_factors_of(carmichael, primes);

 // For brevity, print the prime factors for the current number only
 // if there are more than 4.
 if (prime_factors.size() > 4)
 {
 // Sort and then print the prime factors.
 sort(begin(prime_factors), end(prime_factors));

 wstringstream ss;
 ss << L"Prime factors of " << carmichael << L" are:";

 for_each (begin(prime_factors), end(prime_factors),
 [&](int prime_factor) { ss << L' ' << prime_factor; });
 ss << L'.' << endl;

 wcout << ss.str();
 }
 });
}

// Wait for the task group to finish.
tasks.wait();

Example

// carmichael-primes.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_queue.h>
#include <concurrent_vector.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }

about task groups, see Task Parallelism.

This example prints the prime factors for each Carmichael number if that number has more than four prime
factors.

The following code shows the complete example, which uses parallel containers to compute the prime factors of
the Carmichael numbers.

 }
 return true;
}

// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n)
{
 if (n < 2)
 return false;

 int k = n;
 for (int i = 2; i <= k / i; ++i)
 {
 if (k % i == 0)
 {
 if ((k / i) % i == 0)
 return false;
 if ((n - 1) % (i - 1) != 0)
 return false;
 k /= i;
 i = 1;
 }
 }
 return k != n && (n - 1) % (k - 1) == 0;
}

// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n,
 const concurrent_vector<int>& primes)
{
 // Holds the prime factors of n.
 concurrent_vector<int> prime_factors;

 // Use trial division to find the prime factors of n.
 // Every prime number that divides evenly into n is a prime factor of n.
 const int max = sqrt(static_cast<double>(n));
 parallel_for_each(begin(primes), end(primes), [&](int prime)
 {
 if (prime <= max)
 {
 if ((n % prime) == 0)
 prime_factors.push_back(prime);
 }
 });

 return prime_factors;
}

int wmain()
{
 // The maximum number to test.
 const int max = 10000000;

 // Holds the Carmichael numbers that are in the range [0, max).
 concurrent_queue<int> carmichaels;

 // Holds the prime numbers that are in the range [0, sqrt(max)).
 concurrent_vector<int> primes;

 // Generate the set of Carmichael numbers and the set of prime numbers
 // in parallel.
 parallel_invoke(
 [&] {
 parallel_for(0, max, [&](int i) {
 if (is_carmichael(i)) {
 carmichaels.push(i);
 }
 });
 },

 [&] {
 parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
 if (is_prime(i)) {
 primes.push_back(i);
 }
 });
 });

 // Use a task group to compute the prime factors of each
 // Carmichael number in parallel.
 task_group tasks;

 int carmichael;
 while (carmichaels.try_pop(carmichael))
 {
 tasks.run([carmichael,&primes]
 {
 // Compute the prime factors.
 auto prime_factors = prime_factors_of(carmichael, primes);

 // For brevity, print the prime factors for the current number only
 // if there are more than 4.
 if (prime_factors.size() > 4)
 {
 // Sort and then print the prime factors.
 sort(begin(prime_factors), end(prime_factors));

 wstringstream ss;
 ss << L"Prime factors of " << carmichael << L" are:";

 for_each (begin(prime_factors), end(prime_factors),
 [&](int prime_factor) { ss << L' ' << prime_factor; });
 ss << L'.' << endl;

 wcout << ss.str();
 }
 });
 }

 // Wait for the task group to finish.
 tasks.wait();
}

Prime factors of 9890881 are: 7 11 13 41 241.
Prime factors of 825265 are: 5 7 17 19 73.
Prime factors of 1050985 are: 5 13 19 23 37.

Compiling the Code

See also

This example produces the following sample output.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
carmichael-primes.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc carmichael-primes.cpp

Parallel Containers and Objects
Task Parallelism
concurrent_vector Class
concurrent_queue Class

parallel_invoke Function
parallel_for Function
task_group Class

How to: Use combinable to Improve Performance
3/4/2019 • 3 minutes to read • Edit Online

TIP

Example

prime_sum = accumulate(begin(a), end(a), 0, [&](int acc, int i) {
 return acc + (is_prime(i) ? i : 0);
});

Example

critical_section cs;
prime_sum = 0;
parallel_for_each(begin(a), end(a), [&](int i) {
 cs.lock();
 prime_sum += (is_prime(i) ? i : 0);
 cs.unlock();
});

Example

This example shows how to use the concurrency::combinable class to compute the sum of the numbers in a
std::array object that are prime. The combinable class improves performance by eliminating shared state.

In some cases, parallel map (concurrency::parallel_transform) and reduce (concurrency:: parallel_reduce) can provide
performance improvements over combinable . For an example that uses map and reduce operations to produce the same
results as this example, see Parallel Algorithms.

The following example uses the std::accumulate function to compute the sum of the elements in an array that are
prime. In this example, a is an array object and the is_prime function determines whether its input value is
prime.

The following example shows a naïve way to parallelize the previous example. This example uses the
concurrency::parallel_for_each algorithm to process the array in parallel and a concurrency::critical_section object
to synchronize access to the prime_sum variable. This example does not scale because each thread must wait for
the shared resource to become available.

The following example uses a combinable object to improve the performance of the previous example. This
example eliminates the need for synchronization objects; it scales because the combinable object enables each
thread to perform its task independently.

A combinable object is typically used in two steps. First, produce a series of fine-grained computations by
performing work in parallel. Next, combine (or reduce) the computations into a final result. This example uses the
concurrency::combinable::local method to obtain a reference to the local sum. It then uses the
concurrency::combinable::combine method and a std::plus object to combine the local computations into the final
result.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-combinable-to-improve-performance.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/numeric-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/plus-struct

combinable<int> sum;
parallel_for_each(begin(a), end(a), [&](int i) {
 sum.local() += (is_prime(i) ? i : 0);
});
prime_sum = sum.combine(plus<int>());

Example
The following complete example computes the sum of prime numbers both serially and in parallel. The example
prints to the console the time that is required to perform both computations.

// parallel-sum-of-primes.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <array>
#include <numeric>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

int wmain()
{
 // Create an array object that contains 200000 integers.
 array<int, 200000> a;

 // Initialize the array such that a[i] == i.
 iota(begin(a), end(a), 0);

 int prime_sum;
 __int64 elapsed;

 // Compute the sum of the numbers in the array that are prime.
 elapsed = time_call([&] {
 prime_sum = accumulate(begin(a), end(a), 0, [&](int acc, int i) {
 return acc + (is_prime(i) ? i : 0);
 });
 });
 wcout << prime_sum << endl;
 wcout << L"serial time: " << elapsed << L" ms" << endl << endl;

 // Now perform the same task in parallel.
 elapsed = time_call([&] {
 combinable<int> sum;
 parallel_for_each(begin(a), end(a), [&](int i) {
 sum.local() += (is_prime(i) ? i : 0);
 });
 prime_sum = sum.combine(plus<int>());
 });
 wcout << prime_sum << endl;
 wcout << L"parallel time: " << elapsed << L" ms" << endl << endl;
}

1709600813
serial time: 6178 ms

1709600813
parallel time: 1638 ms

Compiling the Code

Robust Programming

See also

The following sample output is for a computer that has four processors.

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named
parallel-sum-of-primes.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-sum-of-primes.cpp

For an example that uses map and reduce operations to produce the same results, see Parallel Algorithms.

Parallel Containers and Objects
combinable Class
critical_section Class

How to: Use combinable to Combine Sets
3/4/2019 • 2 minutes to read • Edit Online

Example

// parallel-combine-primes.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <bitset>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
 if (n < 2)
 return false;
 for (int i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

const int limit = 40000;

int wmain()
{
 // A set of prime numbers that is computed serially.
 bitset<limit> primes1;

 // A set of prime numbers that is computed in parallel.
 bitset<limit> primes2;

 __int64 elapsed;

 // Compute the set of prime numbers in a serial loop.

This topic shows how to use the concurrency::combinable class to compute the set of prime numbers.

The following example computes the set of prime numbers two times. Each computation stores the result in a
std::bitset object. The example first computes the set serially and then computes the set in parallel. The example
also prints to the console the time that is required to perform both computations.

This example uses the concurrency::parallel_for algorithm and a combinable object to generate thread-local sets. It
then uses the concurrency::combinable::combine_each method to combine the thread-local sets into the final set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-combinable-to-combine-sets.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bitset-class

 elapsed = time_call([&]
 {
 for(int i = 0; i < limit; ++i) {
 if (is_prime(i))
 primes1.set(i);
 }
 });
 wcout << L"serial time: " << elapsed << L" ms" << endl << endl;

 // Compute the same set of numbers in parallel.
 elapsed = time_call([&]
 {
 // Use a parallel_for loop and a combinable object to compute
 // the set in parallel.
 // You do not need to synchronize access to the set because the
 // combinable object provides a separate bitset object to each thread.
 combinable<bitset<limit>> working;
 parallel_for(0, limit, [&](int i) {
 if (is_prime(i))
 working.local().set(i);
 });

 // Merge each thread-local computation into the final result.
 working.combine_each([&](bitset<limit>& local) {
 primes2 |= local;
 });
 });
 wcout << L"parallel time: " << elapsed << L" ms" << endl << endl;
}

serial time: 312 ms

parallel time: 78 ms

Compiling the Code

See also

The following sample output is for a computer that has four processors.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
parallel-combine-primes.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-combine-primes.cpp

Parallel Containers and Objects
combinable Class
combinable::combine_each Method

Cancellation in the PPL
3/4/2019 • 22 minutes to read • Edit Online

NOTE

Key Points

In this Document

This document explains the role of cancellation in the Parallel Patterns Library (PPL), how to cancel parallel
work, and how to determine when parallel work is canceled.

The runtime uses exception handling to implement cancellation. Do not catch or handle these exceptions in your
code. In addition, we recommend that you write exception-safe code in the function bodies for your tasks. For
instance, you can use the Resource Acquisition Is Initialization (RAII) pattern to ensure that resources are correctly
handled when an exception is thrown in the body of a task. For a complete example that uses the RAII pattern to
clean up a resource in a cancelable task, see Walkthrough: Removing Work from a User-Interface Thread.

Cancellation is cooperative and involves coordination between the code that requests cancellation
and the task that responds to cancellation.

When possible, use cancellation tokens to cancel work. The concurrency::cancellation_token class
defines a cancellation token.

When you use cancellation tokens, use the concurrency::cancellation_token_source::cancel method to
initiate cancellation and the concurrency::cancel_current_task function to respond to cancellation. Use
the concurrency::cancellation_token::is_canceled method to check whether any other task has
requested cancellation.

Cancellation does not occur immediately. Although new work is not started if a task or task group is
cancelled, active work must check for and respond to cancellation.

A value-based continuation inherits the cancellation token of its antecedent task. A task-based
continuation never inherits the token of its antecedent task.

Use the concurrency::cancellation_token::none method when you call a constructor or function that
takes a cancellation_token object but you do not want the operation to be cancellable. Also, if you do
not pass a cancellation token to the concurrency::task constructor or the concurrency::create_task
function, that task is not cancellable.

Parallel Work Trees

Canceling Parallel Tasks

Using a Cancellation Token to Cancel Parallel Work

Using the cancel Method to Cancel Parallel Work

Using Exceptions to Cancel Parallel Work

Canceling Parallel Algorithms

When Not to Use Cancellation

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/cancellation-in-the-ppl.md

 Parallel Work Trees
The PPL uses tasks and task groups to manage fine-grained tasks and computations. You can nest task
groups to form trees of parallel work. The following illustration shows a parallel work tree. In this
illustration, tg1 and tg2 represent task groups; t1 , t2 , t3 , t4 , and t5 represent the work that the
task groups perform.

The following example shows the code that is required to create the tree in the illustration. In this example,
tg1 and tg2 are concurrency::structured_task_group objects; t1 , t2 , t3 , t4 , and t5 are

concurrency::task_handle objects.

// task-tree.cpp
// compile with: /c /EHsc
#include <ppl.h>
#include <sstream>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

void create_task_tree()
{
 // Create a task group that serves as the root of the tree.
 structured_task_group tg1;

 // Create a task that contains a nested task group.
 auto t1 = make_task([&] {
 structured_task_group tg2;

 // Create a child task.
 auto t4 = make_task([&] {
 // TODO: Perform work here.
 });

 // Create a child task.
 auto t5 = make_task([&] {
 // TODO: Perform work here.
 });

 // Run the child tasks and wait for them to finish.
 tg2.run(t4);
 tg2.run(t5);
 tg2.wait();
 });

 // Create a child task.
 auto t2 = make_task([&] {
 // TODO: Perform work here.
 });

 // Create a child task.
 auto t3 = make_task([&] {
 // TODO: Perform work here.
 });

 // Run the child tasks and wait for them to finish.
 tg1.run(t1);
 tg1.run(t2);
 tg1.run(t3);
 tg1.wait();
}

Canceling Parallel Tasks

You can also use the concurrency::task_group class to create a similar work tree. The concurrency::task class
also supports the notion of a tree of work. However, a task tree is a dependency tree. In a task tree,
future works completes after current work. In a task group tree, internal work completes before outer work.
For more information about the differences between tasks and task groups, see Task Parallelism.

[Top]

There are multiple ways to cancel parallel work. The preferred way is to use a cancellation token. Task
groups also support the concurrency::task_group::cancel method and the
concurrency::structured_task_group::cancel method. The final way is to throw an exception in the body of a

 Using a Cancellation Token to Cancel Parallel Work

// task-basic-cancellation.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <concrt.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

bool do_work()
{
 // Simulate work.
 wcout << L"Performing work..." << endl;
 wait(250);
 return true;
}

int wmain()
{
 cancellation_token_source cts;
 auto token = cts.get_token();

 wcout << L"Creating task..." << endl;

 // Create a task that performs work until it is canceled.
 auto t = create_task([&]
 {
 bool moreToDo = true;
 while (moreToDo)
 {
 // Check for cancellation.
 if (token.is_canceled())
 {

task work function. No matter which method you choose, understand that cancellation does not occur
immediately. Although new work is not started if a task or task group is cancelled, active work must check
for and respond to cancellation.

For more examples that cancel parallel tasks, see Walkthrough: Connecting Using Tasks and XML HTTP
Requests, How to: Use Cancellation to Break from a Parallel Loop, and How to: Use Exception Handling to
Break from a Parallel Loop.

The task , task_group , and structured_task_group classes support cancellation through the use of
cancellation tokens. The PPL defines the concurrency::cancellation_token_source and
concurrency::cancellation_token classes for this purpose. When you use a cancellation token to cancel work,
the runtime does not start new work that subscribes to that token. Work that is already active can use the
is_canceled member function to monitor the cancellation token and stop when it can.

To initiate cancellation, call the concurrency::cancellation_token_source::cancel method. You respond to
cancellation in these ways:

For task objects, use the concurrency::cancel_current_task function. cancel_current_task cancels the
current task and any of its value-based continuations. (It does not cancel the cancellation token that is
associated with the task or its continuations.)

For task groups and parallel algorithms, use the concurrency::is_current_task_group_canceling
function to detect cancellation and return as soon as possible from the task body when this function
returns true. (Do not call cancel_current_task from a task group.)

The following example shows the first basic pattern for task cancellation. The task body occasionally checks
for cancellation inside a loop.

 {
 // TODO: Perform any necessary cleanup here...

 // Cancel the current task.
 cancel_current_task();
 }
 else
 {
 // Perform work.
 moreToDo = do_work();
 }
 }
 }, token);

 // Wait for one second and then cancel the task.
 wait(1000);

 wcout << L"Canceling task..." << endl;
 cts.cancel();

 // Wait for the task to cancel.
 wcout << L"Waiting for task to complete..." << endl;
 t.wait();

 wcout << L"Done." << endl;
}

/* Sample output:
 Creating task...
 Performing work...
 Performing work...
 Performing work...
 Performing work...
 Canceling task...
 Waiting for task to complete...
 Done.
*/

TIP

C a u t i o n

The cancel_current_task function throws; therefore, you do not need to explicitly return from the current
loop or function.

Alternatively, you can call the concurrency::interruption_point function instead of cancel_current_task .

It is important to call cancel_current_task when you respond to cancellation because it transitions the task
to the canceled state. If you return early instead of calling cancel_current_task , the operation transitions to
the completed state and any value-based continuations are run.

Never throw task_canceled from your code. Call cancel_current_task instead.

When a task ends in the canceled state, the concurrency::task::get method throws
concurrency::task_canceled. (Conversely, concurrency::task::wait returns task_status::canceled and does not
throw.) The following example illustrates this behavior for a task-based continuation. A task-based
continuation is always called, even when the antecedent task is canceled.

// task-canceled.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 auto t1 = create_task([]() -> int
 {
 // Cancel the task.
 cancel_current_task();
 });

 // Create a continuation that retrieves the value from the previous.
 auto t2 = t1.then([](task<int> t)
 {
 try
 {
 int n = t.get();
 wcout << L"The previous task returned " << n << L'.' << endl;
 }
 catch (const task_canceled& e)
 {
 wcout << L"The previous task was canceled." << endl;
 }
 });

 // Wait for all tasks to complete.
 t2.wait();
}
/* Output:
 The previous task was canceled.
*/

Because value-based continuations inherit the token of their antecedent task unless they were created with
an explicit token, the continuations immediately enter the canceled state even when the antecedent task is
still executing. Therefore, any exception that is thrown by the antecedent task after cancellation is not
propagated to the continuation tasks. Cancellation always overrides the state of the antecedent task. The
following example resembles the previous, but illustrates the behavior for a value-based continuation.

auto t1 = create_task([]() -> int
{
 // Cancel the task.
 cancel_current_task();
});

// Create a continuation that retrieves the value from the previous.
auto t2 = t1.then([](int n)
{
 wcout << L"The previous task returned " << n << L'.' << endl;
});

try
{
 // Wait for all tasks to complete.
 t2.get();
}
catch (const task_canceled& e)
{
 wcout << L"The task was canceled." << endl;
}
/* Output:
 The task was canceled.
*/

C a u t i o n

If you do not pass a cancellation token to the task constructor or the concurrency::create_task function, that
task is not cancellable. In addition, you must pass the same cancellation token to the constructor of any
nested tasks (that is, tasks that are created in the body of another task) to cancel all tasks simultaneously.

You might want to run arbitrary code when a cancellation token is canceled. For example, if your user
chooses a Cancel button on the user interface to cancel the operation, you could disable that button until
the user starts another operation. The following example shows how to use the
concurrency::cancellation_token::register_callback method to register a callback function that runs when a
cancellation token is canceled.

// task-cancellation-callback.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 cancellation_token_source cts;
 auto token = cts.get_token();

 // An event that is set in the cancellation callback.
 event e;

 cancellation_token_registration cookie;
 cookie = token.register_callback([&e, token, &cookie]()
 {
 wcout << L"In cancellation callback..." << endl;
 e.set();

 // Although not required, demonstrate how to unregister
 // the callback.
 token.deregister_callback(cookie);
 });

 wcout << L"Creating task..." << endl;

 // Create a task that waits to be canceled.
 auto t = create_task([&e]
 {
 e.wait();
 }, token);

 // Cancel the task.
 wcout << L"Canceling task..." << endl;
 cts.cancel();

 // Wait for the task to cancel.
 t.wait();

 wcout << L"Done." << endl;
}
/* Sample output:
 Creating task...
 Canceling task...
 In cancellation callback...
 Done.
*/

C a u t i o n

The document Task Parallelism explains the difference between value-based and task-based continuations. If
you do not provide a cancellation_token object to a continuation task, the continuation inherits the
cancellation token from the antecedent task in the following ways:

A value-based continuation always inherits the cancellation token of the antecedent task.

A task-based continuation never inherits the cancellation token of the antecedent task. The only way
to make a task-based continuation cancelable is to explicitly pass a cancellation token.

These behaviors are not affected by a faulted task (that is, one that throws an exception). In this case, a
value-based continuation is cancelled; a task-based continuation is not cancelled.

A task that is created in another task (in other words, a nested task) does not inherit the cancellation token of

TIP

Cancellation Tokens and Task Composition

Using the cancel Method to Cancel Parallel Work

the parent task. Only a value-based continuation inherits the cancellation token of its antecedent task.

Use the concurrency::cancellation_token::none method when you call a constructor or function that takes a
cancellation_token object and you do not want the operation to be cancellable.

You can also provide a cancellation token to the constructor of a task_group or structured_task_group

object. An important aspect of this is that child task groups inherit this cancellation token. For an example
that demonstrates this concept by using the concurrency::run_with_cancellation_token function to run to call
parallel_for , see Canceling Parallel Algorithms later in this document.

[Top]

The concurrency::when_all and concurrency::when_any functions can help you compose multiple tasks to
implement common patterns. This section describes how these functions work with cancellation tokens.

When you provide a cancellation token to either the when_all and when_any function, that function cancels
only when that cancellation token is cancelled or when one of the participant tasks ends in a canceled state
or throws an exception.

The when_all function inherits the cancellation token from each task that composes the overall operation
when you do not provide a cancellation token to it. The task that is returned from when_all is canceled
when any of these tokens are cancelled and at least one of the participant tasks has not yet started or is
running. A similar behavior occurs when one of the tasks throws an exception - the task that is returned
from when_all is immediately canceled with that exception.

The runtime chooses the cancellation token for the task that is returned from when_any function when that
task completes. If none of the participant tasks finish in a completed state and one or more of the tasks
throws an exception, one of the tasks that threw is chosen to complete the when_any and its token is chosen
as the token for the final task. If more than one task finishes in the completed state, the task that is returned
from when_any task ends in a completed state. The runtime tries to pick a completed task whose token is not
canceled at the time of completion so that the task that is returned from when_any is not immediately
canceled even though other executing tasks might complete at a later point.

[Top]

The concurrency::task_group::cancel and concurrency::structured_task_group::cancel methods set a task
group to the canceled state. After you call cancel , the task group does not start future tasks. The cancel

methods can be called by multiple child tasks. A canceled task causes the concurrency::task_group::wait and
concurrency::structured_task_group::wait methods to return concurrency::canceled.

If a task group is canceled, calls from each child task into the runtime can trigger an interruption point, which
causes the runtime to throw and catch an internal exception type to cancel active tasks. The Concurrency
Runtime does not define specific interruption points; they can occur in any call to the runtime. The runtime
must handle the exceptions that it throws in order to perform cancellation. Therefore, do not handle
unknown exceptions in the body of a task.

If a child task performs a time-consuming operation and does not call into the runtime, it must periodically
check for cancellation and exit in a timely manner. The following example shows one way to determine when
work is canceled. Task t4 cancels the parent task group when it encounters an error. Task t5 occasionally
calls the structured_task_group::is_canceling method to check for cancellation. If the parent task group is
canceled, task t5 prints a message and exits.

structured_task_group tg2;

// Create a child task.
auto t4 = make_task([&] {
 // Perform work in a loop.
 for (int i = 0; i < 1000; ++i)
 {
 // Call a function to perform work.
 // If the work function fails, cancel the parent task
 // and break from the loop.
 bool succeeded = work(i);
 if (!succeeded)
 {
 tg2.cancel();
 break;
 }
 }
});

// Create a child task.
auto t5 = make_task([&] {
 // Perform work in a loop.
 for (int i = 0; i < 1000; ++i)
 {
 // To reduce overhead, occasionally check for
 // cancelation.
 if ((i%100) == 0)
 {
 if (tg2.is_canceling())
 {
 wcout << L"The task was canceled." << endl;
 break;
 }
 }

 // TODO: Perform work here.
 }
});

// Run the child tasks and wait for them to finish.
tg2.run(t4);
tg2.run(t5);
tg2.wait();

This example checks for cancellation on every 100 iteration of the task loop. The frequency with which you
check for cancellation depends on the amount of work your task performs and how quickly you need for
tasks to respond to cancellation.

th

If you do not have access to the parent task group object, call the
concurrency::is_current_task_group_canceling function to determine whether the parent task group is
canceled.

The cancel method only affects child tasks. For example, if you cancel the task group tg1 in the illustration
of the parallel work tree, all tasks in the tree (t1 , t2 , t3 , t4 , and t5) are affected. If you cancel the
nested task group, tg2 , only tasks t4 and t5 are affected.

When you call the cancel method, all child task groups are also canceled. However, cancellation does not
affect any parents of the task group in a parallel work tree. The following examples show this by building on
the parallel work tree illustration.

The first of these examples creates a work function for the task t4 , which is a child of the task group tg2 .
The work function calls the function work in a loop. If any call to work fails, the task cancels its parent task
group. This causes task group tg2 to enter the canceled state, but it does not cancel task group tg1 .

auto t4 = make_task([&] {
 // Perform work in a loop.
 for (int i = 0; i < 1000; ++i)
 {
 // Call a function to perform work.
 // If the work function fails, cancel the parent task
 // and break from the loop.
 bool succeeded = work(i);
 if (!succeeded)
 {
 tg2.cancel();
 break;
 }
 }
});

auto t4 = make_task([&] {
 // Perform work in a loop.
 for (int i = 0; i < 1000; ++i)
 {
 // Call a function to perform work.
 // If the work function fails, cancel all tasks in the tree.
 bool succeeded = work(i);
 if (!succeeded)
 {
 tg1.cancel();
 break;
 }
 }
});

C a u t i o n

Using Exceptions to Cancel Parallel Work

C a u t i o n

This second example resembles the first one, except that the task cancels task group tg1 . This affects all
tasks in the tree (t1 , t2 , t3 , t4 , and t5).

The structured_task_group class is not thread-safe. Therefore, a child task that calls a method of its parent
structured_task_group object produces unspecified behavior. The exceptions to this rule are the
structured_task_group::cancel and concurrency::structured_task_group::is_canceling methods. A child task

can call these methods to cancel the parent task group and check for cancellation.

Although you can use a cancellation token to cancel work that is performed by a task group that runs as a
child of a task object, you cannot use the task_group::cancel or structured_task_group::cancel methods
to cancel task objects that run in a task group.

[Top]

The use of cancellation tokens and the cancel method are more efficient than exception handling at
canceling a parallel work tree. Cancellation tokens and the cancel method cancel a task and any child tasks
in a top-down manner. Conversely, exception handling works in a bottom-up manner and must cancel each
child task group independently as the exception propagates upward. The topic Exception Handling explains
how the Concurrency Runtime uses exceptions to communicate errors. However, not all exceptions indicate
an error. For example, a search algorithm might cancel its associated task when it finds the result. However,
as mentioned previously, exception handling is less efficient than using the cancel method to cancel parallel
work.

We recommend that you use exceptions to cancel parallel work only when necessary. Cancellation tokens
and the task group cancel methods are more efficient and less prone to error.

structured_task_group tg2;

// Create a child task.
auto t4 = make_task([&] {
 // Perform work in a loop.
 for (int i = 0; i < 1000; ++i)
 {
 // Call a function to perform work.
 // If the work function fails, throw an exception to
 // cancel the parent task.
 bool succeeded = work(i);
 if (!succeeded)
 {
 throw exception("The task failed");
 }
 }
});

// Create a child task.
auto t5 = make_task([&] {
 // TODO: Perform work here.
});

// Run the child tasks.
tg2.run(t4);
tg2.run(t5);

// Wait for the tasks to finish. The runtime marshals any exception
// that occurs to the call to wait.
try
{
 tg2.wait();
}
catch (const exception& e)
{
 wcout << e.what() << endl;
}

When you throw an exception in the body of a work function that you pass to a task group, the runtime
stores that exception and marshals the exception to the context that waits for the task group to finish. As
with the cancel method, the runtime discards any tasks that have not yet started, and does not accept new
tasks.

This third example resembles the second one, except that task t4 throws an exception to cancel the task
group tg2 . This example uses a try - catch block to check for cancellation when the task group tg2 waits
for its child tasks to finish. Like the first example, this causes the task group tg2 to enter the canceled state,
but it does not cancel task group tg1 .

This fourth example uses exception handling to cancel the whole work tree. The example catches the
exception when task group tg1 waits for its child tasks to finish instead of when task group tg2 waits for
its child tasks. Like the second example, this causes both tasks groups in the tree, tg1 and tg2 , to enter the
canceled state.

// Run the child tasks.
tg1.run(t1);
tg1.run(t2);
tg1.run(t3);

// Wait for the tasks to finish. The runtime marshals any exception
// that occurs to the call to wait.
try
{
 tg1.wait();
}
catch (const exception& e)
{
 wcout << e.what() << endl;
}

Canceling Parallel Algorithms

Because the task_group::wait and structured_task_group::wait methods throw when a child task throws
an exception, you do not receive a return value from them.

[Top]

Parallel algorithms in the PPL, for example, parallel_for , build on task groups. Therefore, you can use
many of the same techniques to cancel a parallel algorithm.

The following examples illustrate several ways to cancel a parallel algorithm.

The following example uses the run_with_cancellation_token function to call the parallel_for algorithm.
The run_with_cancellation_token function takes a cancellation token as an argument and calls the provided
work function synchronously. Because parallel algorithms are built upon tasks, they inherit the cancellation
token of the parent task. Therefore, parallel_for can respond to cancellation.

// cancel-parallel-for.cpp
// compile with: /EHsc
#include <ppltasks.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Call parallel_for in the context of a cancellation token.
 cancellation_token_source cts;
 run_with_cancellation_token([&cts]()
 {
 // Print values to the console in parallel.
 parallel_for(0, 20, [&cts](int n)
 {
 // For demonstration, cancel the overall operation
 // when n equals 11.
 if (n == 11)
 {
 cts.cancel();
 }
 // Otherwise, print the value.
 else
 {
 wstringstream ss;
 ss << n << endl;
 wcout << ss.str();
 }
 });
 }, cts.get_token());
}
/* Sample output:
 15
 16
 17
 10
 0
 18
 5
*/

The following example uses the concurrency::structured_task_group::run_and_wait method to call the
parallel_for algorithm. The structured_task_group::run_and_wait method waits for the provided task to

finish. The structured_task_group object enables the work function to cancel the task.

// To enable cancelation, call parallel_for in a task group.
structured_task_group tg;

task_group_status status = tg.run_and_wait([&] {
 parallel_for(0, 100, [&](int i) {
 // Cancel the task when i is 50.
 if (i == 50)
 {
 tg.cancel();
 }
 else
 {
 // TODO: Perform work here.
 }
 });
});

// Print the task group status.
wcout << L"The task group status is: ";
switch (status)
{
case not_complete:
 wcout << L"not complete." << endl;
 break;
case completed:
 wcout << L"completed." << endl;
 break;
case canceled:
 wcout << L"canceled." << endl;
 break;
default:
 wcout << L"unknown." << endl;
 break;
}

The task group status is: canceled.

try
{
 parallel_for(0, 100, [&](int i) {
 // Throw an exception to cancel the task when i is 50.
 if (i == 50)
 {
 throw i;
 }
 else
 {
 // TODO: Perform work here.
 }
 });
}
catch (int n)
{
 wcout << L"Caught " << n << endl;
}

This example produces the following output.

The following example uses exception handling to cancel a parallel_for loop. The runtime marshals the
exception to the calling context.

This example produces the following output.

Caught 50

// Create a Boolean flag to coordinate cancelation.
bool canceled = false;

parallel_for(0, 100, [&](int i) {
 // For illustration, set the flag to cancel the task when i is 50.
 if (i == 50)
 {
 canceled = true;
 }

 // Perform work if the task is not canceled.
 if (!canceled)
 {
 // TODO: Perform work here.
 }
});

When Not to Use Cancellation

Related Topics
TITLE DESCRIPTION

How to: Use Cancellation to Break from a Parallel Loop Shows how to use cancellation to implement a parallel
search algorithm.

How to: Use Exception Handling to Break from a Parallel
Loop

Shows how to use the task_group class to write a search
algorithm for a basic tree structure.

Exception Handling Describes how the runtime handles exceptions that are
thrown by task groups, lightweight tasks, and
asynchronous agents, and how to respond to exceptions
in your applications.

The following example uses a Boolean flag to coordinate cancellation in a parallel_for loop. Every task
runs because this example does not use the cancel method or exception handling to cancel the overall set
of tasks. Therefore, this technique can have more computational overhead than a cancelation mechanism.

Each cancellation method has advantages over the others. Choose the method that fits your specific needs.

[Top]

The use of cancellation is appropriate when each member of a group of related tasks can exit in a timely
manner. However, there are some scenarios where cancellation may not be appropriate for your application.
For example, because task cancellation is cooperative, the overall set of tasks will not cancel if any individual
task is blocked. For example, if one task has not yet started, but it unblocks another active task, it will not
start if the task group is canceled. This can cause deadlock to occur in your application. A second example of
where the use of cancellation may not be appropriate is when a task is canceled, but its child task performs
an important operation, such as freeing a resource. Because the overall set of tasks is canceled when the
parent task is canceled, that operation will not execute. For an example that illustrates this point, see the
Understand how Cancellation and Exception Handling Affect Object Destruction section in the Best
Practices in the Parallel Patterns Library topic.

[Top]

Task Parallelism Describes how tasks relate to task groups and how you
can use unstructured and structured tasks in your
applications.

Parallel Algorithms Describes the parallel algorithms, which concurrently
perform work on collections of data

Parallel Patterns Library (PPL) Provides an overview of the Parallel Patterns Library.

TITLE DESCRIPTION

Reference
task Class (Concurrency Runtime)

cancellation_token_source Class

cancellation_token Class

task_group Class

structured_task_group Class

parallel_for Function

How to: Use Cancellation to Break from a Parallel
Loop
3/4/2019 • 2 minutes to read • Edit Online

Example

This example shows how to use cancellation to implement a basic parallel search algorithm.

The following example uses cancellation to search for an element in an array. The parallel_find_any function
uses the concurrency::parallel_for algorithm and the concurrency::run_with_cancellation_token function to search
for the position that contains the given value. When the parallel loop finds the value, it calls the
concurrency::cancellation_token_source::cancel method to cancel future work.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-cancellation-to-break-from-a-parallel-loop.md

// parallel-array-search.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Returns the position in the provided array that contains the given value,
// or -1 if the value is not in the array.
template<typename T>
int parallel_find_any(const T a[], size_t count, const T& what)
{
 // The position of the element in the array.
 // The default value, -1, indicates that the element is not in the array.
 int position = -1;

 // Call parallel_for in the context of a cancellation token to search for the element.
 cancellation_token_source cts;
 run_with_cancellation_token([count, what, &a, &position, &cts]()
 {
 parallel_for(std::size_t(0), count, [what, &a, &position, &cts](int n) {
 if (a[n] == what)
 {
 // Set the return value and cancel the remaining tasks.
 position = n;
 cts.cancel();
 }
 });
 }, cts.get_token());

 return position;
}

int wmain()
{
 const size_t count = 10000;
 int values[count];

 // Fill the array with random values.
 mt19937 gen(34);
 for (size_t i = 0; i < count; ++i)
 {
 values[i] = gen()%10000;
 }

 // Search for any position in the array that contains value 3123.
 const int what = 3123;
 int position = parallel_find_any(values, count, what);
 if (position >= 0)
 {
 wcout << what << L" is at position " << position << L'.' << endl;
 }
 else
 {
 wcout << what << L" is not in the array." << endl;
 }
}
/* Sample output:
 3123 is at position 7835.
*/

The concurrency::parallel_for algorithm acts concurrently. Therefore, it does not perform the operations in a pre-
determined order. If the array contains multiple instances of the value, the result can be any one of its positions.

Compiling the Code

See also

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
parallel-array-search.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-array-search.cpp

Cancellation in the PPL
Parallel Algorithms
parallel_for Function
cancellation_token_source Class

How to: Use Exception Handling to Break from a
Parallel Loop
3/4/2019 • 6 minutes to read • Edit Online

Example

// A simple tree structure that has multiple child nodes.
template <typename T>
class tree
{
public:
 explicit tree(T data)
 : _data(data)
 {
 }

 // Retrieves the data element for the node.
 T get_data() const
 {
 return _data;
 }

 // Adds a child node to the tree.
 void add_child(tree& child)
 {
 _children.push_back(child);
 }

 // Performs the given work function on the data element of the tree and
 // on each child.
 template<class Function>
 void for_all(Function& action);

private:
 // The data for this node.
 T _data;
 // The child nodes.
 list<tree> _children;
};

Example

This topic shows how to write a search algorithm for a basic tree structure.

The topic Cancellation explains the role of cancellation in the Parallel Patterns Library. The use of exception
handling is a less efficient way to cancel parallel work than the use of the concurrency::task_group::cancel and
concurrency::structured_task_group::cancel methods. However, one scenario where the use of exception handling
to cancel work is appropriate is when you call into a third-party library that uses tasks or parallel algorithms but
does not provide a task_group or structured_task_group object to cancel.

The following example shows a basic tree type that contains a data element and a list of child nodes. The
following section shows the body of the for_all method, which recursively performs a work function on each
child node.

The following example shows the for_all method. It uses the concurrency::parallel_for_each algorithm to

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-exception-handling-to-break-from-a-parallel-loop.md

// Performs the given work function on the data element of the tree and
// on each child.
template<class Function>
void for_all(Function& action)
{
 // Perform the action on each child.
 parallel_for_each(begin(_children), end(_children), [&](tree& child) {
 child.for_all(action);
 });

 // Perform the action on this node.
 action(*this);
}

Example

// Searches for a value in the provided tree object.
template <typename T>
void search_for_value(tree<T>& t, int value)
{
 try
 {
 // Call the for_all method to search for a value. The work function
 // throws an exception when it finds the value.
 t.for_all([value](const tree<T>& node) {
 if (node.get_data() == value)
 {
 throw &node;
 }
 });
 }
 catch (const tree<T>* node)
 {
 // A matching node was found. Print a message to the console.
 wstringstream ss;
 ss << L"Found a node with value " << value << L'.' << endl;
 wcout << ss.str();
 return;
 }

 // A matching node was not found. Print a message to the console.
 wstringstream ss;
 ss << L"Did not find node with value " << value << L'.' << endl;
 wcout << ss.str();
}

perform a work function on each node of the tree in parallel.

The following example shows the search_for_value function, which searches for a value in the provided tree

object. This function passes to the for_all method a work function that throws when it finds a tree node that
contains the provided value.

Assume that the tree class is provided by a third-party library, and that you cannot modify it. In this case, the use
of exception handling is appropriate because the for_all method does not provide a task_group or
structured_task_group object to the caller. Therefore, the work function is unable to directly cancel its parent task

group.

When the work function that you provide to a task group throws an exception, the runtime stops all tasks that are
in the task group (including any child task groups) and discards any tasks that have not yet started. The
search_for_value function uses a try - catch block to capture the exception and print the result to the console.

Example

int wmain()
{
 // Build a tree that is four levels deep with the initial level
 // having three children. The value of each node is a random number.
 mt19937 gen(38);
 tree<int> t = build_tree<int>(4, 3, [&gen]{ return gen()%100000; });

 // Search for a few values in the tree in parallel.
 parallel_invoke(
 [&t] { search_for_value(t, 86131); },
 [&t] { search_for_value(t, 17522); },
 [&t] { search_for_value(t, 32614); }
);
}

Example

// task-tree-search.cpp
// compile with: /EHsc
#include <ppl.h>
#include <list>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <random>

using namespace concurrency;
using namespace std;

// A simple tree structure that has multiple child nodes.
template <typename T>
class tree
{
public:
 explicit tree(T data)
 : _data(data)
 {
 }

 // Retrieves the data element for the node.
 T get_data() const
 {
 return _data;
 }

 // Adds a child node to the tree.
 void add_child(tree& child)
 {
 _children.push_back(child);
 }

 // Performs the given work function on the data element of the tree and
 // on each child.
 template<class Function>

The following example creates a tree object and searches it for several values in parallel. The build_tree

function is shown later in this topic.

This example uses the concurrency::parallel_invoke algorithm to search for values in parallel. For more
information about this algorithm, see Parallel Algorithms.

The following complete example uses exception handling to search for values in a basic tree structure.

 template<class Function>
 void for_all(Function& action)
 {
 // Perform the action on each child.
 parallel_for_each(begin(_children), end(_children), [&](tree& child) {
 child.for_all(action);
 });

 // Perform the action on this node.
 action(*this);
 }

private:
 // The data for this node.
 T _data;
 // The child nodes.
 list<tree> _children;
};

// Builds a tree with the given depth.
// Each node of the tree is initialized with the provided generator function.
// Each level of the tree has one more child than the previous level.
template <typename T, class Generator>
tree<T> build_tree(int depth, int child_count, Generator& g)
{
 // Create the tree node.
 tree<T> t(g());

 // Add children.
 if (depth > 0)
 {
 for(int i = 0; i < child_count; ++i)
 {
 t.add_child(build_tree<T>(depth - 1, child_count + 1, g));
 }
 }

 return t;
}

// Searches for a value in the provided tree object.
template <typename T>
void search_for_value(tree<T>& t, int value)
{
 try
 {
 // Call the for_all method to search for a value. The work function
 // throws an exception when it finds the value.
 t.for_all([value](const tree<T>& node) {
 if (node.get_data() == value)
 {
 throw &node;
 }
 });
 }
 catch (const tree<T>* node)
 {
 // A matching node was found. Print a message to the console.
 wstringstream ss;
 ss << L"Found a node with value " << value << L'.' << endl;
 wcout << ss.str();
 return;
 }

 // A matching node was not found. Print a message to the console.
 wstringstream ss;
 ss << L"Did not find node with value " << value << L'.' << endl;
 wcout << ss.str();
}

int wmain()
{
 // Build a tree that is four levels deep with the initial level
 // having three children. The value of each node is a random number.
 mt19937 gen(38);
 tree<int> t = build_tree<int>(4, 3, [&gen]{ return gen()%100000; });

 // Search for a few values in the tree in parallel.
 parallel_invoke(
 [&t] { search_for_value(t, 86131); },
 [&t] { search_for_value(t, 17522); },
 [&t] { search_for_value(t, 32614); }
);
}

Found a node with value 32614.
Found a node with value 86131.
Did not find node with value 17522.

Compiling the Code

See also

This example produces the following sample output.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
task-tree-search.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc task-tree-search.cpp

Cancellation in the PPL
Exception Handling
Task Parallelism
Parallel Algorithms
task_group Class
structured_task_group Class
parallel_for_each Function

Asynchronous Agents Library
3/4/2019 • 5 minutes to read • Edit Online

Programming Model

The Asynchronous Agents Library (or just Agents Library) provides a programming model that lets you
increase the robustness of concurrency-enabled application development. The Agents Library is a C++
template library that promotes an actor-based programming model and in-process message passing for
coarse-grained dataflow and pipelining tasks. The Agents Library builds on the scheduling and resource
management components of the Concurrency Runtime.

The Agents Library provides alternatives to shared state by letting you connect isolated components through
an asynchronous communication model that is based on dataflow instead of control flow. Dataflow refers to
a programming model where computations are made when all required data is available; control flow refers
to a programming model where computations are made in a predetermined order.

The dataflow programming model is related to the concept of message passing, where independent
components of a program communicate with one another by sending messages.

The Agents Library is composed of three components: asynchronous agents, asynchronous message blocks,
and message-passing functions. Agents maintain state, and use message blocks and message-passing
functions to communicate with one another and with external components. Message-passing functions
enable agents to send and receive messages to and from the external components. Asynchronous message
blocks hold messages and enable agents to communicate in a synchronized manner.

The following illustration shows how two agents use message blocks and message-passing functions to
communicate. In this illustration, agent1 sends a message to agent2 by using the concurrency::send function
and a concurrency::unbounded_buffer object. agent2 uses the concurrency::receive function to read the
message. agent2 uses the same method to send a message to agent1 . Dashed arrows represent the flow of
data between agents. Solid arrows connect the agents to the message blocks that they write to or read from.

A code example that implements this illustration is shown later in this topic.

The agent programming model has several advantages over other concurrency and synchronization
mechanisms, for example, events. One advantage is that by using message passing to transmit state changes
between objects, you can isolate access to shared resources, and thereby improve scalability. An advantage to

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/asynchronous-agents-library.md

When to Use the Agents Library

Example

// basic-agents.cpp
// compile with: /EHsc
#include <agents.h>
#include <string>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// This agent writes a string to its target and reads an integer
// from its source.
class agent1 : public agent
{
public:
 explicit agent1(ISource<int>& source, ITarget<wstring>& target)
 : _source(source)
 , _target(target)
 {
 }

protected:
 void run()
 {
 // Send the request.
 wstringstream ss;
 ss << L"agent1: sending request..." << endl;
 wcout << ss.str();

 send(_target, wstring(L"request"));

 // Read the response.
 int response = receive(_source);

 ss = wstringstream();
 ss << L"agent1: received '" << response << L"'." << endl;
 wcout << ss.str();

 // Move the agent to the finished state.
 done();
 }

private:
 ISource<int>& _source;

message passing is that it ties synchronization to data instead of tying it to an external synchronization object.
This simplifies data transmission among components and can eliminate programming errors in your
applications.

Use the Agents library when you have multiple operations that must communicate with one another
asynchronously. Message blocks and message-passing functions let you write parallel applications without
requiring synchronization mechanisms such as locks. This lets you focus on application logic.

The agent programming model is often used to create data pipelines or networks. A data pipeline is a series
of components, each of which performs a specific task that contributes to a larger goal. Every component in a
dataflow pipeline performs work when it receives a message from another component. The result of that
work is passed to other components in the pipeline or network. The components can use more fine-grained
concurrency functionality from other libraries, for example, the Parallel Patterns Library (PPL).

The following example implements the illustration shown earlier in this topic.

 ISource<int>& _source;
 ITarget<wstring>& _target;
};

// This agent reads a string to its source and then writes an integer
// to its target.
class agent2 : public agent
{
public:
 explicit agent2(ISource<wstring>& source, ITarget<int>& target)
 : _source(source)
 , _target(target)
 {
 }

protected:
 void run()
 {
 // Read the request.
 wstring request = receive(_source);

 wstringstream ss;
 ss << L"agent2: received '" << request << L"'." << endl;
 wcout << ss.str();

 // Send the response.
 ss = wstringstream();
 ss << L"agent2: sending response..." << endl;
 wcout << ss.str();

 send(_target, 42);

 // Move the agent to the finished state.
 done();
 }

private:
 ISource<wstring>& _source;
 ITarget<int>& _target;
};

int wmain()
{
 // Step 1: Create two message buffers to serve as communication channels
 // between the agents.

 // The first agent writes messages to this buffer; the second
 // agents reads messages from this buffer.
 unbounded_buffer<wstring> buffer1;

 // The first agent reads messages from this buffer; the second
 // agents writes messages to this buffer.
 overwrite_buffer<int> buffer2;

 // Step 2: Create the agents.
 agent1 first_agent(buffer2, buffer1);
 agent2 second_agent(buffer1, buffer2);

 // Step 3: Start the agents. The runtime calls the run method on
 // each agent.
 first_agent.start();
 second_agent.start();

 // Step 4: Wait for both agents to finish.
 agent::wait(&first_agent);
 agent::wait(&second_agent);
}

agent1: sending request...
agent2: received 'request'.
agent2: sending response...
agent1: received '42'.

Related Topics

This example produces the following output:

The following topics describe the functionality used in this example.

Asynchronous Agents
Describes the role of asynchronous agents in solving larger computing tasks.

Asynchronous Message Blocks
Describes the various message block types that are provided by the Agents Library.

Message Passing Functions
Describes the various message passing routines that are provided by the Agents Library.

How to: Implement Various Producer-Consumer Patterns
Describes how to implement the producer-consumer pattern in your application.

How to: Provide Work Functions to the call and transformer Classes
Illustrates several ways to provide work functions to the concurrency::call and concurrency::transformer
classes.

How to: Use transformer in a Data Pipeline
Shows how to use the concurrency::transformer class in a data pipeline.

How to: Select Among Completed Tasks
Shows how to use the concurrency::choice and concurrency::join classes to select the first task to complete a
search algorithm.

How to: Send a Message at a Regular Interval
Shows how to use the concurrency::timer class to send a message at a regular interval.

How to: Use a Message Block Filter
Demonstrates how to use a filter to enable an asynchronous message block to accept or reject messages.

Parallel Patterns Library (PPL)
Describes how to use various parallel patterns, such as parallel algorithms, in your applications.

Concurrency Runtime
Describes the Concurrency Runtime, which simplifies parallel programming, and contains links to related
topics.

Asynchronous Agents
3/4/2019 • 2 minutes to read • Edit Online

Agent Life Cycle

AGENT STATE DESCRIPTION

agent_created The agent has not been scheduled for execution.

agent_runnable The runtime is scheduling the agent for execution.

agent_started The agent has started and is running.

agent_done The agent finished.

agent_canceled The agent was canceled before it entered the started

state.

An asynchronous agent (or just agent) is an application component that works asynchronously with other
agents to solve larger computing tasks. Think of an agent as a task that has a set life cycle. For example, one
agent might read data from an input/output device (such as the keyboard, a file on disk, or a network
connection) and another agent might perform action on that data as it becomes available. The first agent uses
message passing to inform the second agent that more data is available. The Concurrency Runtime task
scheduler provides an efficient mechanism to enable agents to block and yield cooperatively without requiring
less efficient preemption.

The Agents Library defines the concurrency::agent class to represent an asynchronous agent. agent is an
abstract class that declares the virtual method concurrency::agent::run. The run method executes the task that is
performed by the agent. Because run is abstract, you must implement this method in every class that you
derive from agent .

Agents have a set life cycle. The concurrency::agent_status enumeration defines the various states of an agent.
The following illustration is a state diagram that shows how agents progress from one state to another. In this
illustration, solid lines represent methods that you call from your application; dotted lines represent methods
that are called from the runtime.

The following table describes each state in the agent_status enumeration.

agent_created is the initial state of an agent, agent_runnable and agent_started are the active states, and
agent_done and agent_canceled are the terminal states.

Use the concurrency::agent::status method to retrieve the current state of an agent object. Although the status

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/asynchronous-agents.md

Methods and Features

METHOD DESCRIPTION

start Schedules the agent object for execution and sets it to the
agent_runnable state.

run Executes the task that is to be performed by the agent

object.

done Moves an agent to the agent_done state.

cancel If the agent was not started, this method cancels execution
of the agent and sets it to the agent_canceled state.

status Retrieves the current state of the agent object.

wait Waits for the agent object to enter the agent_done or
agent_canceled state.

wait_for_all Waits for all provided agent objects to enter the
agent_done or agent_canceled state.

wait_for_one Waits for at least one of the provided agent objects to
enter the agent_done or agent_canceled state.

Example

See also

method is concurrency-safe, the state of the agent can change by the time the status method returns. For
example, an agent could be in the agent_started state when you call the status method, but moved to the
agent_done state just after the status method returns.

The following table shows some of the important methods that belong to the agent class. For more
information about all of the agent class methods, see agent Class.

After you create an agent object, call the concurrency::agent::start method to schedule it for execution. The
runtime calls the run method after it schedules the agent and sets it to the agent_runnable state.

The runtime does not manage exceptions that are thrown by asynchronous agents. For more information about
exception handling and agents, see Exception Handling.

For an example that shows how to create a basic agent-based application, see Walkthrough: Creating an Agent-
Based Application.

Asynchronous Agents Library

Asynchronous Message Blocks
3/4/2019 • 23 minutes to read • Edit Online

Sections

Sources and Targets

Message Propagation

The Agents Library provides several message-block types that enable you to propagate messages among
application components in a thread-safe manner. These message-block types are often used with the various
message-passing routines, such as concurrency::send, concurrency::asend, concurrency::receive, and
concurrency::try_receive. For more information about the message passing routines that are defined by the
Agents Library, see Message Passing Functions.

This topic contains the following sections:

Sources and Targets

Message Propagation

Overview of Message Block Types

unbounded_buffer Class

overwrite_buffer Class

single_assignment Class

call Class

transformer Class

choice Class

join and multitype_join Classes

timer Class

Message Filtering

Message Reservation

Sources and targets are two important participants in message passing. A source refers to an endpoint of
communication that sends messages. A target refers to an endpoint of communication that receives
messages. You can think of a source as an endpoint that you read from and a target as an endpoint that you
write to. Applications connect sources and targets together to form messaging networks.

The Agents Library uses two abstract classes to represent sources and targets: concurrency::ISource and
concurrency::ITarget. Message block types that act as sources derive from ISource ; message block types
that act as targets derive from ITarget . Message block types that act as sources and targets derive from
both ISource and ITarget .

[Top]

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/asynchronous-message-blocks.md

 Overview of Message Block Types

Message propagation is the act of sending a message from one component to another. When a message
block is offered a message, it can accept, decline, or postpone that message. Every message block type
stores and transmits messages in different ways. For example, the unbounded_buffer class stores an
unlimited number of messages, the overwrite_buffer class stores a single message at a time, and the
transformer class stores an altered version of each message. These message block types are described in
more detail later in this document.

When a message block accepts a message, it can optionally perform work and, if the message block is a
source, pass the resulting message to another member of the network. A message block can use a filter
function to decline messages that it does not want to receive. Filters are described in more detail later in this
topic, in the section Message Filtering. A message block that postpones a message can reserve that message
and consume it later. Message reservation is described in more detail later in this topic, in the section
Message Reservation.

The Agents Library enables message blocks to asynchronously or synchronously pass messages. When you
pass a message to a message block synchronously, for example, by using the send function, the runtime
blocks the current context until the target block either accepts or rejects the message. When you pass a
message to a message block asynchronously, for example, by using the asend function, the runtime offers
the message to the target, and if the target accepts the message, the runtime schedules an asynchronous
task that propagates the message to the receiver. The runtime uses lightweight tasks to propagate messages
in a cooperative manner. For more information about lightweight tasks, see Task Scheduler.

Applications connect sources and targets together to form messaging networks. Typically, you link the
network and call send or asend to pass data to the network. To connect a source message block to a target,
call the concurrency::ISource::link_target method. To disconnect a source block from a target, call the
concurrency::ISource::unlink_target method. To disconnect a source block from all of its targets, call the
concurrency::ISource::unlink_targets method. When one of the predefined message block types leaves scope
or is destroyed, it automatically disconnects itself from any target blocks. Some message block types restrict
the maximum number of targets that they can write to. The following section describes the restrictions that
apply to the predefined message block types.

[Top]

The following table briefly describes the role of the important message-block types.

unbounded_buffer
Stores a queue of messages.

overwrite_buffer
Stores one message that can be written to and read from multiple times.

single_assignment
Stores one message that can be written to one time and read from multiple times.

call
Performs work when it receives a message.

transformer
Performs work when it receives data and sends the result of that work to another target block. The
transformer class can act on different input and output types.

choice
Selects the first available message from a set of sources.

join and multitype join

MESSAGE BLOCK TYPE

PROPAGATION TYPE
(SOURCE, TARGET, OR
BOTH)

MESSAGE ORDERING
(ORDERED OR
UNORDERED) SOURCE COUNT TARGET COUNT

unbounded_buffer Both Ordered Unbounded Unbounded

overwrite_buffer Both Ordered Unbounded Unbounded

single_assignment Both Ordered Unbounded Unbounded

call Target Ordered Unbounded Not Applicable

transformer Both Ordered Unbounded 1

choice Both Ordered 10 1

join Both Ordered Unbounded 1

multitype_join Both Ordered 10 1

timer Source Not Applicable Not Applicable 1

unbounded_buffer Class

Example

Wait for all messages to be received from a set of sources and then combine the messages into one
message for another message block.

timer
Sends a message to a target block on a regular interval.

These message-block types have different characteristics that make them useful for different situations.
These are some of the characteristics:

Propagation type: Whether the message block acts as a source of data, a receiver of data, or both.

Message ordering: Whether the message block maintains the original order in which messages are
sent or received. Each predefined message block type maintains the original order in which it sends
or receives messages.

Source count: The maximum number of sources that the message block can read from.

Target count: The maximum number of targets that the message block can write to.

The following table shows how these characteristics relate to the various message-block types.

The following sections describe the message-block types in more detail.

[Top]

The concurrency::unbounded_buffer class represents a general-purpose asynchronous messaging structure.
This class stores a first in, first out (FIFO) queue of messages that can be written to by multiple sources or
read from by multiple targets. When a target receives a message from an unbounded_buffer object, that
message is removed from the message queue. Therefore, although an unbounded_buffer object can have
multiple targets, only one target will receive each message. The unbounded_buffer class is useful when you
want to pass multiple messages to another component, and that component must receive each message.

// unbounded_buffer-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an unbounded_buffer object that works with
 // int data.
 unbounded_buffer<int> items;

 // Send a few items to the unbounded_buffer object.
 send(items, 33);
 send(items, 44);
 send(items, 55);

 // Read the items from the unbounded_buffer object and print
 // them to the console.
 wcout << receive(items) << endl;
 wcout << receive(items) << endl;
 wcout << receive(items) << endl;
}

334455

overwrite_buffer Class

Example

The following example shows the basic structure of how to work with the unbounded_buffer class. This
example sends three values to an unbounded_buffer object and then reads those values back from the same
object.

This example produces the following output:

For a complete example that shows how to use the unbounded_buffer class, see How to: Implement Various
Producer-Consumer Patterns.

[Top]

The concurrency::overwrite_buffer class resembles the unbounded_buffer class, except that an
overwrite_buffer object stores just one message. In addition, when a target receives a message from an
overwrite_buffer object, that message is not removed from the buffer. Therefore, multiple targets receive a

copy of the message.

The overwrite_buffer class is useful when you want to pass multiple messages to another component, but
that component needs only the most recent value. This class is also useful when you want to broadcast a
message to multiple components.

The following example shows the basic structure of how to work with the overwrite_buffer class. This
example sends three values to an overwrite _buffer object and then reads the current value from the same
object three times. This example is similar to the example for the unbounded_buffer class. However, the
overwrite_buffer class stores just one message. In addition, the runtime does not remove the message

from an overwrite_buffer object after it is read.

// overwrite_buffer-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an overwrite_buffer object that works with
 // int data.
 overwrite_buffer<int> item;

 // Send a few items to the overwrite_buffer object.
 send(item, 33);
 send(item, 44);
 send(item, 55);

 // Read the current item from the overwrite_buffer object and print
 // it to the console three times.
 wcout << receive(item) << endl;
 wcout << receive(item) << endl;
 wcout << receive(item) << endl;
}

555555

single_assignment Class

Example

This example produces the following output:

For a complete example that shows how to use the overwrite_buffer class, see How to: Implement Various
Producer-Consumer Patterns.

[Top]

The concurrency::single_assignment class resembles the overwrite_buffer class, except that a
single_assignment object can be written to one time only. Like the overwrite_buffer class, when a target

receives a message from a single_assignment object, that message is not removed from that object.
Therefore, multiple targets receive a copy of the message. The single_assignment class is useful when you
want to broadcast one message to multiple components.

The following example shows the basic structure of how to work with the single_assignment class. This
example sends three values to a single_assignment object and then reads the current value from the same
object three times. This example is similar to the example for the overwrite_buffer class. Although both the
overwrite_buffer and single_assignment classes store a single message, the single_assignment class can

be written to one time only.

// single_assignment-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an single_assignment object that works with
 // int data.
 single_assignment<int> item;

 // Send a few items to the single_assignment object.
 send(item, 33);
 send(item, 44);
 send(item, 55);

 // Read the current item from the single_assignment object and print
 // it to the console three times.
 wcout << receive(item) << endl;
 wcout << receive(item) << endl;
 wcout << receive(item) << endl;
}

333333

call Class

Example

This example produces the following output:

For a complete example that shows how to use the single_assignment class, see Walkthrough:
Implementing Futures.

[Top]

The concurrency::call class acts as a message receiver that performs a work function when it receives data.
This work function can be a lambda expression, a function object, or a function pointer. A call object
behaves differently than an ordinary function call because it acts in parallel to other components that send
messages to it. If a call object is performing work when it receives a message, it adds that message to a
queue. Every call object processes queued messages in the order in which they are received.

The following example shows the basic structure of how to work with the call class. This example creates a
call object that prints each value that it receives to the console. The example then sends three values to the
call object. Because the call object processes messages on a separate thread, this example also uses a

counter variable and an event object to ensure that the call object processes all messages before the
wmain function returns.

// call-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // An event that is set when the call object receives all values.
 event received_all;

 // Counts the
 long receive_count = 0L;
 long max_receive_count = 3L;

 // Create an call object that works with int data.
 call<int> target([&received_all,&receive_count,max_receive_count](int n) {
 // Print the value that the call object receives to the console.
 wcout << n << endl;

 // Set the event when all messages have been processed.
 if (++receive_count == max_receive_count)
 received_all.set();
 });

 // Send a few items to the call object.
 send(target, 33);
 send(target, 44);
 send(target, 55);

 // Wait for the call object to process all items.
 received_all.wait();
}

334455

transformer Class

This example produces the following output:

For a complete example that shows how to use the call class, see How to: Provide Work Functions to the
call and transformer Classes.

[Top]

The concurrency::transformer class acts as both a message receiver and as a message sender. The
transformer class resembles the call class because it performs a user-defined work function when it

receives data. However, the transformer class also sends the result of the work function to receiver objects.
Like a call object, a transformer object acts in parallel to other components that send messages to it. If a
transformer object is performing work when it receives a message, it adds that message to a queue. Every
transformer object processes its queued messages in the order in which they are received.

The transformer class sends its message to one target. If you set the _PTarget parameter in the constructor
to NULL , you can later specify the target by calling the concurrency::link_target method.

Unlike all other asynchronous message block types that are provided by the Agents Library, the
transformer class can act on different input and output types. This ability to transform data from one type

to another makes the transformer class a key component in many concurrent networks. In addition, you

Example

// transformer-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an transformer object that receives int data and
 // sends double data.
 transformer<int, double> third([](int n) {
 // Return one-third of the input value.
 return n * 0.33;
 });

 // Send a few items to the transformer object.
 send(third, 33);
 send(third, 44);
 send(third, 55);

 // Read the processed items from the transformer object and print
 // them to the console.
 wcout << receive(third) << endl;
 wcout << receive(third) << endl;
 wcout << receive(third) << endl;
}

10.8914.5218.15

choice Class

can add more fine-grained parallel functionality in the work function of a transformer object.

The following example shows the basic structure of how to work with the transformer class. This example
creates a transformer object that multiples each input int value by 0.33 in order to produce a double

value as output. The example then receives the transformed values from the same transformer object and
prints them to the console.

This example produces the following output:

For a complete example that shows how to use the transformer class, see How to: Use transformer in a
Data Pipeline.

[Top]

The concurrency::choice class selects the first available message from a set of sources. The choice class
represents a control-flow mechanism instead of a dataflow mechanism (the topic Asynchronous Agents
Library describes the differences between dataflow and control-flow).

Reading from a choice object resembles calling the Windows API function WaitForMultipleObjects when it
has the bWaitAll parameter set to FALSE . However, the choice class binds data to the event itself instead
of to an external synchronization object.

Typically, you use the choice class together with the concurrency::receive function to drive control-flow in
your application. Use the choice class when you have to select among message buffers that have different
types. Use the single_assignment class when you have to select among message buffers that have the same

Example

type.

The order in which you link sources to a choice object is important because it can determine which
message is selected. For example, consider the case where you link multiple message buffers that already
contain a message to a choice object. The choice object selects the message from the first source that it is
linked to. After you link all sources, the choice object preserves the order in which each source receives a
message.

The following example shows the basic structure of how to work with the choice class. This example uses
the concurrency::make_choice function to create a choice object that selects among three message blocks.
The example then computes various Fibonacci numbers and stores each result in a different message block.
The example then prints to the console a message that is based on the operation that finished first.

// choice-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Computes the nth Fibonacci number.
// This function illustrates a lengthy operation and is therefore
// not optimized for performance.
int fibonacci(int n)
{
 if (n < 2)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
}

int wmain()
{
 // Although the following thee message blocks are written to one time only,
 // this example illustrates the fact that the choice class works with
 // different message block types.

 // Holds the 35th Fibonacci number.
 single_assignment<int> fib35;
 // Holds the 37th Fibonacci number.
 overwrite_buffer<int> fib37;
 // Holds half of the 42nd Fibonacci number.
 unbounded_buffer<double> half_of_fib42;

 // Create a choice object that selects the first single_assignment
 // object that receives a value.
 auto select_one = make_choice(&fib35, &fib37, &half_of_fib42);

 // Execute a few lengthy operations in parallel. Each operation sends its
 // result to one of the single_assignment objects.
 parallel_invoke(
 [&fib35] { send(fib35, fibonacci(35)); },
 [&fib37] { send(fib37, fibonacci(37)); },
 [&half_of_fib42] { send(half_of_fib42, fibonacci(42) * 0.5); }
);

 // Print a message that is based on the operation that finished first.
 switch (receive(select_one))
 {
 case 0:
 wcout << L"fib35 received its value first. Result = "
 << receive(fib35) << endl;
 break;
 case 1:
 wcout << L"fib37 received its value first. Result = "
 << receive(fib37) << endl;
 break;
 case 2:
 wcout << L"half_of_fib42 received its value first. Result = "
 << receive(half_of_fib42) << endl;
 break;
 default:
 wcout << L"Unexpected." << endl;
 break;
 }
}

This example produces the following sample output:

fib35 received its value first. Result = 9227465

join and multitype_join Classes

Greedy Versus Non-Greedy Joins

Example

Because the task that computes the 35 Fibonacci number is not guaranteed to finish first, the output of this
example can vary.

th

This example uses the concurrency::parallel_invoke algorithm to compute the Fibonacci numbers in parallel.
For more information about parallel_invoke , see Parallel Algorithms.

For a complete example that shows how to use the choice class, see How to: Select Among Completed
Tasks.

[Top]

The concurrency::join and concurrency::multitype_join classes let you wait for each member of a set of
sources to receive a message. The join class acts on source objects that have a common message type. The
multitype_join class acts on source objects that can have different message types.

Reading from a join or multitype_join object resembles calling the Windows API function
WaitForMultipleObjects when it has the bWaitAll parameter set to TRUE . However, just like a choice

object, join and multitype_join objects use an event mechanism that binds data to the event itself instead
of to an external synchronization object.

Reading from a join object produces a std::vector object. Reading from a multitype_join object produces
a std::tuple object. Elements appear in these objects in the same order as their corresponding source buffers
are linked to the join or multitype_join object. Because the order in which you link source buffers to a
join or multitype_join object is associated with the order of elements in the resulting vector or tuple

object, we recommend that you do not unlink an existing source buffer from a join. Doing so can result in
unspecified behavior.

The join and multitype_join classes support the concept of greedy and non-greedy joins. A greedy join
accepts a message from each of its sources as messages become available until all message are available. A
non-greedy join receives messages in two phases. First, a non-greedy join waits until it is offered a message
from each of its sources. Second, after all source messages are available, a non-greedy join attempts to
reserve each of those messages. If it can reserve each message, it consumes all messages and propagates
them to its target. Otherwise, it releases, or cancels, the message reservations and again waits for each
source to receive a message.

Greedy joins perform better than non-greedy joins because they accept messages immediately. However, in
rare cases, greedy joins can lead to deadlocks. Use a non-greedy join when you have multiple joins that
contain one or more shared source objects.

The following example shows the basic structure of how to work with the join class. This example uses the
concurrency::make_join function to create a join object that receives from three single_assignment objects.
This example computes various Fibonacci numbers, stores each result in a different single_assignment

object, and then prints to the console each result that the join object holds. This example is similar to the
example for the choice class, except that the join class waits for all source message blocks to receive a
message.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/tuple-class

// join-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Computes the nth Fibonacci number.
// This function illustrates a lengthy operation and is therefore
// not optimized for performance.
int fibonacci(int n)
{
 if (n < 2)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
}

int wmain()
{
 // Holds the 35th Fibonacci number.
 single_assignment<int> fib35;
 // Holds the 37th Fibonacci number.
 single_assignment<int> fib37;
 // Holds half of the 42nd Fibonacci number.
 single_assignment<double> half_of_fib42;

 // Create a join object that selects the values from each of the
 // single_assignment objects.
 auto join_all = make_join(&fib35, &fib37, &half_of_fib42);

 // Execute a few lengthy operations in parallel. Each operation sends its
 // result to one of the single_assignment objects.
 parallel_invoke(
 [&fib35] { send(fib35, fibonacci(35)); },
 [&fib37] { send(fib37, fibonacci(37)); },
 [&half_of_fib42] { send(half_of_fib42, fibonacci(42) * 0.5); }
);

 auto result = receive(join_all);
 wcout << L"fib35 = " << get<0>(result) << endl;
 wcout << L"fib37 = " << get<1>(result) << endl;
 wcout << L"half_of_fib42 = " << get<2>(result) << endl;
}

fib35 = 9227465fib37 = 24157817half_of_fib42 = 1.33957e+008

timer Class

This example produces the following output:

This example uses the concurrency::parallel_invoke algorithm to compute the Fibonacci numbers in parallel.
For more information about parallel_invoke , see Parallel Algorithms.

For complete examples that show how to use the join class, see How to: Select Among Completed Tasks
and Walkthrough: Using join to Prevent Deadlock.

[Top]

The concurrency::timer class acts as a message source. A timer object sends a message to a target after a
specified period of time has elapsed. The timer class is useful when you must delay sending a message or

Example

// timer-structure.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Computes the nth Fibonacci number.
// This function illustrates a lengthy operation and is therefore
// not optimized for performance.
int fibonacci(int n)
{
 if (n < 2)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
}

int wmain()
{
 // Create a call object that prints characters that it receives
 // to the console.
 call<wchar_t> print_character([](wchar_t c) {
 wcout << c;
 });

 // Create a timer object that sends the period (.) character to
 // the call object every 100 milliseconds.
 timer<wchar_t> progress_timer(100u, L'.', &print_character, true);

 // Start the timer.
 wcout << L"Computing fib(42)";
 progress_timer.start();

 // Compute the 42nd Fibonacci number.
 int fib42 = fibonacci(42);

 // Stop the timer and print the result.
 progress_timer.stop();
 wcout << endl << L"result is " << fib42 << endl;
}

you want to send a message at a regular interval.

The timer class sends its message to just one target. If you set the _PTarget parameter in the constructor
to NULL , you can later specify the target by calling the concurrency::ISource::link_target method.

A timer object can be repeating or non-repeating. To create a repeating timer, pass true for the _Repeating

parameter when you call the constructor. Otherwise, pass false for the _Repeating parameter to create a
non-repeating timer. If the timer is repeating, it sends the same message to its target after each interval.

The Agents Library creates timer objects in the non-started state. To start a timer object, call the
concurrency::timer ::start method. To stop a timer object, destroy the object or call the
concurrency::timer ::stop method. To pause a repeating timer, call the concurrency::timer ::pause method.

The following example shows the basic structure of how to work with the timer class. The example uses
timer and call objects to report the progress of a lengthy operation.

This example produces the following sample output:

Computing fib(42)..result is 267914296

Message Filtering

// filter-function.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an unbounded_buffer object that uses a filter
 // function to accept only even numbers.
 unbounded_buffer<int> accept_evens(
 [](int n) {
 return (n%2) == 0;
 });

 // Send a few values to the unbounded_buffer object.
 unsigned int accept_count = 0;
 for (int i = 0; i < 10; ++i)
 {
 // The asend function returns true only if the target
 // accepts the message. This enables us to determine
 // how many elements are stored in the unbounded_buffer
 // object.
 if (asend(accept_evens, i))
 {
 ++accept_count;
 }
 }

 // Print to the console each value that is stored in the
 // unbounded_buffer object. The unbounded_buffer object should
 // contain only even numbers.
 while (accept_count > 0)
 {
 wcout << receive(accept_evens) << L' ';
 --accept_count;
 }
}

For a complete example that shows how to use the timer class, see How to: Send a Message at a Regular
Interval.

[Top]

When you create a message block object, you can supply a filter function that determines whether the
message block accepts or rejects a message. A filter function is a useful way to guarantee that a message
block receives only certain values.

The following example shows how to create an unbounded_buffer object that uses a filter function to accept
only even numbers. The unbounded_buffer object rejects odd numbers, and therefore does not propagate
odd numbers to its target blocks.

This example produces the following output:

0 2 4 6 8

bool (T)
bool (T const &)

Message Reservation

See also

A filter function can be a lambda function, a function pointer, or a function object. Every filter function takes
one of the following forms.

To eliminate the unnecessary copying of data, use the second form when you have an aggregate type that is
propagated by value.

Message filtering supports the dataflow programming model, in which components perform computations
when they receive data. For examples that use filter functions to control the flow of data in a message
passing network, see How to: Use a Message Block Filter, Walkthrough: Creating a Dataflow Agent, and
Walkthrough: Creating an Image-Processing Network.

[Top]

Message reservation enables a message block to reserve a message for later use. Typically, message
reservation is not used directly. However, understanding message reservation can help you better
understand the behavior of some of the predefined message block types.

Consider non-greedy and greedy joins. Both of these use message reservation to reserve messages for later
use. A described earlier, a non-greedy join receives messages in two phases. During the first phase, a non-
greedy join object waits for each of its sources to receive a message. A non-greedy join then attempts to
reserve each of those messages. If it can reserve each message, it consumes all messages and propagates
them to its target. Otherwise, it releases, or cancels, the message reservations and again waits for each
source to receive a message.

A greedy join, which also reads input messages from a number of sources, uses message reservation to
read additional messages while it waits to receive a message from each source. For example, consider a
greedy join that receives messages from message blocks A and B . If the greedy join receives two
messages from B but has not yet received a message from A , the greedy join saves the unique message
identifier for the second message from B . After the greedy join receives a message from A and
propagates out these messages, it uses the saved message identifier to see if the second message from B is
still available.

You can use message reservation when you implement your own custom message block types. For an
example about how to create a custom message block type, see Walkthrough: Creating a Custom Message
Block.

[Top]

Asynchronous Agents Library

Message Passing Functions
3/4/2019 • 2 minutes to read • Edit Online

Sections

send and asend

receive and try_receive

Examples

The Asynchronous Agents Library provides several functions that let you pass messages among components.

These message-passing functions are used with the various message-block types. For more information about
the message-block types that are defined by the Concurrency Runtime, see Asynchronous Message Blocks.

This topic describes the following message-passing functions:

send and asend

receive and try_receive

Examples

The concurrency::send function sends a message to the specified target synchronously and the
concurrency::asend function sends a message to the specified target asynchronously. Both the send and asend

functions wait until the target indicates that it will eventually accept or decline the message.

The send function waits until the target accepts or declines the message before it returns. The send function
returns true if the message was delivered and false otherwise. Because the send function works
synchronously, the send function waits for the target to receive the message before it returns.

Conversely, the asend function does not wait for the target to accept or decline the message before it returns.
Instead, the asend function returns true if the target accepts the message and will eventually take it. Otherwise,
asend returns false to indicate that the target either declined the message or postponed the decision about

whether to take the message.

[Top]

The concurrency::receive and concurrency::try_receive functions read data from a given source. The receive

function waits for data to become available, whereas the try_receive function returns immediately.

Use the receive function when you must have the data to continue. Use the try_receive function if you must
not block the current context or you do not have to have the data to continue.

[Top]

For examples that use the send and asend , and receive functions, see the following topics:

Asynchronous Message Blocks

How to: Implement Various Producer-Consumer Patterns

How to: Provide Work Functions to the call and transformer Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/message-passing-functions.md

See also

How to: Use transformer in a Data Pipeline

How to: Select Among Completed Tasks

How to: Send a Message at a Regular Interval

How to: Use a Message Block Filter

[Top]

Asynchronous Agents Library
Asynchronous Message Blocks
send Function
asend Function
receive Function
try_receive Function

How to: Implement Various Producer-Consumer
Patterns
3/4/2019 • 5 minutes to read • Edit Online

Example

// producer-consumer-average.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Demonstrates a basic agent that produces values.
class producer_agent : public agent
{
public:
 explicit producer_agent(ITarget<int>& target, unsigned int count, int sentinel)
 : _target(target)
 , _count(count)
 , _sentinel(sentinel)
 {
 }
protected:
 void run()
 {
 // Send the value of each loop iteration to the target buffer.
 while (_count > 0)
 {
 send(_target, static_cast<int>(_count));
 --_count;

This topic describes how to implement the producer-consumer pattern in your application. In this pattern, the
producer sends messages to a message block, and the consumer reads messages from that block.

The topic demonstrates two scenarios. In the first scenario, the consumer must receive each message that the
producer sends. In the second scenario, the consumer periodically polls for data, and therefore does not have to
receive each message.

Both examples in this topic use agents, message blocks, and message-passing functions to transmit messages
from the producer to the consumer. The producer agent uses the concurrency::send function to write messages to
a concurrency::ITarget object. The consumer agent uses the concurrency::receive function to read messages from a
concurrency::ISource object. Both agents hold a sentinel value to coordinate the end of processing.

For more information about asynchronous agents, see Asynchronous Agents. For more information about
message blocks and message-passing functions, see Asynchronous Message Blocks and Message Passing
Functions.

In this example, the producer agent sends a series of numbers to the consumer agent. The consumer receives
each of these numbers and computes their average. The application writes the average to the console.

This example uses a concurrency::unbounded_buffer object to enable the producer to queue messages. The
unbounded_buffer class implements ITarget and ISource so that the producer and the consumer can send and

receive messages to and from a shared buffer. The send and receive functions coordinate the task of
propagating the data from the producer to the consumer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-implement-various-producer-consumer-patterns.md

 --_count;
 }
 // Send the sentinel value.
 send(_target, _sentinel);

 // Set the agent to the finished state.
 done();
 }
private:
 // The target buffer to write to.
 ITarget<int>& _target;
 // The number of values to send.
 unsigned int _count;
 // The sentinel value, which informs the consumer agent to stop processing.
 int _sentinel;
};

// Demonstrates a basic agent that consumes values.
class consumer_agent : public agent
{
public:
 explicit consumer_agent(ISource<int>& source, int sentinel)
 : _source(source)
 , _sentinel(sentinel)
 {
 }

 // Retrieves the average of all received values.
 int average()
 {
 return receive(_average);
 }
protected:
 void run()
 {
 // The sum of all values.
 int sum = 0;
 // The count of values received.
 int count = 0;

 // Read from the source block until we receive the
 // sentinel value.
 int n;
 while ((n = receive(_source)) != _sentinel)
 {
 sum += n;
 ++count;
 }

 // Write the average to the message buffer.
 send(_average, sum / count);

 // Set the agent to the finished state.
 done();
 }
private:
 // The source buffer to read from.
 ISource<int>& _source;
 // The sentinel value, which informs the agent to stop processing.
 int _sentinel;
 // Holds the average of all received values.
 single_assignment<int> _average;
};

int wmain()
{
 // Informs the consumer agent to stop processing.
 const int sentinel = 0;
 // The number of values for the producer agent to send.
 const unsigned int count = 100;

 const unsigned int count = 100;

 // A message buffer that is shared by the agents.
 unbounded_buffer<int> buffer;

 // Create and start the producer and consumer agents.
 producer_agent producer(buffer, count, sentinel);
 consumer_agent consumer(buffer, sentinel);
 producer.start();
 consumer.start();

 // Wait for the agents to finish.
 agent::wait(&producer);
 agent::wait(&consumer);

 // Print the average.
 wcout << L"The average is " << consumer.average() << L'.' << endl;
}

The average is 50.

Example

// producer-consumer-quotes.cpp
// compile with: /EHsc
#include <agents.h>
#include <array>
#include <algorithm>
#include <iostream>

using namespace concurrency;
using namespace std;

// Demonstrates a basic agent that produces values.
class producer_agent : public agent
{
public:
 explicit producer_agent(ITarget<double>& target)
 : _target(target)
 {
 }
protected:
 void run()
 {
 // For illustration, create a predefined array of stock quotes.
 // A real-world application would read these from an external source,
 // such as a network connection or a database.
 array<double, 6> quotes = { 24.44, 24.65, 24.99, 23.76, 22.30, 25.89 };

 // Send each quote to the target buffer.
 for_each (begin(quotes), end(quotes), [&] (double quote) {

 send(_target, quote);

 // Pause before sending the next quote.

This example produces the following output.

In this example, the producer agent sends a series of stock quotes to the consumer agent. The consumer agent
periodically reads the current quote and prints it to the console.

This example resembles the previous one, except that it uses a concurrency::overwrite_buffer object to enable the
producer to share one message with the consumer. As in the previous example, overwrite_buffer class
implements ITarget and ISource so that the producer and the consumer can act on a shared message buffer.

 // Pause before sending the next quote.
 concurrency::wait(20);
 });
 // Send a negative value to indicate the end of processing.
 send(_target, -1.0);

 // Set the agent to the finished state.
 done();
 }
private:
 // The target buffer to write to.
 ITarget<double>& _target;
};

// Demonstrates a basic agent that consumes values.
class consumer_agent : public agent
{
public:
 explicit consumer_agent(ISource<double>& source)
 : _source(source)
 {
 }

protected:
 void run()
 {
 // Read quotes from the source buffer until we receive
 // a negative value.
 double quote;
 while ((quote = receive(_source)) >= 0.0)
 {
 // Print the quote.
 wcout.setf(ios::fixed);
 wcout.precision(2);
 wcout << L"Current quote is " << quote << L'.' << endl;

 // Pause before reading the next quote.
 concurrency::wait(10);
 }

 // Set the agent to the finished state.
 done();
 }
private:
 // The source buffer to read from.
 ISource<double>& _source;
};

int wmain()
{
 // A message buffer that is shared by the agents.
 overwrite_buffer<double> buffer;

 // Create and start the producer and consumer agents.
 producer_agent producer(buffer);
 consumer_agent consumer(buffer);
 producer.start();
 consumer.start();

 // Wait for the agents to finish.
 agent::wait(&producer);
 agent::wait(&consumer);
}

This example produces the following sample output.

Current quote is 24.44.
Current quote is 24.44.
Current quote is 24.65.
Current quote is 24.99.
Current quote is 23.76.
Current quote is 22.30.
Current quote is 25.89.

Compiling the Code

See also

Unlike with an unbounded_buffer object, the receive function does not remove the message from the
overwrite_buffer object. If the consumer reads from the message buffer more than one time before the producer

overwrites that message, the receiver obtains the same message every time.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
producer-consumer.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc producer-consumer.cpp

Asynchronous Agents Library
Asynchronous Agents
Asynchronous Message Blocks
Message Passing Functions

How to: Provide Work Functions to the call and
transformer Classes
3/4/2019 • 3 minutes to read • Edit Online

Example

// call-lambda.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Stores the result of the computation.
 single_assignment<int> result;

 // Pass a lambda function to a call object that computes the square
 // of its input and then sends the result to the message buffer.
 call<int> c([&](int n) {
 send(result, n * n);
 });

 // Send a message to the call object and print the result.
 send(c, 13);
 wcout << L"13 squared is " << receive(result) << L'.' << endl;
}

13 squared is 169.

Example

This topic illustrates several ways to provide work functions to the concurrency::call and concurrency::transformer
classes.

The first example shows how to pass a lambda expression to a call object. The second example shows how to
pass a function object to a call object. The third example shows how to bind a class method to a call object.

For illustration, every example in this topic uses the call class. For an example that uses the transformer class,
see How to: Use transformer in a Data Pipeline.

The following example shows a common way to use the call class. This example passes a lambda function to the
call constructor.

This example produces the following output.

The following example resembles the previous one, except that it uses the call class together with a function
object (functor).

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-provide-work-functions-to-the-call-and-transformer-classes.md

// call-functor.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Functor class that computes the square of its input.
class square
{
public:
 explicit square(ITarget<int>& target)
 : _target(target)
 {
 }

 // Function call operator for the functor class.
 void operator()(int n)
 {
 send(_target, n * n);
 }

private:
 ITarget<int>& _target;
};

int wmain()
{
 // Stores the result of the computation.
 single_assignment<int> result;

 // Pass a function object to the call constructor.
 square s(result);
 call<int> c(s);

 // Send a message to the call object and print the result.
 send(c, 13);
 wcout << L"13 squared is " << receive(result) << L'.' << endl;
}

Example
The following example resembles the previous one, except that it uses the std::bind1st and std::mem_fun functions
to bind a call object to a class method.

Use this technique if you have to bind a call or transformer object to a specific class method instead of the
function call operator, operator() .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/functional-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/functional-functions

// call-method.cpp
// compile with: /EHsc
#include <agents.h>
#include <functional>
#include <iostream>

using namespace concurrency;
using namespace std;

// Class that computes the square of its input.
class square
{
public:
 explicit square(ITarget<int>& target)
 : _target(target)
 {
 }

 // Method that computes the square of its input.
 void square_value(int n)
 {
 send(_target, n * n);
 }

private:
 ITarget<int>& _target;
};

int wmain()
{
 // Stores the result of the computation.
 single_assignment<int> result;

 // Bind a class method to a call object.
 square s(result);
 call<int> c(bind1st(mem_fun(&square::square_value), &s));

 // Send a message to the call object and print the result.
 send(c, 13);
 wcout << L"13 squared is " << receive(result) << L'.' << endl;
}

// Assign to a function object.
function<void(int)> f1 = bind1st(mem_fun(&square::square_value), &s);
call<int> c1(f1);

// Alternatively, use the auto keyword to have the compiler deduce the type.
auto f2 = bind1st(mem_fun(&square::square_value), &s);
call<int> c2(f2);

Compiling the Code

See also

You can also assign the result of the bind1st function to a std::function object or use the auto keyword, as shown
in the following example.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named call.cpp and then
run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc call.cpp

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class

Asynchronous Agents Library
Asynchronous Message Blocks
How to: Use transformer in a Data Pipeline
call Class
transformer Class

How to: Use transformer in a Data Pipeline
3/4/2019 • 2 minutes to read • Edit Online

Example

This topic contains a basic example that shows how to use the concurrency::transformer class in a data pipeline.
For a more complete example that uses a data pipeline to perform image processing, see Walkthrough: Creating
an Image-Processing Network.

Data pipelining is a common pattern in concurrent programming. A data pipeline consists of a series of stages,
where each stage performs work and then passes the result of that work to the next stage. The transformer class
a key component in data pipelines because it receives an input value, performs work on that value, and then
produces a result for another component to use.

This example uses the following data pipeline to perform a series of transformations given an initial input value:

1. The first stage calculates the absolute value of its input.

2. The second stage calculates the square root of its input.

3. The third stage computes the square of its input.

4. The forth stage negates its input.

5. The fifth stage writes the final result to a message buffer.

Finally, the example prints the result of the pipeline to the console.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-transformer-in-a-data-pipeline.md

// data-pipeline.cpp
// compile with: /EHsc
#include <agents.h>
#include <math.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Computes the absolute value of its input.
 transformer<int, int> t0([](int n) {
 return abs(n);
 });

 // Computes the square root of its input.
 transformer<int, double> t1([](int n) {
 return sqrt(static_cast<double>(n));
 });

 // Computes the square its input.
 transformer<double, int> t2([](double n) {
 return static_cast<int>(n * n);
 });

 // Negates its input.
 transformer<int, int> t3([](int n) {
 return -n;
 });

 // Holds the result of the pipeline computation.
 single_assignment<int> result;

 // Link together each stage of the pipeline.
 // t0 -> t1 -> t2 -> t3 -> result
 t0.link_target(&t1);
 t1.link_target(&t2);
 t2.link_target(&t3);
 t3.link_target(&result);

 // Propagate a message through the pipeline.
 send(t0, -42);

 // Print the result to the console.
 wcout << L"The result is " << receive(result) << L'.' << endl;
}

The result is -42.

NOTE

This example produces the following output:

It is common for a stage in a data pipeline to output a value whose type differs from its input value. In this
example, the second stage takes a value of type int as its input and produces the square root of that value (a
double) as its output.

The data pipeline in this example is for illustration. Because each transformation operation performs little work, the
overhead that is required to perform message-passing can outweigh the benefits of using a data pipeline.

Compiling the Code

See also

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named data-pipeline.cpp

and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc data-pipeline.cpp

Asynchronous Agents Library
Asynchronous Message Blocks
Walkthrough: Creating an Image-Processing Network

How to: Select Among Completed Tasks
3/4/2019 • 4 minutes to read • Edit Online

Example

// find-employee.cpp
// compile with: /EHsc
#include <agents.h>
#include <ppl.h>
#include <array>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Contains information about an employee.
struct employee
{
 int id;
 float salary;
};

// Finds the first employee that has the provided id or salary.
template <typename T>
void find_employee(const T& employees, int id, float salary)
{

This example shows how to use the concurrency::choice and concurrency::join classes to select the first task to
complete a search algorithm.

The following example performs two search algorithms in parallel and selects the first algorithm to complete. This
example defines the employee type, which holds a numeric identifier and a salary for an employee. The
find_employee function finds the first employee that has the provided identifier or the provided salary. The
find_employee function also handles the case where no employee has the provided identifier or salary. The
wmain function creates an array of employee objects and searches for several identifier and salary values.

The example uses a choice object to select among the following cases:

1. An employee who has the provided identifier exists.

2. An employee who has the provided salary exists.

3. No employee who has the provided identifier or salary exists.

For the first two cases, the example uses a concurrency::single_assignment object to hold the identifier and
another single_assignment object to hold the salary. The example uses a join object for the third case. The
join object is composed of two additional single_assignment objects, one for the case where no employee who

has the provided identifier exists, and one for the case where no employee who has the provided salary exists. The
join object sends a message when each of its members receives a message. In this example, the join object

sends a message when no employee who has the provided identifier or salary exists.

The example uses a concurrency::structured_task_group object to run both search algorithms in parallel. Each
search task writes to one of the single_assignment objects to indicate whether the given employee exists. The
example uses the concurrency::receive function to obtain the index of the first buffer that contains a message and
a switch block to print the result.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-select-among-completed-tasks.md

 // Holds the salary for the employee with the provided id.
 single_assignment<float> find_id_result;

 // Holds the id for the employee with the provided salary.
 single_assignment<int> find_salary_result;

 // Holds a message if no employee with the provided id exists.
 single_assignment<bool> id_not_found;

 // Holds a message if no employee with the provided salary exists.
 single_assignment<bool> salary_not_found;

 // Create a join object for the "not found" buffers.
 // This join object sends a message when both its members holds a message
 // (in other words, no employee with the provided id or salary exists).
 auto not_found = make_join(&id_not_found, &salary_not_found);

 // Create a choice object to select among the following cases:
 // 1. An employee with the provided id exists.
 // 2. An employee with the provided salary exists.
 // 3. No employee with the provided id or salary exists.
 auto selector = make_choice(&find_id_result, &find_salary_result, ¬_found);

 // Create a task that searches for the employee with the provided id.
 auto search_id_task = make_task([&]{
 auto result = find_if(begin(employees), end(employees),
 [&](const employee& e) { return e.id == id; });
 if (result != end(employees))
 {
 // The id was found, send the salary to the result buffer.
 send(find_id_result, result->salary);
 }
 else
 {
 // The id was not found.
 send(id_not_found, true);
 }
 });

 // Create a task that searches for the employee with the provided salary.
 auto search_salary_task = make_task([&]{
 auto result = find_if(begin(employees), end(employees),
 [&](const employee& e) { return e.salary == salary; });
 if (result != end(employees))
 {
 // The salary was found, send the id to the result buffer.
 send(find_salary_result, result->id);
 }
 else
 {
 // The salary was not found.
 send(salary_not_found, true);
 }
 });

 // Use a structured_task_group object to run both tasks.
 structured_task_group tasks;
 tasks.run(search_id_task);
 tasks.run(search_salary_task);

 wcout.setf(ios::fixed, ios::fixed);
 wcout.precision(2);

 // Receive the first object that holds a message and print a message.
 int index = receive(selector);
 switch (index)

 {
 case 0:
 wcout << L"Employee with id " << id << L" has salary "
 << receive(find_id_result);
 break;
 case 1:
 wcout << L"Employee with salary " << salary << L" has id "
 << receive(find_salary_result);
 break;
 case 2:
 wcout << L"No employee has id " << id << L" or salary " << salary;
 break;
 default:
 __assume(0);
 }
 wcout << L'.' << endl;

 // Cancel any active tasks and wait for the task group to finish.
 tasks.cancel();
 tasks.wait();
}

int wmain()
{
 // Create an array of employees and assign each one a
 // random id and salary.

 array<employee, 10000> employees;

 mt19937 gen(15);
 const float base_salary = 25000.0f;
 for (int i = 0; i < employees.size(); ++i)
 {
 employees[i].id = gen()%100000;

 float bonus = static_cast<float>(gen()%5000);
 employees[i].salary = base_salary + bonus;
 }

 // Search for several id and salary values.

 find_employee(employees, 14758, 30210.00);
 find_employee(employees, 340, 29150.00);
 find_employee(employees, 61935, 29255.90);
 find_employee(employees, 899, 31223.00);
}

Employee with id 14758 has salary 27780.00.
Employee with salary 29150.00 has id 84345.
Employee with id 61935 has salary 29905.00.
No employee has id 899 or salary 31223.00.

Compiling the Code

This example produces the following output.

This example uses the concurrency::make_choice helper function to create choice objects and the
concurrency::make_join helper function to create join objects.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named find-employee.cpp

and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc find-employee.cpp

See also
Asynchronous Agents Library
Asynchronous Message Blocks
Message Passing Functions
choice Class
join Class

How to: Send a Message at a Regular Interval
3/4/2019 • 2 minutes to read • Edit Online

Example

// report-progress.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Simulates a lengthy operation.
void perform_lengthy_operation()
{
 // Yield the current context for one second.
 wait(1000);
}

int wmain()
{
 // Create a call object that prints a single character to the console.
 call<wchar_t> report_progress([](wchar_t c) {
 wcout << c;
 });

 // Create a timer object that sends the dot character to the
 // call object every 100 milliseconds.
 timer<wchar_t> progress_timer(100, L'.', &report_progress, true);

 wcout << L"Performing a lengthy operation";

 // Start the timer on a separate context.
 progress_timer.start();

 // Perform a lengthy operation on the main context.
 perform_lengthy_operation();

 // Stop the timer and print a message.
 progress_timer.stop();

 wcout << L"done.";
}

Performing a lengthy operation..........done.

This example shows how to use the concurrency::timer class to send a message at a regular interval.

The following example uses a timer object to report progress during a lengthy operation. This example links the
timer object to a concurrency::call object. The call object prints a progress indicator to the console at a regular

interval. The concurrency::timer ::start method runs the timer on a separate context. The
perform_lengthy_operation function calls the concurrency::wait function on the main context to simulate a time-

consuming operation.

This example produces the following sample output:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-send-a-message-at-a-regular-interval.md

Compiling the Code

See also

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
report-progress.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc report-progress.cpp

Asynchronous Agents Library
Asynchronous Message Blocks
Message Passing Functions

How to: Use a Message Block Filter
3/4/2019 • 6 minutes to read • Edit Online

Example

This document demonstrates how to use a filter function to enable an asynchronous message block to accept or
reject a message on the basis of the payload of that message.

When you create a message block object such as a concurrency::unbounded_buffer, a concurrency::call, or a
concurrency::transformer, you can supply a filter function that determines whether the message block accepts or
rejects a message. A filter function is a useful way to guarantee that a message block receives only certain values.

Filter functions are important because they enable you to connect message blocks to form dataflow networks. In
a dataflow network, message blocks control the flow of data by processing only those messages that meet specific
criteria. Compare this to the control-flow model, where the flow of data is regulated by using control structures
such as conditional statements, loops, and so on.

This document provides a basic example of how to use a message filter. For additional examples that use message
filters and the dataflow model to connect message blocks, see Walkthrough: Creating a Dataflow Agent and
Walkthrough: Creating an Image-Processing Network.

Consider the following function, count_primes , which illustrates the basic usage of a message block that does not
filter incoming messages. The message block appends prime numbers to a std::vector object. The count_primes

function sends several numbers to the message block, receives the output values from the message block, and
prints those numbers that are prime to the console.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-a-message-block-filter.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

// Illustrates usage of a message buffer that does not use filtering.
void count_primes(unsigned long random_seed)
{
 // Holds prime numbers.
 vector<unsigned long> primes;

 // Adds numbers that are prime to the vector object.
 transformer<unsigned long, unsigned long> t([&primes](unsigned long n) -> unsigned long
 {
 if (is_prime(n))
 {
 primes.push_back(n);
 }
 return n;
 });

 // Send random values to the message buffer.
 mt19937 generator(random_seed);
 for (int i = 0; i < 20; ++i)
 {
 send(t, static_cast<unsigned long>(generator()%10000));
 }

 // Receive from the message buffer the same number of times
 // to ensure that the message buffer has processed each message.
 for (int i = 0; i < 20; ++i)
 {
 receive(t);
 }

 // Print the prime numbers to the console.
 wcout << L"The following numbers are prime: " << endl;
 for(unsigned long prime : primes)
 {
 wcout << prime << endl;
 }
}

Example

The transformer object processes all input values; however, it requires only those values that are prime. Although
the application could be written so that the message sender sends only prime numbers, the requirements of the
message receiver cannot always be known.

The following function, count_primes_filter , performs the same task as the count_primes function. However, the
transformer object in this version uses a filter function to accept only those values that are prime. The function

that performs the action only receives prime numbers; therefore, it does not have to call the is_prime function.

Because the transformer object receives only prime numbers, the transformer object itself can hold the prime
numbers. In other words, the transformer object in this example is not required to add the prime numbers to the
vector object.

// Illustrates usage of a message buffer that uses filtering.
void count_primes_filter(unsigned long random_seed)
{
 // Accepts numbers that are prime.
 transformer<unsigned long, unsigned long> t([](unsigned long n) -> unsigned long
 {
 // The filter function guarantees that the input value is prime.
 // Return the input value.
 return n;
 },
 nullptr,
 [](unsigned long n) -> bool
 {
 // Filter only values that are prime.
 return is_prime(n);
 });

 // Send random values to the message buffer.
 mt19937 generator(random_seed);
 size_t prime_count = 0;
 for (int i = 0; i < 20; ++i)
 {
 if (send(t, static_cast<unsigned long>(generator()%10000)))
 {
 ++prime_count;
 }
 }

 // Print the prime numbers to the console.
 wcout << L"The following numbers are prime: " << endl;
 while (prime_count-- > 0)
 {
 wcout << receive(t) << endl;
 }
}

Example

// primes-filter.cpp
// compile with: /EHsc
#include <agents.h>
#include <algorithm>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Determines whether the input value is prime.
bool is_prime(unsigned long n)
{
 if (n < 2)
 return false;

The transformer object now processes only those values that are prime. In the previous example, transformer

object processes all messages. Therefore, the previous example must receive the same number of messages that it
sends. This example uses the result of the concurrency::send function to determine how many messages to receive
from the transformer object. The send function returns true when the message buffer accepts the message and
false when the message buffer rejects the message. Therefore, the number of times that the message buffer
accepts the message matches the count of prime numbers.

The following code shows the complete example. The example calls both the count_primes function and the
count_primes_filter function.

 for (unsigned long i = 2; i < n; ++i)
 {
 if ((n % i) == 0)
 return false;
 }
 return true;
}

// Illustrates usage of a message buffer that does not use filtering.
void count_primes(unsigned long random_seed)
{
 // Holds prime numbers.
 vector<unsigned long> primes;

 // Adds numbers that are prime to the vector object.
 transformer<unsigned long, unsigned long> t([&primes](unsigned long n) -> unsigned long
 {
 if (is_prime(n))
 {
 primes.push_back(n);
 }
 return n;
 });

 // Send random values to the message buffer.
 mt19937 generator(random_seed);
 for (int i = 0; i < 20; ++i)
 {
 send(t, static_cast<unsigned long>(generator()%10000));
 }

 // Receive from the message buffer the same number of times
 // to ensure that the message buffer has processed each message.
 for (int i = 0; i < 20; ++i)
 {
 receive(t);
 }

 // Print the prime numbers to the console.
 wcout << L"The following numbers are prime: " << endl;
 for(unsigned long prime : primes)
 {
 wcout << prime << endl;
 }
}

// Illustrates usage of a message buffer that uses filtering.
void count_primes_filter(unsigned long random_seed)
{
 // Accepts numbers that are prime.
 transformer<unsigned long, unsigned long> t([](unsigned long n) -> unsigned long
 {
 // The filter function guarantees that the input value is prime.
 // Return the input value.
 return n;
 },
 nullptr,
 [](unsigned long n) -> bool
 {
 // Filter only values that are prime.
 return is_prime(n);
 });

 // Send random values to the message buffer.
 mt19937 generator(random_seed);
 size_t prime_count = 0;
 for (int i = 0; i < 20; ++i)
 {
 if (send(t, static_cast<unsigned long>(generator()%10000)))

 if (send(t, static_cast<unsigned long>(generator()%10000)))
 {
 ++prime_count;
 }
 }

 // Print the prime numbers to the console.
 wcout << L"The following numbers are prime: " << endl;
 while (prime_count-- > 0)
 {
 wcout << receive(t) << endl;
 }
}

int wmain()
{
 const unsigned long random_seed = 99714;

 wcout << L"Without filtering:" << endl;
 count_primes(random_seed);

 wcout << L"With filtering:" << endl;
 count_primes_filter(random_seed);

 /* Output:
 9973
 9349
 9241
 8893
 1297
 7127
 8647
 3229
 With filtering:
 The following numbers are prime:
 9973
 9349
 9241
 8893
 1297
 7127
 8647
 3229
 */
}

Compiling the Code

Robust Programming

bool (T)
bool (T const &)

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named primes-filter.cpp

and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc primes-filter.cpp

A filter function can be a lambda function, a function pointer, or a function object. Every filter function takes one of
the following forms:

To eliminate the unnecessary copying of data, use the second form when you have an aggregate type that is
transmitted by value.

See also
Asynchronous Agents Library
Walkthrough: Creating a Dataflow Agent
Walkthrough: Creating an Image-Processing Network
transformer Class

Synchronization Data Structures
3/4/2019 • 4 minutes to read • Edit Online

Sections

critical_section

Methods and Features

METHOD DESCRIPTION

lock Acquires the critical section. The calling context blocks until it
acquires the lock.

try_lock Tries to acquire the critical section, but does not block.

unlock Releases the critical section.

reader_writer_lock

The Concurrency Runtime provides several data structures that let you synchronize access to shared data from
multiple threads. These data structures are useful when you have shared data that you modify infrequently. A
synchronization object, for example, a critical section, causes other threads to wait until the shared resource is
available. Therefore, if you use such an object to synchronize access to data that is used frequently, you can lose
scalability in your application. The Parallel Patterns Library (PPL) provides the concurrency::combinable class,
which enables you to share a resource among several threads or tasks without the need for synchronization. For
more information about the combinable class, see Parallel Containers and Objects.

This topic describes the following asynchronous message block types in detail:

critical_section

reader_writer_lock

scoped_lock and scoped_lock_read

event

The concurrency::critical_section class represents a cooperative mutual exclusion object that yields to other tasks
instead of preempting them. Critical sections are useful when multiple threads require exclusive read and write
access to shared data.

The critical_section class is non-reentrant. The concurrency::critical_section::lock method throws an exception
of type concurrency::improper_lock if it is called by the thread that already owns the lock.

The following table shows the important methods that are defined by the critical_section class.

[Top]

The concurrency::reader_writer_lock class provides thread-safe read/write operations to shared data. Use
reader/writer locks when multiple threads require concurrent read access to a shared resource but rarely write to
that shared resource. This class gives only one thread write access to an object at any time.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/synchronization-data-structures.md

NOTE

Methods and Features

METHOD DESCRIPTION

lock Acquires read/write access to the lock.

try_lock Tries to acquire read/write access to the lock, but does not
block.

lock_read Acquires read-only access to the lock.

try_lock_read Tries to acquire read-only access to the lock, but does not
block.

unlock Releases the lock.

scoped_lock and scoped_lock_read

The reader_writer_lock class can perform better than the critical_section class because a critical_section

object acquires exclusive access to a shared resource, which prevents concurrent read access.

Like the critical_section class, the reader_writer_lock class represents a cooperative mutual exclusion object
that yields to other tasks instead of preempting them.

When a thread that must write to a shared resource acquires a reader/writer lock, other threads that also must
access the resource are blocked until the writer releases the lock. The reader_writer_lock class is an example of a
write-preference lock, which is a lock that unblocks waiting writers before it unblocks waiting readers.

Like the critical_section class, the reader_writer_lock class is non-reentrant. The
concurrency::reader_writer_lock::lock and concurrency::reader_writer_lock::lock_read methods throw an exception
of type improper_lock if they are called by a thread that already owns the lock.

Because the reader_writer_lock class is non-reentrant, you cannot upgrade a read-only lock to a reader/writer lock or
downgrade a reader/writer lock to a read-only lock. Performing either of these operations produces unspecified behavior.

The following table shows the important methods that are defined by the reader_writer_lock class.

[Top]

The critical_section and reader_writer_lock classes provide nested helper classes that simplify the way you
work with mutual exclusion objects. These helper classes are known as scoped locks.

The critical_section class contains the concurrency::critical_section::scoped_lock class. The constructor acquires
access to the provided critical_section object; the destructor releases access to that object. The
reader_writer_lock class contains the concurrency::reader_writer_lock::scoped_lock class, which resembles
critical_section::scoped_lock , except that it manages write access to the provided reader_writer_lock object.

The reader_writer_lock class also contains the concurrency::reader_writer_lock::scoped_lock_read class. This
class manages read access to the provided reader_writer_lock object.

Scoped locks provide several benefits when you are working with critical_section and reader_writer_lock

objects manually. Typically, you allocate a scoped lock on the stack. A scoped lock releases access to its mutual
exclusion object automatically when it is destroyed; therefore, you do not manually unlock the underlying object.
This is useful when a function contains multiple return statements. Scoped locks can also help you write

NOTE

event

Methods and Features

METHOD DESCRIPTION

wait Waits for the event to become signaled.

set Sets the event to the signaled state.

reset Sets the event to the non-signaled state.

wait_for_multiple Waits for multiple events to become signaled.

Example

Related Sections

exception-safe code. When a throw statement causes the stack to unwind, the destructor for any active scoped
lock is called, and therefore the mutual exclusion object is always correctly released.

When you use the critical_section::scoped_lock , reader_writer_lock::scoped_lock , and
reader_writer_lock::scoped_lock_read classes, do not manually release access to the underlying mutual exclusion

object. This can put the runtime in an invalid state.

The concurrency::event class represents a synchronization object whose state can be signaled or non-signaled.
Unlike synchronization objects, such as critical sections, whose purpose is to protect access to shared data, events
synchronize flow of execution.

The event class is useful when one task has completed work for another task. For example, one task might
signal another task that it has read data from a network connection or from a file.

The following table shows several of the important methods that are defined by the event class.

For an example that shows how to use the event class, see Comparing Synchronization Data Structures to the
Windows API.

[Top]

Comparing Synchronization Data Structures to the Windows API
Compares the behavior of the synchronization data structures to those provided by the Windows API.

Concurrency Runtime
Describes the Concurrency Runtime, which simplifies parallel programming, and contains links to related topics.

Comparing Synchronization Data Structures to the
Windows API
3/4/2019 • 4 minutes to read • Edit Online

critical_section

reader_writer_lock

FEATURE READER_WRITER_LOCK SRW LOCK

Non-reentrant Yes Yes

Can promote a reader to a writer
(upgrade support)

No No

Can demote a writer to a reader
(downgrade support)

No No

Write-preference lock Yes No

FIFO access to writers Yes No

event

Example
Description

This topic compares the behavior of the synchronization data structures that are provided by the Concurrency
Runtime to those provided by the Windows API.

The synchronization data structures that are provided by the Concurrency Runtime follow the cooperative
threading model. In the cooperative threading model, synchronization primitives explicitly yield their processing
resources to other threads. This differs from the preemptive threading model, where processing resources are
transferred to other threads by the controlling scheduler or operating system.

The concurrency::critical_section class resembles the Windows CRITICAL_SECTION structure because it can be used
only by the threads of one process. For more information about critical sections in the Windows API, see Critical
Section Objects.

The concurrency::reader_writer_lock class resembles Windows slim reader/writer (SRW) locks. The following table
explains the similarities and differences.

For more information about SRW locks, see Slim Reader/Writer (SRW) Locks in the Platform SDK.

The concurrency::event class resembles an unnamed, Windows manual-reset event. However, an event object
behaves cooperatively, whereas a Windows event behaves preemptively. For more information about Windows
events, see Event Objects.

To better understand the difference between the event class and Windows events, consider the following

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/comparing-synchronization-data-structures-to-the-windows-api.md
https://docs.microsoft.com/windows/desktop/Sync/critical-section-objects
https://msdn.microsoft.com/library/windows/desktop/aa904937
https://docs.microsoft.com/windows/desktop/Sync/event-objects

Code

// event-comparison.cpp
// compile with: /EHsc
#include <windows.h>
#include <concrtrm.h>
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Demonstrates the usage of cooperative events.
void RunCooperativeEvents()
{
 // An event object.
 event e;

 // Create a task group and execute five tasks that wait for
 // the event to be set.
 task_group tasks;
 for (int i = 0; i < 5; ++i)
 {
 tasks.run([&] {
 // Print a message before waiting on the event.
 wstringstream ss;
 ss << L"\t\tContext " << GetExecutionContextId()
 << L": waiting on an event." << endl;
 wcout << ss.str();

 // Wait for the event to be set.
 e.wait();

 // Print a message after the event is set.
 ss = wstringstream();
 ss << L"\t\tContext " << GetExecutionContextId()
 << L": received the event." << endl;
 wcout << ss.str();
 });
 }

 // Wait a sufficient amount of time for all tasks to enter
 // the waiting state.
 Sleep(1000L);

 // Set the event.

 wstringstream ss;
 ss << L"\tSetting the event." << endl;
 wcout << ss.str();

 e.set();

 // Wait for all tasks to complete.
 tasks.wait();
}

// Demonstrates the usage of preemptive events.
void RunWindowsEvents()
{
 // A Windows event object.

example. This example enables the scheduler to create at most two simultaneous tasks and then calls two similar
functions that use the event class and a Windows manual-reset event. Each function first creates several tasks
that wait for a shared event to become signaled. Each function then yields to the running tasks and then signals
the event. Each function then waits for the signaled event.

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, TEXT("Windows Event"));

 // Create a task group and execute five tasks that wait for
 // the event to be set.
 task_group tasks;
 for (int i = 0; i < 5; ++i)
 {
 tasks.run([&] {
 // Print a message before waiting on the event.
 wstringstream ss;
 ss << L"\t\tContext " << GetExecutionContextId()
 << L": waiting on an event." << endl;
 wcout << ss.str();

 // Wait for the event to be set.
 WaitForSingleObject(hEvent, INFINITE);

 // Print a message after the event is set.
 ss = wstringstream();
 ss << L"\t\tContext " << GetExecutionContextId()
 << L": received the event." << endl;
 wcout << ss.str();
 });
 }

 // Wait a sufficient amount of time for all tasks to enter
 // the waiting state.
 Sleep(1000L);

 // Set the event.

 wstringstream ss;
 ss << L"\tSetting the event." << endl;
 wcout << ss.str();

 SetEvent(hEvent);

 // Wait for all tasks to complete.
 tasks.wait();

 // Close the event handle.
 CloseHandle(hEvent);
}

int wmain()
{
 // Create a scheduler policy that allows up to two
 // simultaneous tasks.
 SchedulerPolicy policy(1, MaxConcurrency, 2);

 // Attach the policy to the current scheduler.
 CurrentScheduler::Create(policy);

 wcout << L"Cooperative event:" << endl;
 RunCooperativeEvents();

 wcout << L"Windows event:" << endl;
 RunWindowsEvents();
}

Comments
This example produces the following sample output:

Cooperative event:
 Context 0: waiting on an event.
 Context 1: waiting on an event.
 Context 2: waiting on an event.
 Context 3: waiting on an event.
 Context 4: waiting on an event.
 Setting the event.
 Context 5: received the event.
 Context 6: received the event.
 Context 7: received the event.
 Context 8: received the event.
 Context 9: received the event.
Windows event:
 Context 10: waiting on an event.
 Context 11: waiting on an event.
 Setting the event.
 Context 12: received the event.
 Context 14: waiting on an event.
 Context 15: received the event.
 Context 16: waiting on an event.
 Context 17: received the event.
 Context 18: waiting on an event.
 Context 19: received the event.
 Context 13: received the event.

See also

Because the event class behaves cooperatively, the scheduler can reallocate processing resources to another
context when an event is waiting to enter the signaled state. Therefore, more work is accomplished by the version
that uses the event class. In the version that uses Windows events, each waiting task must enter the signaled
state before the next task is started.

For more information about tasks, see Task Parallelism.

Synchronization Data Structures

Task Scheduler (Concurrency Runtime)
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANT

TIP

Related Topics

The topics in this part of the documentation describe the important features of the Concurrency Runtime Task
Scheduler. The Task Scheduler is useful when you want fine-tune the performance of your existing code that
uses the Concurrency Runtime.

The Task Scheduler is not available from a Universal Windows Platform (UWP) app. For more information, see Creating
Asynchronous Operations in C++ for UWP Apps.

In Visual Studio 2015 and later, the concurrency::task class and related types in ppltasks.h use the Windows ThreadPool
as their scheduler. This topic no longer applies to types that are defined in ppltasks.h. Parallel algorithms such as
parallel_for continue to use the Concurrency Runtime as the default scheduler.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your
application. Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that
you start with the Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency
Runtime.

The Task Scheduler schedules and coordinates tasks at run time. A task is a unit of work that performs a
specific job. A task can typically run in parallel with other tasks. The work that is performed by task group
items, parallel algorithms, and asynchronous agents are all examples of tasks.

The Task Scheduler manages the details that are related to efficiently scheduling tasks on computers that have
multiple computing resources. The Task Scheduler also uses the newest features of the underlying operating
system. Therefore, applications that use the Concurrency Runtime automatically scale and improve on
hardware that has expanded capabilities.

Comparing to Other Concurrency Models describes the differences between preemptive and cooperative
scheduling mechanisms. The Task Scheduler uses cooperative scheduling and a work-stealing algorithm
together with the preemptive scheduler of the operating system to achieve maximum usage of processing
resources.

The Concurrency Runtime provides a default scheduler so that you do not have to manage infrastructure
details. Therefore, you typically do not use the Task Scheduler directly. However, to meet the quality needs of
your application, you can use the Task Scheduler to provide your own scheduling policy or associate
schedulers with specific tasks. For example, suppose you have a parallel sorting routine that does not scale
beyond four processors. You can use scheduler policies to create a scheduler that generates no more than four
concurrent tasks. Running the sorting routine on this scheduler enables other active schedulers to use any
remaining processing resources.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/task-scheduler-concurrency-runtime.md

TITLE DESCRIPTION

Scheduler Instances Describes scheduler instances and how to use the
concurrency::Scheduler and
concurrency::CurrentScheduler classes to manage

them. Use scheduler instances when you want to associate
explicit scheduling policies with specific types of workloads.

Scheduler Policies Describes the role of scheduler policies. Use scheduler
policies when you want to control the strategy that the
scheduler uses when it manages tasks.

Schedule Groups Describes the role of schedule groups. Use schedule groups
when you require a high degree of locality among tasks, for
example, when a group of related tasks benefit from
executing on the same processor node.

Lightweight Tasks Describes the role of lightweight tasks. Lightweight tasks
are useful when you adapt existing code to use the
scheduling functionality of the Concurrency Runtime.

Contexts Describes the role of contexts, the concurrency::wait

function, and the concurrency::Context class. Use this
functionality when you need control over when contexts
block, unblock, and yield, or when you want to enable
oversubscription in your application.

Memory Management Functions Describes the concurrency::Alloc and
concurrency::Free functions. These functions can

improve memory performance by allocating and freeing
memory in a concurrent manner.

Comparing to Other Concurrency Models Describes the differences between preemptive and
cooperative scheduling mechanisms.

Parallel Patterns Library (PPL) Describes how to use various parallel patterns, for example,
parallel algorithms, in your applications.

Asynchronous Agents Library Describes how to use asynchronous agents in your
applications.

Concurrency Runtime Describes the Concurrency Runtime, which simplifies
parallel programming, and contains links to related topics.

Scheduler Instances
3/4/2019 • 6 minutes to read • Edit Online

TIP

Sections

The Scheduler and CurrentScheduler Classes

Creating a Scheduler Instance

This document describes the role of scheduler instances in the Concurrency Runtime and how to use the
concurrency::Scheduler and concurrency::CurrentScheduler classes to create and manage scheduler instances.
Scheduler instances are useful when you want to associate explicit scheduling policies with specific types of
workloads. For example, you can create one scheduler instance to run some tasks at an elevated thread priority
and use the default scheduler to run other tasks at the normal thread priority.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your application.
Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with
the Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

The Scheduler and CurrentScheduler Classes

Creating a Scheduler Instance

Managing the Lifetime of a Scheduler Instance

Methods and Features

Example

The Task Scheduler enables applications to use one or more scheduler instances to schedule work. The
concurrency::Scheduler class represents a scheduler instance and encapsulates the functionality that is related to
scheduling tasks.

A thread that is attached to a scheduler is known as an execution context, or just context. One scheduler can be
active on the current context at any time. The active scheduler is also known as the current scheduler. The
Concurrency Runtime uses the concurrency::CurrentScheduler class to provide access to the current scheduler.
The current scheduler for one context can differ from the current scheduler for another context. The runtime does
not provide a process-level representation of the current scheduler.

Typically, the CurrentScheduler class is used to access the current scheduler. The Scheduler class is useful when
you need to manage a scheduler that is not the current one.

The following sections describe how to create and manage a scheduler instance. For a complete example that
illustrates these tasks, see How to: Manage a Scheduler Instance.

[Top]

There are these three ways to create a Scheduler object:

If no scheduler exists, the runtime creates a default scheduler for you when you use runtime functionality,
for example, a parallel algorithm, to perform work. The default scheduler becomes the current scheduler for

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/scheduler-instances.md

 Managing the Lifetime of a Scheduler Instance

CREATE OR ATTACH METHOD RELEASE OR DETACH METHOD

CurrentScheduler::Create CurrentScheduler::Detach

Scheduler::Create Scheduler::Release

Scheduler::Attach CurrentScheduler::Detach

the context that initiates the parallel work.

The concurrency::CurrentScheduler::Create method creates a Scheduler object that uses a specific policy
and associates that scheduler with the current context.

The concurrency::Scheduler::Create method creates a Scheduler object that uses a specific policy, but does
not associate it with the current context.

Allowing the runtime to create a default scheduler enables all concurrent tasks to share the same scheduler.
Typically, the functionality that is provided by the Parallel Patterns Library (PPL) or the Asynchronous Agents
Library is used to perform parallel work. Therefore, you do not have to work directly with the scheduler to control
its policy or lifetime. When you use the PPL or the Agents Library, the runtime creates the default scheduler if it
does not exist and makes it the current scheduler for each context. When you create a scheduler and set it as the
current scheduler, then the runtime uses that scheduler to schedule tasks. Create additional scheduler instances
only when you require a specific scheduling policy. For more information about the policies that are associated
with a scheduler, see Scheduler Policies.

[Top]

The runtime uses a reference-counting mechanism to control the lifetime of Scheduler objects.

When you use the CurrentScheduler::Create method or the Scheduler::Create method to create a Scheduler

object, the runtime sets the initial reference count of that scheduler to one. The runtime increments the reference
count when you call the concurrency::Scheduler::Attach method. The Scheduler::Attach method associates the
Scheduler object together with the current context. This makes it the current scheduler. When you call the
CurrentScheduler::Create method, the runtime both creates a Scheduler object and attaches it to the current

context (and sets the reference count to one). You can also use the concurrency::Scheduler::Reference method to
increment the reference count of a Scheduler object.

The runtime decrements the reference count when you call the concurrency::CurrentScheduler::Detach method to
detach the current scheduler, or call the concurrency::Scheduler::Release method. When the reference count
reaches zero, the runtime destroys the Scheduler object after all scheduled tasks finish. A running task is allowed
to increment the reference count of the current scheduler. Therefore, if the reference count reaches zero and a task
increments the reference count, the runtime does not destroy the Scheduler object until the reference count again
reaches zero and all tasks finish.

The runtime maintains an internal stack of Scheduler objects for each context. When you call the
Scheduler::Attach or CurrentScheduler::Create method, the runtime pushes that Scheduler object onto the stack

for the current context. This makes it the current scheduler. When you call CurrentScheduler::Detach , the runtime
pops the current scheduler from the stack for current context and sets the previous one as the current scheduler.

The runtime provides several ways to manage the lifetime of a scheduler instance. The following table shows the
appropriate method that releases or detaches the scheduler from the current context for each method that creates
or attaches a scheduler to the current context.

Scheduler::Reference Scheduler::Release

CREATE OR ATTACH METHOD RELEASE OR DETACH METHOD

Methods and Features

METHOD DESCRIPTION

Create Creates a Scheduler object that uses the specified policy
and associates it with the current context.

Get Retrieves a pointer to the Scheduler object that is
associated with the current context. This method does not
increment the reference count of the Scheduler object.

Detach Detaches the current scheduler from the current context and
sets the previous one as the current scheduler.

RegisterShutdownEvent Registers an event that the runtime sets when the current
scheduler is destroyed.

CreateScheduleGroup Creates a concurrency::ScheduleGroup object in the current
scheduler.

ScheduleTask Adds a lightweight task to the scheduling queue of the
current scheduler.

GetPolicy Retrieves a copy of the policy that is associated with the
current scheduler.

METHOD DESCRIPTION

Create Creates a Scheduler object that uses the specified policy.

Calling the inappropriate release or detach method produces unspecified behavior in the runtime.

When you use functionality, for example, the PPL, that causes the runtime to create the default scheduler for you,
do not release or detach this scheduler. The runtime manages the lifetime of any scheduler that it creates.

Because the runtime does not destroy a Scheduler object before all tasks have finished, you can use the
concurrency::Scheduler::RegisterShutdownEvent method or the
concurrency::CurrentScheduler::RegisterShutdownEvent method to receive a notification when a Scheduler object
is destroyed. This is useful when you must wait for every task that is scheduled by a Scheduler object to finish.

[Top]

This section summarizes the important methods of the CurrentScheduler and Scheduler classes.

Think of the CurrentScheduler class as a helper for creating a scheduler for use on the current context. The
Scheduler class lets you control a scheduler that belongs to another context.

The following table shows the important methods that are defined by the CurrentScheduler class.

The following table shows the important methods that are defined by the Scheduler class.

Attach Associates the Scheduler object together with the current
context.

Reference Increments the reference counter of the Scheduler object.

Release Decrements the reference counter of the Scheduler object.

RegisterShutdownEvent Registers an event that the runtime sets when the
Scheduler object is destroyed.

CreateScheduleGroup Creates a concurrency::ScheduleGroup object in the
Scheduler object.

ScheduleTask Schedules a lightweight task from the Scheduler object.

GetPolicy Retrieves a copy of the policy that is associated with the
Scheduler object.

SetDefaultSchedulerPolicy Sets the policy for the runtime to use when it creates the
default scheduler.

ResetDefaultSchedulerPolicy Restores the default policy to the one that was active before
the call to SetDefaultSchedulerPolicy . If the default
scheduler is created after this call, the runtime uses default
policy settings to create the scheduler.

METHOD DESCRIPTION

Example

See also

[Top]

For basic examples of how to create and manage a scheduler instance, see How to: Manage a Scheduler Instance.

Task Scheduler
How to: Manage a Scheduler Instance
Scheduler Policies
Schedule Groups

How to: Manage a Scheduler Instance
3/4/2019 • 4 minutes to read • Edit Online

To manage a scheduler instance in your application

Example

// scheduler-instance.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>

Scheduler instances let you associate specific scheduling policies with various kinds of workloads. This topic
contains two basic examples that show how to create and manage a scheduler instance.

The examples create schedulers that use the default scheduler policies. For an example that creates a scheduler
that uses a custom policy, see How to: Specify Specific Scheduler Policies.

1. Create a concurrency::SchedulerPolicy object that contains the policy values for the scheduler to use.

2. Call the concurrency::CurrentScheduler::Create method or the concurrency::Scheduler::Create method to
create a scheduler instance.

If you use the Scheduler::Create method, call the concurrency::Scheduler::Attach method when you need
to associate the scheduler with the current context.

3. Call the CreateEvent function to create a handle to a non-signaled, auto-reset event object.

4. Pass the handle to the event object that you just created to the
concurrency::CurrentScheduler::RegisterShutdownEvent method or the
concurrency::Scheduler::RegisterShutdownEvent method. This registers the event to be set when the
scheduler is destroyed.

5. Perform the tasks that you want the current scheduler to schedule.

6. Call the concurrency::CurrentScheduler::Detach method to detach the current scheduler and restore the
previous scheduler as the current one.

If you use the Scheduler::Create method, call the concurrency::Scheduler::Release method to decrement
the reference count of the Scheduler object.

7. Pass the handle to the event to the WaitForSingleObject function to wait for the scheduler to shut down.

8. Call the CloseHandle function to close the handle to the event object.

The following code shows two ways to manage a scheduler instance. Each example first uses the default
scheduler to perform a task that prints out the unique identifier of the current scheduler. Each example then uses a
scheduler instance to perform the same task again. Finally, each example restores the default scheduler as the
current one and performs the task one more time.

The first example uses the concurrency::CurrentScheduler class to create a scheduler instance and associate it
with the current context. The second example uses the concurrency::Scheduler class to perform the same task.
Typically, the CurrentScheduler class is used to work with the current scheduler. The second example, which uses
the Scheduler class, is useful when you want to control when the scheduler is associated with the current context
or when you want to associate specific schedulers with specific tasks.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-manage-a-scheduler-instance.md
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-createeventa
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/windows/desktop/api/handleapi/nf-handleapi-closehandle

#include <iostream>

using namespace concurrency;
using namespace std;

// Prints the identifier of the current scheduler to the console.
void perform_task()
{
 // A task group.
 task_group tasks;

 // Run a task in the group. The current scheduler schedules the task.
 tasks.run_and_wait([] {
 wcout << L"Current scheduler id: " << CurrentScheduler::Id() << endl;
 });
}

// Uses the CurrentScheduler class to manage a scheduler instance.
void current_scheduler()
{
 // Run the task.
 // This prints the identifier of the default scheduler.
 perform_task();

 // For demonstration, create a scheduler object that uses
 // the default policy values.
 wcout << L"Creating and attaching scheduler..." << endl;
 CurrentScheduler::Create(SchedulerPolicy());

 // Register to be notified when the scheduler shuts down.
 HANDLE hShutdownEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 CurrentScheduler::RegisterShutdownEvent(hShutdownEvent);

 // Run the task again.
 // This prints the identifier of the new scheduler.
 perform_task();

 // Detach the current scheduler. This restores the previous scheduler
 // as the current one.
 wcout << L"Detaching scheduler..." << endl;
 CurrentScheduler::Detach();

 // Wait for the scheduler to shut down and destroy itself.
 WaitForSingleObject(hShutdownEvent, INFINITE);

 // Close the event handle.
 CloseHandle(hShutdownEvent);

 // Run the sample task again.
 // This prints the identifier of the default scheduler.
 perform_task();
}

// Uses the Scheduler class to manage a scheduler instance.
void explicit_scheduler()
{
 // Run the task.
 // This prints the identifier of the default scheduler.
 perform_task();

 // For demonstration, create a scheduler object that uses
 // the default policy values.
 wcout << L"Creating scheduler..." << endl;
 Scheduler* scheduler = Scheduler::Create(SchedulerPolicy());

 // Register to be notified when the scheduler shuts down.
 HANDLE hShutdownEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 scheduler->RegisterShutdownEvent(hShutdownEvent);

 // Associate the scheduler with the current thread.

 // Associate the scheduler with the current thread.
 wcout << L"Attaching scheduler..." << endl;
 scheduler->Attach();

 // Run the sample task again.
 // This prints the identifier of the new scheduler.
 perform_task();

 // Detach the current scheduler. This restores the previous scheduler
 // as the current one.
 wcout << L"Detaching scheduler..." << endl;
 CurrentScheduler::Detach();

 // Release the final reference to the scheduler. This causes the scheduler
 // to shut down after all tasks finish.
 scheduler->Release();

 // Wait for the scheduler to shut down and destroy itself.
 WaitForSingleObject(hShutdownEvent, INFINITE);

 // Close the event handle.
 CloseHandle(hShutdownEvent);

 // Run the sample task again.
 // This prints the identifier of the default scheduler.
 perform_task();
}

int wmain()
{
 // Use the CurrentScheduler class to manage a scheduler instance.
 wcout << L"Using CurrentScheduler class..." << endl << endl;
 current_scheduler();

 wcout << endl << endl;

 // Use the Scheduler class to manage a scheduler instance.
 wcout << L"Using Scheduler class..." << endl << endl;
 explicit_scheduler();
}

Using CurrentScheduler class...

Current scheduler id: 0
Creating and attaching scheduler...
Current scheduler id: 1
Detaching scheduler...
Current scheduler id: 0

Using Scheduler class...

Current scheduler id: 0
Creating scheduler...
Attaching scheduler...
Current scheduler id: 2
Detaching scheduler...
Current scheduler id: 0

Compiling the Code

This example produces the following output.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
scheduler-instance.cpp and then run the following command in a Visual Studio Command Prompt window.

See also

cl.exe /EHsc scheduler-instance.cpp

Scheduler Instances
How to: Specify Specific Scheduler Policies

Scheduler Policies
3/4/2019 • 3 minutes to read • Edit Online

TIP

SchedulerPolicy policy(3,
 MinConcurrency, 2,
 MaxConcurrency, 4,
 ContextPriority, THREAD_PRIORITY_HIGHEST
);

POLICY KEY DESCRIPTION DEFAULT VALUE

SchedulerKind A concurrency::SchedulerType value
that specifies the type of threads to use
to schedule tasks.

ThreadScheduler (use normal
threads). This is the only valid value for
this key.

MaxConcurrency An unsigned int value that specifies
the maximum number of concurrency
resources that the scheduler uses.

concurrency::MaxExecutionResources

MinConcurrency An unsigned int value that specifies
the minimum number of concurrency
resources that the scheduler uses.

1

This document describes the role of scheduler policies in the Concurrency Runtime. A scheduler policy controls
the strategy that the scheduler uses when it manages tasks. For example, consider an application that requires
some tasks to execute at THREAD_PRIORITY_NORMAL and other tasks to execute at THREAD_PRIORITY_HIGHEST . You can
create two scheduler instances: one that specifies the ContextPriority policy to be THREAD_PRIORITY_NORMAL and
another that specifies the same policy to be THREAD_PRIORITY_HIGHEST .

By using scheduler policies, you can divide the available processing resources and assign a fixed set of resources
to each scheduler. For example, consider a parallel algorithm that does not scale beyond four processors. You can
create a scheduler policy that limits its tasks to use no more than four processors concurrently.

The Concurrency Runtime provides a default scheduler. Therefore, you don't have to create one in your application. Because
the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with the Parallel
Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

When you use the concurrency::CurrentScheduler::Create, concurrency::Scheduler::Create, or
concurrency::Scheduler::SetDefaultSchedulerPolicy method to create a scheduler instance, you provide a
concurrency::SchedulerPolicy object that contains a collection of key-value pairs that specify the behavior of the
scheduler. The SchedulerPolicy constructor takes a variable number of arguments. The first argument is the
number of policy elements that you are about to specify. The remaining arguments are key-value pairs for each
policy element. The following example creates a SchedulerPolicy object that specifies three policy elements. The
runtime uses default values for the policy keys that are not specified.

The concurrency::PolicyElementKey enumeration defines the policy keys that are associated with the Task
Scheduler. The following table describes the policy keys and the default value that the runtime uses for each of
them.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/scheduler-policies.md

TargetOversubscriptionFactor An unsigned int value that specifies
how many threads to allocate to each
processing resource.

1

LocalContextCacheSize An unsigned int value that specifies
the maximum number of contexts that
can be cached in the local queue of
each virtual processor.

8

ContextStackSize An unsigned int value that specifies
the size of the stack, in kilobytes, to
reserve for each context.

0 (use the default stack size)

ContextPriority An int value that specifies the thread
priority of each context. This can be any
value that you can pass to
SetThreadPriority or
INHERIT_THREAD_PRIORITY .

THREAD_PRIORITY_NORMAL

POLICY KEY DESCRIPTION DEFAULT VALUE

IMPORTANT

Example

See also

| SchedulingProtocol |A concurrency::SchedulingProtocolType value that specifies the scheduling algorithm to use.|
EnhanceScheduleGroupLocality | | DynamicProgressFeedback |A concurrency::DynamicProgressFeedbackType value

that specifies whether to rebalance resources according to statistics-based progress information.

Note Do not set this policy to ProgressFeedbackDisabled because it is reserved for use by the runtime.|
ProgressFeedbackEnabled |

Each scheduler uses its own policy when it schedules tasks. The policies that are associated with one scheduler do
not affect the behavior of any other scheduler. In addition, you cannot change the scheduler policy after you create
the Scheduler object.

Use only scheduler policies to control the attributes for threads that the runtime creates. Do not change the thread affinity
or priority of threads that are created by the runtime because that might cause undefined behavior.

The runtime creates a default scheduler for you if you do not explicitly create one. If you want to use the default
scheduler in your application, but you want to specify a policy for that scheduler to use, call the
concurrency::Scheduler::SetDefaultSchedulerPolicy method before you schedule parallel work. If you do not call
the Scheduler::SetDefaultSchedulerPolicy method, the runtime uses the default policy values from the table.

Use the concurrency::CurrentScheduler::GetPolicy and the concurrency::Scheduler::GetPolicy methods to retrieve
a copy of the scheduler policy. The policy values that you receive from these methods can differ from the policy
values that you specify when you create the scheduler.

To examine examples that use specific scheduler policies to control the behavior of the scheduler, see How to:
Specify Specific Scheduler Policies and How to: Create Agents that Use Specific Scheduler Policies.

Task Scheduler
How to: Specify Specific Scheduler Policies

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority

How to: Create Agents that Use Specific Scheduler Policies

How to: Specify Specific Scheduler Policies
3/4/2019 • 4 minutes to read • Edit Online

Example

// scheduler-policy.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Computes the nth Fibonacci number.
// This function illustrates a lengthy operation and is therefore
// not optimized for performance.
int fibonacci(int n)
{
 if (n < 2)
 return n;

 // Compute the components in parallel.
 int n1, n2;
 parallel_invoke(
 [n,&n1] { n1 = fibonacci(n-1); },
 [n,&n2] { n2 = fibonacci(n-2); }
);

Scheduler policies let you control the strategy that the scheduler uses when it manages tasks. This topic shows
how to use a scheduler policy to increase the thread priority of a task that prints a progress indicator to the
console.

For an example that uses custom scheduler policies together with asynchronous agents, see How to: Create
Agents that Use Specific Scheduler Policies.

The following example performs two tasks in parallel. The first task computes the n Fibonacci number. The
second task prints a progress indicator to the console.

th

The first task uses recursive decomposition to compute the Fibonacci number. That is, each task recursively
creates subtasks to compute the overall result. A task that uses recursive decomposition might use all available
resources, and thereby starve other tasks. In this example, the task that prints the progress indicator might not
receive timely access to computing resources.

To provide the task that prints a progress message fair access to computing resources, this example uses steps
that are described in How to: Manage a Scheduler Instance to create a scheduler instance that has a custom
policy. The custom policy specifies the thread priority to be the highest priority class.

This example uses the concurrency::call and concurrency::timer classes to print the progress indicator. These
classes have versions of their constructors that take a reference to a concurrency::Scheduler object that schedules
them. The example uses the default scheduler to schedule the task that computes the Fibonacci number and the
scheduler instance to schedule the task that prints the progress indicator.

To illustrate the benefits of using a scheduler that has a custom policy, this example performs the overall task two
times. The example first uses the default scheduler to schedule both tasks. The example then uses the default
scheduler to schedule the first task, and a scheduler that has a custom policy to schedule the second task.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-specify-specific-scheduler-policies.md

);

 return n1 + n2;
}

// Prints a progress indicator while computing the nth Fibonacci number.
void fibonacci_with_progress(Scheduler& progress_scheduler, int n)
{
 // Use a task group to compute the Fibonacci number.
 // The tasks in this group are scheduled by the current scheduler.
 structured_task_group tasks;

 auto task = make_task([n] {
 fibonacci(n);
 });
 tasks.run(task);

 // Create a call object that prints its input to the console.
 // This example uses the provided scheduler to schedule the
 // task that the call object performs.
 call<wchar_t> c(progress_scheduler, [](wchar_t c) {
 wcout << c;
 });

 // Connect the call object to a timer object. The timer object
 // sends a progress message to the call object every 100 ms.
 // This example also uses the provided scheduler to schedule the
 // task that the timer object performs.
 timer<wchar_t> t(progress_scheduler, 100, L'.', &c, true);
 t.start();

 // Wait for the task that computes the Fibonacci number to finish.
 tasks.wait();

 // Stop the timer.
 t.stop();

 wcout << L"done" << endl;
}

int wmain()
{
 // Calculate the 38th Fibonacci number.
 const int n = 38;

 // Use the default scheduler to schedule the progress indicator while
 // the Fibonacci number is calculated in the background.

 wcout << L"Default scheduler:" << endl;
 fibonacci_with_progress(*CurrentScheduler::Get(), n);

 // Now use a scheduler that has a custom policy for the progress indicator.
 // The custom policy specifies the thread priority to the highest
 // priority class.

 SchedulerPolicy policy(1, ContextPriority, THREAD_PRIORITY_HIGHEST);
 Scheduler* scheduler = Scheduler::Create(policy);

 // Register to be notified when the scheduler shuts down.
 HANDLE hShutdownEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 scheduler->RegisterShutdownEvent(hShutdownEvent);

 wcout << L"Scheduler that has a custom policy:" << endl;
 fibonacci_with_progress(*scheduler, n);

 // Release the final reference to the scheduler. This causes the scheduler
 // to shut down.
 scheduler->Release();

 // Wait for the scheduler to shut down and destroy itself.

 // Wait for the scheduler to shut down and destroy itself.
 WaitForSingleObject(hShutdownEvent, INFINITE);

 // Close the event handle.
 CloseHandle(hShutdownEvent);
}

Default scheduler:
...done
Scheduler that has a custom policy:
...done

Compiling the Code

See also

This example produces the following output.

Although both sets of tasks produce the same result, the version that uses a custom policy enables the task that
prints the progress indicator to run at an elevated priority so that it behaves more responsively.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
scheduler-policy.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc scheduler-policy.cpp

Scheduler Policies
How to: Manage a Scheduler Instance
How to: Create Agents that Use Specific Scheduler Policies

How to: Create Agents that Use Specific Scheduler
Policies
3/4/2019 • 5 minutes to read • Edit Online

Example

// permute-strings.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <agents.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Computes all permutations of a given input string.
class permutor : public agent
{
public:
 explicit permutor(ISource<wstring>& source,
 ITarget<unsigned int>& progress)
 : _source(source)
 , _progress(progress)
 {

An agent is an application component that works asynchronously with other components to solve larger
computing tasks. An agent typically has a set life cycle and maintains state.

Every agent can have unique application requirements. For example, an agent that enables user interaction (either
retrieving input or displaying output) might require higher priority access to computing resources. Scheduler
policies let you control the strategy that the scheduler uses when it manages tasks. This topic demonstrates how
to create agents that use specific scheduler policies.

For a basic example that uses custom scheduler policies together with asynchronous message blocks, see How to:
Specify Specific Scheduler Policies.

This topic uses functionality from the Asynchronous Agents Library, such as agents, message blocks, and
message-passing functions, to perform work. For more information about the Asynchronous Agents Library, see
Asynchronous Agents Library.

The following example defines two classes that derive from concurrency::agent: permutor and printer . The
permutor class computes all permutations of a given input string. The printer class prints progress messages to

the console. The permutor class performs a computationally-intensive operation, which might use all available
computing resources. To be useful, the printer class must print each progress message in a timely manner.

To provide the printer class fair access to computing resources, this example uses steps that are described in
How to: Manage a Scheduler Instance to create a scheduler instance that has a custom policy. The custom policy
specifies the thread priority to be the highest priority class.

To illustrate the benefits of using a scheduler that has a custom policy, this example performs the overall task two
times. The example first uses the default scheduler to schedule both tasks. The example then uses the default
scheduler to schedule the permutor object, and a scheduler that has a custom policy to schedule the printer

object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-create-agents-that-use-specific-scheduler-policies.md

 {
 }

 explicit permutor(ISource<wstring>& source,
 ITarget<unsigned int>& progress,
 Scheduler& scheduler)
 : agent(scheduler)
 , _source(source)
 , _progress(progress)
 {
 }

 explicit permutor(ISource<wstring>& source,
 ITarget<unsigned int>& progress,
 ScheduleGroup& group)
 : agent(group)
 , _source(source)
 , _progress(progress)
 {
 }

protected:
 // Performs the work of the agent.
 void run()
 {
 // Read the source string from the buffer.
 wstring s = receive(_source);

 // Compute all permutations.
 permute(s);

 // Set the status of the agent to agent_done.
 done();
 }

 // Computes the factorial of the given value.
 unsigned int factorial(unsigned int n)
 {
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;
 return n * factorial(n - 1);
 }

 // Computes the nth permutation of the given wstring.
 wstring permutation(int n, const wstring& s)
 {
 wstring t(s);

 size_t len = t.length();
 for (unsigned int i = 2; i < len; ++i)
 {
 swap(t[n % i], t[i]);
 n = n / i;
 }
 return t;
 }

 // Computes all permutations of the given string.
 void permute(const wstring& s)
 {
 // The factorial gives us the number of permutations.
 unsigned int permutation_count = factorial(s.length());

 // The number of computed permutations.
 LONG count = 0L;

 // Tracks the previous percentage so that we only send the percentage
 // when it changes.

 // when it changes.
 unsigned int previous_percent = 0u;

 // Send initial progress message.
 send(_progress, previous_percent);

 // Compute all permutations in parallel.
 parallel_for (0u, permutation_count, [&](unsigned int i) {
 // Compute the permutation.
 permutation(i, s);

 // Send the updated status to the progress reader.
 unsigned int percent = 100 * InterlockedIncrement(&count) / permutation_count;
 if (percent > previous_percent)
 {
 send(_progress, percent);
 previous_percent = percent;
 }
 });

 // Send final progress message.
 send(_progress, 100u);
 }

private:
 // The buffer that contains the source string to permute.
 ISource<wstring>& _source;

 // The buffer to write progress status to.
 ITarget<unsigned int>& _progress;
};

// Prints progress messages to the console.
class printer : public agent
{
public:
 explicit printer(ISource<wstring>& source,
 ISource<unsigned int>& progress)
 : _source(source)
 , _progress(progress)
 {
 }

 explicit printer(ISource<wstring>& source,
 ISource<unsigned int>& progress, Scheduler& scheduler)
 : agent(scheduler)
 , _source(source)
 , _progress(progress)
 {
 }

 explicit printer(ISource<wstring>& source,
 ISource<unsigned int>& progress, ScheduleGroup& group)
 : agent(group)
 , _source(source)
 , _progress(progress)
 {
 }

protected:
 // Performs the work of the agent.
 void run()
 {
 // Read the source string from the buffer and print a message.
 wstringstream ss;
 ss << L"Computing all permutations of '" << receive(_source) << L"'..." << endl;
 wcout << ss.str();

 // Print each progress message.
 unsigned int previous_progress = 0u;

 unsigned int previous_progress = 0u;
 while (true)
 {
 unsigned int progress = receive(_progress);

 if (progress > previous_progress || progress == 0u)
 {
 wstringstream ss;
 ss << L'\r' << progress << L"% complete...";
 wcout << ss.str();
 previous_progress = progress;
 }

 if (progress == 100)
 break;
 }
 wcout << endl;

 // Set the status of the agent to agent_done.
 done();
 }

private:
 // The buffer that contains the source string to permute.
 ISource<wstring>& _source;

 // The buffer that contains progress status.
 ISource<unsigned int>& _progress;
};

// Computes all permutations of the given string.
void permute_string(const wstring& source,
 Scheduler& permutor_scheduler, Scheduler& printer_scheduler)
{
 // Message buffer that contains the source string.
 // The permutor and printer agents both read from this buffer.
 single_assignment<wstring> source_string;

 // Message buffer that contains the progress status.
 // The permutor agent writes to this buffer and the printer agent reads
 // from this buffer.
 unbounded_buffer<unsigned int> progress;

 // Create the agents with the appropriate schedulers.
 permutor agent1(source_string, progress, permutor_scheduler);
 printer agent2(source_string, progress, printer_scheduler);

 // Start the agents.
 agent1.start();
 agent2.start();

 // Write the source string to the message buffer. This will unblock the agents.
 send(source_string, source);

 // Wait for both agents to finish.
 agent::wait(&agent1);
 agent::wait(&agent2);
}

int wmain()
{
 const wstring source(L"Grapefruit");

 // Compute all permutations on the default scheduler.

 Scheduler* default_scheduler = CurrentScheduler::Get();

 wcout << L"With default scheduler: " << endl;
 permute_string(source, *default_scheduler, *default_scheduler);

 wcout << endl;

 // Compute all permutations again. This time, provide a scheduler that
 // has higher context priority to the printer agent.

 SchedulerPolicy printer_policy(1, ContextPriority, THREAD_PRIORITY_HIGHEST);
 Scheduler* printer_scheduler = Scheduler::Create(printer_policy);

 // Register to be notified when the scheduler shuts down.
 HANDLE hShutdownEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 printer_scheduler->RegisterShutdownEvent(hShutdownEvent);

 wcout << L"With higher context priority: " << endl;
 permute_string(source, *default_scheduler, *printer_scheduler);
 wcout << endl;

 // Release the printer scheduler.
 printer_scheduler->Release();

 // Wait for the scheduler to shut down and destroy itself.
 WaitForSingleObject(hShutdownEvent, INFINITE);

 // Close the event handle.
 CloseHandle(hShutdownEvent);
}

With default scheduler:
Computing all permutations of 'Grapefruit'...
100% complete...

With higher context priority:
Computing all permutations of 'Grapefruit'...
100% complete...

Compiling the Code

See also

This example produces the following output.

Although both sets of tasks produce the same result, the version that uses a custom policy enables the printer

object to run at an elevated priority so that it behaves more responsively.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
permute-strings.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc permute-strings.cpp

Scheduler Policies
Asynchronous Agents

Schedule Groups
3/4/2019 • 2 minutes to read • Edit Online

TIP

Example

This document describes the role of schedule groups in the Concurrency Runtime. A schedule group affinitizes, or
groups, related tasks together. Every scheduler has one or more schedule groups. Use schedule groups when you
require a high degree of locality among tasks, for example, when a group of related tasks benefit from executing
on the same processor node. Conversely, use scheduler instances when your application has specific quality
requirements, for example, when you want to limit the amount of processing resources that are allocated to a set
of tasks. For more information about scheduler instances, see Scheduler Instances.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your application.
Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with
the Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

Every Scheduler object has a default schedule group for every scheduling node. A scheduling node maps to the
underlying system topology. The runtime creates one scheduling node for every processor package or Non-
Uniform Memory Architecture (NUMA) node, whichever number is larger. If you do not explicitly associate a task
with a schedule group, the scheduler chooses which group to add the task to.

The SchedulingProtocol scheduler policy influences the order in which the scheduler executes the tasks in each
schedule group. When SchedulingProtocol is set to EnhanceScheduleGroupLocality (which is the default), the Task
Scheduler chooses the next task from the schedule group that it is working on when the current task finishes or
cooperatively yields. The Task Scheduler searches the current schedule group for work before it moves to the next
available group. Conversely, when SchedulingProtocol is set to EnhanceForwardProgress , the scheduler moves to
the next schedule group after each task finishes or yields. For an example that compares these policies, see How
to: Use Schedule Groups to Influence Order of Execution.

The runtime uses the concurrency::ScheduleGroup class to represent schedule groups. To create a ScheduleGroup

object, call the concurrency::CurrentScheduler::CreateScheduleGroup or
concurrency::Scheduler::CreateScheduleGroup method. The runtime uses a reference-counting mechanism to
control the lifetime of ScheduleGroup objects, just as it does with Scheduler objects. When you create a
ScheduleGroup object, the runtime sets the reference counter to one. The concurrency::ScheduleGroup::Reference

method increments the reference counter by one. The concurrency::ScheduleGroup::Release method decrements
the reference counter by one.

Many types in the Concurrency Runtime let you associate an object together with a schedule group. For example,
the concurrency::agent class and message block classes such as concurrency::unbounded_buffer, concurrency::join,
and concurrency::timer, provide overloaded versions of the constructor that take a ScheduleGroup object. The
runtime uses the Scheduler object that is associated with this ScheduleGroup object to schedule the task.

You can also use the concurrency::ScheduleGroup::ScheduleTask method to schedule a lightweight task. For more
information about lightweight tasks, see Lightweight Tasks.

For an example that uses schedule groups to control the order of task execution, see How to: Use Schedule
Groups to Influence Order of Execution.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/schedule-groups.md

See also
Task Scheduler
Scheduler Instances
How to: Use Schedule Groups to Influence Order of Execution

How to: Use Schedule Groups to Influence Order of
Execution
3/4/2019 • 5 minutes to read • Edit Online

Example

// scheduling-protocol.cpp
// compile with: /EHsc
#include <agents.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

#pragma optimize("", off)
// Simulates work by performing a long spin loop.
void spin_loop()
{
 for (int i = 0; i < 500000000; ++i)
 {
 }
}
#pragma optimize("", on)

// Agent that performs some work and then yields the current context.
class work_yield_agent : public agent

In the Concurrency Runtime, the order in which tasks are scheduled is non-deterministic. However, you can use
scheduling policies to influence the order in which tasks run. This topic shows how to use schedule groups
together with the concurrency::SchedulingProtocol scheduler policy to influence the order in which tasks run.

The example runs a set of tasks two times, each with a different scheduling policy. Both policies limit the
maximum number of processing resources to two. The first run uses the EnhanceScheduleGroupLocality policy,
which is the default, and the second run uses the EnhanceForwardProgress policy. Under the
EnhanceScheduleGroupLocality policy, the scheduler runs all tasks in one schedule group until each task finishes or

yields. Under the EnhanceForwardProgress policy, the scheduler moves to the next schedule group in a round-robin
manner after just one task finishes or yields.

When each schedule group contains related tasks, the EnhanceScheduleGroupLocality policy typically results in
improved performance because cache locality is preserved between tasks. The EnhanceForwardProgress policy
enables tasks to make forward progress and is useful when you require scheduling fairness across schedule
groups.

This example defines the work_yield_agent class, which derives from concurrency::agent. The work_yield_agent

class performs a unit of work, yields the current context, and then performs another unit of work. The agent uses
the concurrency::wait function to cooperatively yield the current context so that other contexts can run.

This example creates four work_yield_agent objects. To illustrate how to set scheduler policies to affect the order
in which the agents run, the example associates the first two agents with one schedule group and the other two
agents with another schedule group. The example uses the concurrency::CurrentScheduler::CreateScheduleGroup
method to create the concurrency::ScheduleGroup objects. The example runs all four agents two times, each time
with a different scheduling policy.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-schedule-groups-to-influence-order-of-execution.md

class work_yield_agent : public agent
{
public:
 explicit work_yield_agent(
 unsigned int group_number, unsigned int task_number)
 : _group_number(group_number)
 , _task_number(task_number)
 {
 }

 explicit work_yield_agent(Scheduler& scheduler,
 unsigned int group_number, unsigned int task_number)
 : agent(scheduler)
 , _group_number(group_number)
 , _task_number(task_number)
 {
 }

 explicit work_yield_agent(ScheduleGroup& group,
 unsigned int group_number, unsigned int task_number)
 : agent(group)
 , _group_number(group_number)
 , _task_number(task_number)
 {
 }

protected:
 // Performs the work of the agent.
 void run()
 {
 wstringstream header, ss;

 // Create a string that is prepended to each message.
 header << L"group " << _group_number
 << L",task " << _task_number << L": ";

 // Perform work.
 ss << header.str() << L"first loop..." << endl;
 wcout << ss.str();
 spin_loop();

 // Cooperatively yield the current context.
 // The task scheduler will then run all blocked contexts.
 ss = wstringstream();
 ss << header.str() << L"waiting..." << endl;
 wcout << ss.str();
 concurrency::wait(0);

 // Perform more work.
 ss = wstringstream();
 ss << header.str() << L"second loop..." << endl;
 wcout << ss.str();
 spin_loop();

 // Print a final message and then set the agent to the
 // finished state.
 ss = wstringstream();
 ss << header.str() << L"finished..." << endl;
 wcout << ss.str();

 done();
 }

private:
 // The group number that the agent belongs to.
 unsigned int _group_number;
 // A task number that is associated with the agent.
 unsigned int _task_number;
};

// Creates and runs several groups of agents. Each group of agents is associated
// with a different schedule group.
void run_agents()
{
 // The number of schedule groups to create.
 const unsigned int group_count = 2;
 // The number of agent to create per schedule group.
 const unsigned int tasks_per_group = 2;

 // A collection of schedule groups.
 vector<ScheduleGroup*> groups;
 // A collection of agents.
 vector<agent*> agents;

 // Create a series of schedule groups.
 for (unsigned int group = 0; group < group_count; ++group)
 {
 groups.push_back(CurrentScheduler::CreateScheduleGroup());

 // For each schedule group, create a series of agents.
 for (unsigned int task = 0; task < tasks_per_group; ++task)
 {
 // Add an agent to the collection. Pass the current schedule
 // group to the work_yield_agent constructor to schedule the agent
 // in this group.
 agents.push_back(new work_yield_agent(*groups.back(), group, task));
 }
 }

 // Start each agent.
 for_each(begin(agents), end(agents), [](agent* a) {
 a->start();
 });

 // Wait for all agents to finsih.
 agent::wait_for_all(agents.size(), &agents[0]);

 // Free the memory that was allocated for each agent.
 for_each(begin(agents), end(agents), [](agent* a) {
 delete a;
 });

 // Release each schedule group.
 for_each(begin(groups), end(groups), [](ScheduleGroup* group) {
 group->Release();
 });
}

int wmain()
{
 // Run the agents two times. Each run uses a scheduler
 // policy that limits the maximum number of processing resources to two.

 // The first run uses the EnhanceScheduleGroupLocality
 // scheduling protocol.
 wcout << L"Using EnhanceScheduleGroupLocality..." << endl;
 CurrentScheduler::Create(SchedulerPolicy(3,
 MinConcurrency, 1,
 MaxConcurrency, 2,
 SchedulingProtocol, EnhanceScheduleGroupLocality));

 run_agents();
 CurrentScheduler::Detach();

 wcout << endl << endl;

 // The second run uses the EnhanceForwardProgress
 // scheduling protocol.

 // scheduling protocol.
 wcout << L"Using EnhanceForwardProgress..." << endl;
 CurrentScheduler::Create(SchedulerPolicy(3,
 MinConcurrency, 1,
 MaxConcurrency, 2,
 SchedulingProtocol, EnhanceForwardProgress));

 run_agents();
 CurrentScheduler::Detach();
}

Using EnhanceScheduleGroupLocality...
group 0,
 task 0: first loop...
group 0,
 task 1: first loop...
group 0,
 task 0: waiting...
group 1,
 task 0: first loop...
group 0,
 task 1: waiting...
group 1,
 task 1: first loop...
group 1,
 task 0: waiting...
group 0,
 task 0: second loop...
group 1,
 task 1: waiting...
group 0,
 task 1: second loop...
group 0,
 task 0: finished...
group 1,
 task 0: second loop...
group 0,
 task 1: finished...
group 1,
 task 1: second loop...
group 1,
 task 0: finished...
group 1,
 task 1: finished...

Using EnhanceForwardProgress...
group 0,
 task 0: first loop...
group 1,
 task 0: first loop...
group 0,
 task 0: waiting...
group 0,
 task 1: first loop...
group 1,
 task 0: waiting...
group 1,
 task 1: first loop...
group 0,
 task 1: waiting...
group 0,
 task 0: second loop...
group 1,
 task 1: waiting...
group 1,
 task 0: second loop...

This example produces the following output.

group 0,
 task 0: finished...
group 0,
 task 1: second loop...
group 1,
 task 0: finished...
group 1,
 task 1: second loop...
group 0,
 task 1: finished...
group 1,
 task 1: finished...

Compiling the Code

See also

Both policies produce the same sequence of events. However, the policy that uses EnhanceScheduleGroupLocality

starts both agents that are part of the first schedule group before it starts the agents that are part of the second
group. The policy that uses EnhanceForwardProgress starts one agent from the first group and then starts the first
agent in the second group.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
scheduling-protocol.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc scheduling-protocol.cpp

Schedule Groups
Asynchronous Agents

Lightweight Tasks
3/4/2019 • 2 minutes to read • Edit Online

TIP

Example

See also

This document describes the role of lightweight tasks in the Concurrency Runtime. A lightweight task is a task that
you schedule directly from a concurrency::Scheduler or concurrency::ScheduleGroup object. A lightweight task
resembles the function that you provide to the Windows API CreateThread function. Therefore, lightweight tasks
are useful when you adapt existing code to use the scheduling functionality of the Concurrency Runtime. The
Concurrency Runtime itself uses lightweight tasks to schedule asynchronous agents and send messages between
asynchronous message blocks.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your application.
Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with
the Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

Lightweight tasks carry less overhead than asynchronous agents and task groups. For example, the runtime does
not inform you when a lightweight task finishes. In addition, the runtime does not catch or handle exceptions that
are thrown from a lightweight task. For more information about exception handling and lightweight tasks, see
Exception Handling.

For most tasks, we recommend that you use more robust functionality such as task groups and parallel algorithms
because they let you more easily break complex tasks into more basic ones. For more information about task
groups, see Task Parallelism. For more information about parallel algorithms, see Parallel Algorithms.

To create a lightweight task, call the concurrency::ScheduleGroup::ScheduleTask,
concurrency::CurrentScheduler::ScheduleTask, or concurrency::Scheduler::ScheduleTask method. To wait for a
lightweight task to finish, wait for the parent scheduler to shut down or use a synchronization mechanism such as
a concurrency::event object.

For an example that demonstrates how to adapt existing code to use a lightweight task, see Walkthrough:
Adapting Existing Code to Use Lightweight Tasks.

Task Scheduler
Walkthrough: Adapting Existing Code to Use Lightweight Tasks

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/lightweight-tasks.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

Contexts
3/4/2019 • 4 minutes to read • Edit Online

TIP

The wait Function

Example

The Context Class

Cooperative Blocking

This document describes the role of contexts in the Concurrency Runtime. A thread that is attached to a scheduler
is known as an execution context, or just context. The concurrency::wait function and the concurrency::Context class
enable you to control the behavior of contexts. Use the wait function to suspend the current context for a
specified time. Use the Context class when you need more control over when contexts block, unblock, and yield,
or when you want to oversubscribe the current context.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your application.
Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with
the Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

The concurrency::wait function cooperatively yields the execution of the current context for a specified number of
milliseconds. The runtime uses the yield time to perform other tasks. After the specified time has elapsed, the
runtime reschedules the context for execution. Therefore, the wait function might suspend the current context
longer than the value provided for the milliseconds parameter.

Passing 0 (zero) for the milliseconds parameter causes the runtime to suspend the current context until all other
active contexts are given the opportunity to perform work. This lets you yield a task to all other active tasks.

For an example that uses the wait function to yield the current context, and thus allow for other contexts to run,
see How to: Use Schedule Groups to Influence Order of Execution.

The concurrency::Context class provides a programming abstraction for an execution context and offers two
important features: the ability to cooperatively block, unblock, and yield the current context, and the ability to
oversubscribe the current context.

The Context class lets you block or yield the current execution context. Blocking or yielding is useful when the
current context cannot continue because a resource is not available.

The concurrency::Context::Block method blocks the current context. A context that is blocked yields its processing
resources so that the runtime can perform other tasks. The concurrency::Context::Unblock method unblocks a
blocked context. The Context::Unblock method must be called from a different context than the one that called
Context::Block . The runtime throws concurrency::context_self_unblock if a context attempts to unblock itself.

To cooperatively block and unblock a context, you typically call concurrency::Context::CurrentContext to retrieve a
pointer to the Context object that is associated with the current thread and save the result. You then call the
Context::Block method to block the current context. Later, call Context::Unblock from a separate context to

unblock the blocked context.

You must match each pair of calls to Context::Block and Context::Unblock . The runtime throws

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/contexts.md

Example

O v e r su b sc r i p t i o n

NOTE

NOTE

Ex a mp l e

See also

concurrency::context_unblock_unbalanced when the Context::Block or Context::Unblock method is called
consecutively without a matching call to the other method. However, you do not have to call Context::Block

before you call Context::Unblock . For example, if one context calls Context::Unblock before another context calls
Context::Block for the same context, that context remains unblocked.

The concurrency::Context::Yield method yields execution so that the runtime can perform other tasks and then
reschedule the context for execution. When you call the Context::Block method, the runtime does not reschedule
the context.

For an example that uses the Context::Block , Context::Unblock , and Context::Yield methods to implement a
cooperative semaphore class, see How to: Use the Context Class to Implement a Cooperative Semaphore.

The default scheduler creates the same number of threads as there are available hardware threads. You can use
oversubscription to create additional threads for a given hardware thread.

For computationally intensive operations, oversubscription typically does not scale because it introduces
additional overhead. However, for tasks that have a high amount of latency, for example, reading data from disk or
from a network connection, oversubscription can improve the overall efficiency of some applications.

Enable oversubscription only from a thread that was created by the Concurrency Runtime. Oversubscription has no effect
when it is called from a thread that was not created by the runtime (including the main thread).

To enable oversubscription in the current context, call the concurrency::Context::Oversubscribe method with the
_BeginOversubscription parameter set to true. When you enable oversubscription on a thread that was created by

the Concurrency Runtime, it causes the runtime to create one additional thread. After all tasks that require
oversubscription finish, call Context::Oversubscribe with the _BeginOversubscription parameter set to false.

You can enable oversubscription multiple times from the current context, but you must disable it the same number
of times that you enable it. Oversubscription can also be nested; that is, a task that is created by another task that
uses oversubscription can also oversubscribe its context. However, if both a nested task and its parent belong to
the same context, only the outermost call to Context::Oversubscribe causes the creation of an additional thread.

The runtime throws concurrency::invalid_oversubscribe_operation if oversubscription is disabled before it is enabled.

For an example that uses oversubscription to offset the latency that is caused by reading data from a network
connection, see How to: Use Oversubscription to Offset Latency.

Task Scheduler
How to: Use Schedule Groups to Influence Order of Execution
How to: Use the Context Class to Implement a Cooperative Semaphore
How to: Use Oversubscription to Offset Latency

How to: Use the Context Class to Implement a
Cooperative Semaphore
3/4/2019 • 6 minutes to read • Edit Online

To implement the semaphore class

// A semaphore type that uses cooperative blocking semantics.
class semaphore
{
public:
private:
};

// The semaphore count.
atomic<long long> _semaphore_count;

// A concurrency-safe queue of contexts that must wait to
// acquire the semaphore.
concurrent_queue<Context*> _waiting_contexts;

explicit semaphore(long long capacity)
 : _semaphore_count(capacity)
{
}

This topic shows how to use the concurrency::Context class to implement a cooperative semaphore class.

The Context class lets you block or yield the current execution context. Blocking or yielding the current context is
useful when the current context cannot proceed because a resource is not available. A semaphore is an example of
one situation where the current execution context must wait for a resource to become available. A semaphore, like
a critical section object, is a synchronization object that enables code in one context to have exclusive access to a
resource. However, unlike a critical section object, a semaphore enables more than one context to access the
resource concurrently. If the maximum number of contexts holds a semaphore lock, each additional context must
wait for another context to release the lock.

1. Declare a class that is named semaphore . Add public and private sections to this class.

1. In the private section of the semaphore class, declare a std::atomic variable that holds the semaphore count
and a concurrency::concurrent_queue object that holds the contexts that must wait to acquire the semaphore.

1. In the public section of the semaphore class, implement the constructor. The constructor takes a long long
value that specifies the maximum number of contexts that can concurrently hold the lock.

1. In the public section of the semaphore class, implement the acquire method. This method decrements the
semaphore count as an atomic operation. If the semaphore count becomes negative, add the current context to
the end of the wait queue and call the concurrency::Context::Block method to block the current context.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-the-context-class-to-implement-a-cooperative-semaphore.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/atomic-structure

// Acquires access to the semaphore.
void acquire()
{
 // The capacity of the semaphore is exceeded when the semaphore count
 // falls below zero. When this happens, add the current context to the
 // back of the wait queue and block the current context.
 if (--_semaphore_count < 0)
 {
 _waiting_contexts.push(Context::CurrentContext());
 Context::Block();
 }
}

// Releases access to the semaphore.
void release()
{
 // If the semaphore count is negative, unblock the first waiting context.
 if (++_semaphore_count <= 0)
 {
 // A call to acquire might have decremented the counter, but has not
 // yet finished adding the context to the queue.
 // Create a spin loop that waits for the context to become available.
 Context* waiting = NULL;
 while (!_waiting_contexts.try_pop(waiting))
 {
 Context::Yield();
 }

 // Unblock the context.
 waiting->Unblock();
 }
}

Example

// cooperative-semaphore.cpp

1. In the public section of the semaphore class, implement the release method. This method increments the
semaphore count as an atomic operation. If the semaphore count is negative before the increment operation,
there is at least one context that is waiting for the lock. In this case, unblock the context that is at the front of
the wait queue.

The semaphore class in this example behaves cooperatively because the Context::Block and Context::Yield

methods yield execution so that the runtime can perform other tasks.

The acquire method decrements the counter, but it might not finish adding the context to the wait queue before
another context calls the release method. To account for this, the release method uses a spin loop that calls the
concurrency::Context::Yield method to wait for the acquire method to finish adding the context.

The release method can call the Context::Unblock method before the acquire method calls the Context::Block

method. You do not have to protect against this race condition because the runtime allows for these methods to
be called in any order. If the release method calls Context::Unblock before the acquire method calls
Context::Block for the same context, that context remains unblocked. The runtime only requires that each call to
Context::Block is matched with a corresponding call to Context::Unblock .

The following example shows the complete semaphore class. The wmain function shows basic usage of this class.
The wmain function uses the concurrency::parallel_for algorithm to create several tasks that require access to the
semaphore. Because three threads can hold the lock at any time, some tasks must wait for another task to finish
and release the lock.

// cooperative-semaphore.cpp
// compile with: /EHsc
#include <atomic>
#include <concrt.h>
#include <ppl.h>
#include <concurrent_queue.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// A semaphore type that uses cooperative blocking semantics.
class semaphore
{
public:
 explicit semaphore(long long capacity)
 : _semaphore_count(capacity)
 {
 }

 // Acquires access to the semaphore.
 void acquire()
 {
 // The capacity of the semaphore is exceeded when the semaphore count
 // falls below zero. When this happens, add the current context to the
 // back of the wait queue and block the current context.
 if (--_semaphore_count < 0)
 {
 _waiting_contexts.push(Context::CurrentContext());
 Context::Block();
 }
 }

 // Releases access to the semaphore.
 void release()
 {
 // If the semaphore count is negative, unblock the first waiting context.
 if (++_semaphore_count <= 0)
 {
 // A call to acquire might have decremented the counter, but has not
 // yet finished adding the context to the queue.
 // Create a spin loop that waits for the context to become available.
 Context* waiting = NULL;
 while (!_waiting_contexts.try_pop(waiting))
 {
 Context::Yield();
 }

 // Unblock the context.
 waiting->Unblock();
 }
 }

private:
 // The semaphore count.
 atomic<long long> _semaphore_count;

 // A concurrency-safe queue of contexts that must wait to
 // acquire the semaphore.
 concurrent_queue<Context*> _waiting_contexts;
};

int wmain()
{
 // Create a semaphore that allows at most three threads to
 // hold the lock.
 semaphore s(3);

 parallel_for(0, 10, [&](int i) {
 // Acquire the lock.
 s.acquire();

 // Print a message to the console.
 wstringstream ss;
 ss << L"In loop iteration " << i << L"..." << endl;
 wcout << ss.str();

 // Simulate work by waiting for two seconds.
 wait(2000);

 // Release the lock.
 s.release();
 });
}

In loop iteration 5...
In loop iteration 0...
In loop iteration 6...
In loop iteration 1...
In loop iteration 2...
In loop iteration 7...
In loop iteration 3...
In loop iteration 8...
In loop iteration 9...
In loop iteration 4...

Compiling the Code

Robust Programming

This example produces the following sample output.

For more information about the concurrent_queue class, see Parallel Containers and Objects. For more
information about the parallel_for algorithm, see Parallel Algorithms.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
cooperative-semaphore.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc cooperative-semaphore.cpp

You can use the Resource Acquisition Is Initialization (RAII) pattern to limit access to a semaphore object to a given
scope. Under the RAII pattern, a data structure is allocated on the stack. That data structure initializes or acquires
a resource when it is created and destroys or releases that resource when the data structure is destroyed. The RAII
pattern guarantees that the destructor is called before the enclosing scope exits. Therefore, the resource is
correctly managed when an exception is thrown or when a function contains multiple return statements.

The following example defines a class that is named scoped_lock , which is defined in the public section of the
semaphore class. The scoped_lock class resembles the concurrency::critical_section::scoped_lock and

concurrency::reader_writer_lock::scoped_lock classes. The constructor of the semaphore::scoped_lock class
acquires access to the given semaphore object and the destructor releases access to that object.

// An exception-safe RAII wrapper for the semaphore class.
class scoped_lock
{
public:
 // Acquires access to the semaphore.
 scoped_lock(semaphore& s)
 : _s(s)
 {
 _s.acquire();
 }
 // Releases access to the semaphore.
 ~scoped_lock()
 {
 _s.release();
 }

private:
 semaphore& _s;
};

parallel_for(0, 10, [&](int i) {
 // Create an exception-safe scoped_lock object that holds the lock
 // for the duration of the current scope.
 semaphore::scoped_lock auto_lock(s);

 // Print a message to the console.
 wstringstream ss;
 ss << L"In loop iteration " << i << L"..." << endl;
 wcout << ss.str();

 // Simulate work by waiting for two seconds.
 wait(2000);
});

See also

The following example modifies the body of the work function that is passed to the parallel_for algorithm so
that it uses RAII to ensure that the semaphore is released before the function returns. This technique ensures that
the work function is exception-safe.

Contexts
Parallel Containers and Objects

How to: Use Oversubscription to Offset Latency
3/4/2019 • 6 minutes to read • Edit Online

Example

// download-oversubscription.cpp
// compile with: /EHsc /MD /D "_AFXDLL"
#define _WIN32_WINNT 0x0501
#include <afxinet.h>
#include <concrtrm.h>
#include <agents.h>
#include <ppl.h>
#include <sstream>
#include <iostream>
#include <array>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

Oversubscription can improve the overall efficiency of some applications that contain tasks that have a high
amount of latency. This topic illustrates how to use oversubscription to offset the latency that is caused by reading
data from a network connection.

This example uses the Asynchronous Agents Library to download files from HTTP servers. The http_reader class
derives from concurrency::agent and uses message passing to asynchronously read which URL names to
download.

The http_reader class uses the concurrency::task_group class to concurrently read each file. Each task calls the
concurrency::Context::Oversubscribe method with the _BeginOversubscription parameter set to true to enable
oversubscription in the current context. Each task then uses the Microsoft Foundation Classes (MFC)
CInternetSession and CHttpFile classes to download the file. Finally, each task calls Context::Oversubscribe with
the _BeginOversubscription parameter set to false to disable oversubscription.

When oversubscription is enabled, the runtime creates one additional thread in which to run tasks. Each of these
threads can also oversubscribe the current context and thereby create additional threads. The http_reader class
uses a concurrency::unbounded_buffer object to limit the number of threads that the application uses. The agent
initializes the buffer with a fixed number of token values. For each download operation, the agent reads a token
value from the buffer before the operation starts and then writes that value back to the buffer after the operation
finishes. When the buffer is empty, the agent waits for one of the download operations to write a value back to the
buffer.

The following example limits the number of simultaneous tasks to two times the number of available hardware
threads. This value is a good starting point to use when you experiment with oversubscription. You can use a
value that fits a particular processing environment or dynamically change this value to respond to the actual
workload.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-oversubscription-to-offset-latency.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cinternetsession-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/chttpfile-class

// Downloads the file at the given URL.
CString GetHttpFile(CInternetSession& session, const CString& strUrl);

// Reads files from HTTP servers.
class http_reader : public agent
{
public:
 explicit http_reader(CInternetSession& session,
 ISource<string>& source,
 unsigned int& total_bytes,
 unsigned int max_concurrent_reads)
 : _session(session)
 , _source(source)
 , _total_bytes(total_bytes)
 {
 // Add one token to the available tasks buffer for each
 // possible concurrent read operation. The value of each token
 // is not important, but can be useful for debugging.
 for (unsigned int i = 0; i < max_concurrent_reads; ++i)
 send(_available_tasks, i);
 }

 // Signals to the agent that there are no more items to download.
 static const string input_sentinel;

protected:
 void run()
 {
 // A task group. Each task in the group downloads one file.
 task_group tasks;

 // Holds the total number of bytes downloaded.
 combinable<unsigned int> total_bytes;

 // Read from the source buffer until the application
 // sends the sentinel value.
 string url;
 while ((url = receive(_source)) != input_sentinel)
 {
 // Wait for a task to release an available slot.
 unsigned int token = receive(_available_tasks);

 // Create a task to download the file.
 tasks.run([&, token, url] {

 // Print a message.
 wstringstream ss;
 ss << L"Downloading " << url.c_str() << L"..." << endl;
 wcout << ss.str();

 // Download the file.
 string content = download(url);

 // Update the total number of bytes downloaded.
 total_bytes.local() += content.size();

 // Release the slot for another task.
 send(_available_tasks, token);
 });
 }

 // Wait for all tasks to finish.
 tasks.wait();

 // Compute the total number of bytes download on all threads.
 _total_bytes = total_bytes.combine(plus<unsigned int>());

 // Set the status of the agent to agent_done.
 done();

 done();
 }

 // Downloads the file at the given URL.
 string download(const string& url)
 {
 // Enable oversubscription.
 Context::Oversubscribe(true);

 // Download the file.
 string content = GetHttpFile(_session, url.c_str());

 // Disable oversubscription.
 Context::Oversubscribe(false);

 return content;
 }

private:
 // Manages the network connection.
 CInternetSession& _session;
 // A message buffer that holds the URL names to download.
 ISource<string>& _source;
 // The total number of bytes downloaded
 unsigned int& _total_bytes;
 // Limits the agent to a given number of simultaneous tasks.
 unbounded_buffer<unsigned int> _available_tasks;
};
const string http_reader::input_sentinel("");

int wmain()
{
 // Create an array of URL names to download.
 // A real-world application might read the names from user input.
 array<string, 21> urls = {
 "http://www.adatum.com/",
 "http://www.adventure-works.com/",
 "http://www.alpineskihouse.com/",
 "http://www.cpandl.com/",
 "http://www.cohovineyard.com/",
 "http://www.cohowinery.com/",
 "http://www.cohovineyardandwinery.com/",
 "http://www.contoso.com/",
 "http://www.consolidatedmessenger.com/",
 "http://www.fabrikam.com/",
 "http://www.fourthcoffee.com/",
 "http://www.graphicdesigninstitute.com/",
 "http://www.humongousinsurance.com/",
 "http://www.litwareinc.com/",
 "http://www.lucernepublishing.com/",
 "http://www.margiestravel.com/",
 "http://www.northwindtraders.com/",
 "http://www.proseware.com/",
 "http://www.fineartschool.net",
 "http://www.tailspintoys.com/",
 http_reader::input_sentinel,
 };

 // Manages the network connection.
 CInternetSession session("Microsoft Internet Browser");

 // A message buffer that enables the application to send URL names to the
 // agent.
 unbounded_buffer<string> source_urls;

 // The total number of bytes that the agent has downloaded.
 unsigned int total_bytes = 0u;

 // Create an http_reader object that can oversubscribe each processor by one.

 http_reader reader(session, source_urls, total_bytes, 2*GetProcessorCount());

 // Compute the amount of time that it takes for the agent to download all files.
 __int64 elapsed = time_call([&] {

 // Start the agent.
 reader.start();

 // Use the message buffer to send each URL name to the agent.
 for_each(begin(urls), end(urls), [&](const string& url) {
 send(source_urls, url);
 });

 // Wait for the agent to finish downloading.
 agent::wait(&reader);
 });

 // Print the results.
 wcout << L"Downloaded " << total_bytes
 << L" bytes in " << elapsed << " ms." << endl;
}

// Downloads the file at the given URL and returns the size of that file.
CString GetHttpFile(CInternetSession& session, const CString& strUrl)
{
 CString strResult;

 // Reads data from an HTTP server.
 CHttpFile* pHttpFile = NULL;

 try
 {
 // Open URL.
 pHttpFile = (CHttpFile*)session.OpenURL(strUrl, 1,
 INTERNET_FLAG_TRANSFER_ASCII |
 INTERNET_FLAG_RELOAD | INTERNET_FLAG_DONT_CACHE);

 // Read the file.
 if(pHttpFile != NULL)
 {
 UINT uiBytesRead;
 do
 {
 char chBuffer[10000];
 uiBytesRead = pHttpFile->Read(chBuffer, sizeof(chBuffer));
 strResult += chBuffer;
 }
 while (uiBytesRead > 0);
 }
 }
 catch (CInternetException)
 {
 // TODO: Handle exception
 }

 // Clean up and return.
 delete pHttpFile;

 return strResult;
}

This example produces the following output on a computer that has four processors:

Downloading http://www.adatum.com/...
Downloading http://www.adventure-works.com/...
Downloading http://www.alpineskihouse.com/...
Downloading http://www.cpandl.com/...
Downloading http://www.cohovineyard.com/...
Downloading http://www.cohowinery.com/...
Downloading http://www.cohovineyardandwinery.com/...
Downloading http://www.contoso.com/...
Downloading http://www.consolidatedmessenger.com/...
Downloading http://www.fabrikam.com/...
Downloading http://www.fourthcoffee.com/...
Downloading http://www.graphicdesigninstitute.com/...
Downloading http://www.humongousinsurance.com/...
Downloading http://www.litwareinc.com/...
Downloading http://www.lucernepublishing.com/...
Downloading http://www.margiestravel.com/...
Downloading http://www.northwindtraders.com/...
Downloading http://www.proseware.com/...
Downloading http://www.fineartschool.net...
Downloading http://www.tailspintoys.com/...
Downloaded 1801040 bytes in 3276 ms.

Compiling the Code

Robust Programming

The example can run faster when oversubscription is enabled because additional tasks run while other tasks wait
for a latent operation to finish.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
download-oversubscription.cpp and then run one of the following commands in a Visual Studio Command

Prompt window.

cl.exe /EHsc /MD /D "_AFXDLL" download-oversubscription.cpp

cl.exe /EHsc /MT download-oversubscription.cpp

Always disable oversubscription after you no longer require it. Consider a function that does not handle an
exception that is thrown by another function. If you do not disable oversubscription before the function returns,
any additional parallel work will also oversubscribe the current context.

You can use the Resource Acquisition Is Initialization (RAII) pattern to limit oversubscription to a given scope.
Under the RAII pattern, a data structure is allocated on the stack. That data structure initializes or acquires a
resource when it is created and destroys or releases that resource when the data structure is destroyed. The RAII
pattern guarantees that the destructor is called before the enclosing scope exits. Therefore, the resource is
correctly managed when an exception is thrown or when a function contains multiple return statements.

The following example defines a structure that is named scoped_blocking_signal . The constructor of the
scoped_blocking_signal structure enables oversubscription and the destructor disables oversubscription.

struct scoped_blocking_signal
{
 scoped_blocking_signal()
 {
 concurrency::Context::Oversubscribe(true);
 }
 ~scoped_blocking_signal()
 {
 concurrency::Context::Oversubscribe(false);
 }
};

// Downloads the file at the given URL.
string download(const string& url)
{
 scoped_blocking_signal signal;

 // Download the file.
 return string(GetHttpFile(_session, url.c_str()));
}

See also

The following example modifies the body of the download method to use RAII to ensure that oversubscription is
disabled before the function returns. This technique ensures that the download method is exception-safe.

Contexts
Context::Oversubscribe Method

Memory Management Functions
3/4/2019 • 2 minutes to read • Edit Online

TIP

NOTE

NOTE

Example

See also

This document describes the memory management functions that the Concurrency Runtime provides to help you
allocate and free memory in a concurrent manner.

The Concurrency Runtime provides a default scheduler, and therefore you are not required to create one in your application.
Because the Task Scheduler helps you fine-tune the performance of your applications, we recommend that you start with the
Parallel Patterns Library (PPL) or the Asynchronous Agents Library if you are new to the Concurrency Runtime.

The Concurrency Runtime provides two memory management functions that are optimized for allocating and
freeing blocks of memory in a concurrent manner. The concurrency::Alloc function allocates a block of memory by
using the specified size. The concurrency::Free function frees the memory that was allocated by Alloc .

The Alloc and Free functions rely on each other. Use the Free function only to release memory that you allocate by
using the Alloc function. Also, when you use the Alloc function to allocate memory, use only the Free function to
release that memory.

Use the Alloc and Free functions when you allocate and free a fixed set of allocation sizes from different threads
or tasks. The Concurrency Runtime caches memory that it allocates from the C Runtime heap. The Concurrency
Runtime holds a separate memory cache for each running thread; therefore, the runtime manages memory
without the use of locks or memory barriers. An application benefits more from the Alloc and Free functions
when the memory cache is accessed more frequently. For example, a thread that frequently calls both Alloc and
Free benefits more than a thread that primarily calls Alloc or Free .

When you use these memory management functions, and your application uses lots of memory, the application may enter a
low-memory condition sooner than you expect. Because the memory blocks that are cached by one thread are not available
to any other thread, if one thread holds lots of memory, that memory is not available.

For an example that uses the Alloc and Free functions to improve memory performance, see How to: Use Alloc
and Free to Improve Memory Performance.

Task Scheduler
How to: Use Alloc and Free to Improve Memory Performance

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/memory-management-functions.md

How to: Use Alloc and Free to Improve Memory
Performance
3/4/2019 • 5 minutes to read • Edit Online

Example

This document shows how to use the concurrency::Alloc and concurrency::Free functions to improve memory
performance. It compares the time that is required to reverse the elements of an array in parallel for three
different types that each specify the new and delete operators.

The Alloc and Free functions are most useful when multiple threads frequently call both Alloc and Free . The
runtime holds a separate memory cache for each thread; therefore, the runtime manages memory without the use
of locks or memory barriers.

The following example shows three types that each specify the new and delete operators. The new_delete class
uses the global new and delete operators, the malloc_free class uses the C Runtime malloc and free functions,
and the Alloc_Free class uses the Concurrency Runtime Alloc and Free functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/how-to-use-alloc-and-free-to-improve-memory-performance.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free

// A type that defines the new and delete operators. These operators
// call the global new and delete operators, respectively.
class new_delete
{
public:
 static void* operator new(size_t size)
 {
 return ::operator new(size);
 }

 static void operator delete(void *p)
 {
 return ::operator delete(p);
 }

 int _data;
};

// A type that defines the new and delete operators. These operators
// call the C Runtime malloc and free functions, respectively.
class malloc_free
{
public:
 static void* operator new(size_t size)
 {
 return malloc(size);
 }
 static void operator delete(void *p)
 {
 return free(p);
 }

 int _data;
};

// A type that defines the new and delete operators. These operators
// call the Concurrency Runtime Alloc and Free functions, respectively.
class Alloc_Free
{
public:
 static void* operator new(size_t size)
 {
 return Alloc(size);
 }
 static void operator delete(void *p)
 {
 return Free(p);
 }

 int _data;
};

Example
The following example shows the swap and reverse_array functions. The swap function exchanges the contents
of the array at the specified indices. It allocates memory from the heap for the temporary variable. The
reverse_array function creates a large array and computes the time that is required to reverse that array several

times in parallel.

// Exchanges the contents of a[index1] with a[index2].
template<class T>
void swap(T* a, int index1, int index2)
{
 // For illustration, allocate memory from the heap.
 // This is useful when sizeof(T) is large.
 T* temp = new T;

 *temp = a[index1];
 a[index1] = a[index2];
 a[index2] = *temp;

 delete temp;
}

// Computes the time that it takes to reverse the elements of a
// large array of the specified type.
template <typename T>
__int64 reverse_array()
{
 const int size = 5000000;
 T* a = new T[size];

 __int64 time = 0;
 const int repeat = 11;

 // Repeat the operation several times to amplify the time difference.
 for (int i = 0; i < repeat; ++i)
 {
 time += time_call([&] {
 parallel_for(0, size/2, [&](int index)
 {
 swap(a, index, size-index-1);
 });
 });
 }

 delete[] a;
 return time;
}

Example
The following example shows the wmain function, which computes the time that is required for the reverse_array

function to act on the new_delete , malloc_free , and Alloc_Free types, each of which uses a different memory
allocation scheme.

int wmain()
{
 // Compute the time that it takes to reverse large arrays of
 // different types.

 // new_delete
 wcout << L"Took " << reverse_array<new_delete>()
 << " ms with new/delete." << endl;

 // malloc_free
 wcout << L"Took " << reverse_array<malloc_free>()
 << " ms with malloc/free." << endl;

 // Alloc_Free
 wcout << L"Took " << reverse_array<Alloc_Free>()
 << " ms with Alloc/Free." << endl;
}

Example

// allocators.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// A type that defines the new and delete operators. These operators
// call the global new and delete operators, respectively.
class new_delete
{
public:
 static void* operator new(size_t size)
 {
 return ::operator new(size);
 }

 static void operator delete(void *p)
 {
 return ::operator delete(p);
 }

 int _data;
};

// A type that defines the new and delete operators. These operators
// call the C Runtime malloc and free functions, respectively.
class malloc_free
{
public:
 static void* operator new(size_t size)

The complete example follows.

 {
 return malloc(size);
 }
 static void operator delete(void *p)
 {
 return free(p);
 }

 int _data;
};

// A type that defines the new and delete operators. These operators
// call the Concurrency Runtime Alloc and Free functions, respectively.
class Alloc_Free
{
public:
 static void* operator new(size_t size)
 {
 return Alloc(size);
 }
 static void operator delete(void *p)
 {
 return Free(p);
 }

 int _data;
};

// Exchanges the contents of a[index1] with a[index2].
template<class T>
void swap(T* a, int index1, int index2)
{
 // For illustration, allocate memory from the heap.
 // This is useful when sizeof(T) is large.
 T* temp = new T;

 *temp = a[index1];
 a[index1] = a[index2];
 a[index2] = *temp;

 delete temp;
}

// Computes the time that it takes to reverse the elements of a
// large array of the specified type.
template <typename T>
__int64 reverse_array()
{
 const int size = 5000000;
 T* a = new T[size];

 __int64 time = 0;
 const int repeat = 11;

 // Repeat the operation several times to amplify the time difference.
 for (int i = 0; i < repeat; ++i)
 {
 time += time_call([&] {
 parallel_for(0, size/2, [&](int index)
 {
 swap(a, index, size-index-1);
 });
 });
 }

 delete[] a;
 return time;
}

int wmain()
{
 // Compute the time that it takes to reverse large arrays of
 // different types.

 // new_delete
 wcout << L"Took " << reverse_array<new_delete>()
 << " ms with new/delete." << endl;

 // malloc_free
 wcout << L"Took " << reverse_array<malloc_free>()
 << " ms with malloc/free." << endl;

 // Alloc_Free
 wcout << L"Took " << reverse_array<Alloc_Free>()
 << " ms with Alloc/Free." << endl;
}

Took 2031 ms with new/delete.
Took 1672 ms with malloc/free.
Took 656 ms with Alloc/Free.

Compiling the Code

See also

This example produces the following sample output for a computer that has four processors.

In this example, the type that uses the Alloc and Free functions provides the best memory performance
because the Alloc and Free functions are optimized for frequently allocating and freeing blocks of memory
from multiple threads.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named allocators.cpp

and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc allocators.cpp

Memory Management Functions
Alloc Function
Free Function

Concurrency Runtime Walkthroughs
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

The scenario-based topics in this section show how to use many of the features of the Concurrency Runtime.

Walkthrough: Connecting Using Tasks and XML HTTP Requests
Shows how to use the IXMLHTTPRequest2 and IXMLHTTPRequest2Callback interfaces together with tasks to
send HTTP GET and POST requests to a web service in a Universal Windows Platform (UWP) app.

Walkthrough: Creating an Agent-Based Application
Describes how to create a basic agent-based application.

Walkthrough: Creating a Dataflow Agent
Demonstrates how to create agent-based applications that are based on dataflow, instead of on control flow.

Walkthrough: Creating an Image-Processing Network
Demonstrates how to create a network of asynchronous message blocks that perform image processing.

Walkthrough: Implementing Futures
Shows how to asynchronously compute values for later use.

Walkthrough: Using join to Prevent Deadlock
Uses the dining philosophers problem to illustrate how to use the concurrency::join class to prevent deadlock in
your application.

Walkthrough: Removing Work from a User-Interface Thread
Demonstrates how to improve the performance of an MFC application that draws the Mandelbrot fractal.

Walkthrough: Using the Concurrency Runtime in a COM-Enabled Application
Demonstrates how to use the Concurrency Runtime in an application that uses the Component Object Model
(COM).

Walkthrough: Adapting Existing Code to Use Lightweight Tasks
Shows how to adapt existing code that uses the Windows API to create and execute a thread to use a lightweight
task.

Walkthrough: Creating a Custom Message Block
Describes how to create a custom message block type that orders incoming messages by priority.

Concurrency Runtime
Introduces the concurrent programming framework for Visual C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/concurrency-runtime-walkthroughs.md
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2callback

Walkthrough: Connecting Using Tasks and XML
HTTP Requests
4/25/2019 • 18 minutes to read • Edit Online

TIP

TIP

Prerequisites

Defining the HttpRequest, HttpRequestBuffersCallback, and
HttpRequestStringCallback Classes

This example shows how to use the IXMLHTTPRequest2 and IXMLHTTPRequest2Callback interfaces together
with tasks to send HTTP GET and POST requests to a web service in a Universal Windows Platform (UWP) app.
By combining IXMLHTTPRequest2 together with tasks, you can write code that composes with other tasks. For
example, you can use the download task as part of a chain of tasks. The download task can also respond when
work is canceled.

You can also use the C++ REST SDK to perform HTTP requests from a UWP app using C++ app or from a desktop C++
app. For more info, see C++ REST SDK (Codename "Casablanca").

For more information about tasks, see Task Parallelism. For more information about how to use tasks in a UWP
app, see Asynchronous programming in C++ and Creating Asynchronous Operations in C++ for UWP Apps.

This document first shows how to create HttpRequest and its supporting classes. It then shows how to use this
class from a UWP app that uses C++ and XAML.

For an example that uses IXMLHTTPRequest2 but does not use tasks, see Quickstart: Connecting using XML HTTP
Request (IXMLHTTPRequest2).

IXMLHTTPRequest2 and IXMLHTTPRequest2Callback are the interfaces that we recommend for use in a UWP app. You can
also adapt this example for use in a desktop app.

UWP support is optional in Visual Studio 2017 and later. To install it, open the Visual Studio Installer from the
Windows Start menu and choose the version of Visual Studio you are using. Click the Modify button and make
sure the UWP Development tile is checked. Under Optional Components make sure that C++ UWP Tools is
checked. Use v141 for Visual Studio 2017 or v142 for Visual Studio 2019.

When you use the IXMLHTTPRequest2 interface to create web requests over HTTP, you implement the
IXMLHTTPRequest2Callback interface to receive the server response and react to other events. This example defines

the HttpRequest class to create web requests, and the HttpRequestBuffersCallback and HttpRequestStringCallback

classes to process responses. The HttpRequestBuffersCallback and HttpRequestStringCallback classes support the
HttpRequest class; you work only with the HttpRequest class from application code.

The GetAsync , PostAsync methods of the HttpRequest class enable you to start HTTP GET and POST operations,
respectively. These methods use the HttpRequestStringCallback class to read the server response as a string. The
SendAsync and ReadAsync methods enable you to stream large content in chunks. These methods each return

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-connecting-using-tasks-and-xml-http-requests.md
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2callback
https://github.com/Microsoft/cpprestsdk
https://docs.microsoft.com/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://docs.microsoft.com/previous-versions/windows/apps/hh770550(v=win.10)

To Define the HttpRequest Class

concurrency::task to represent the operation. The GetAsync and PostAsync methods produce task<std::wstring>

value, where the wstring part represents the server’s response. The SendAsync and ReadAsync methods produce
task<void> values; these tasks complete when the send and read operations complete.

Because the IXMLHTTPRequest2 interfaces act asynchronously, this example uses
concurrency::task_completion_event to create a task that completes after the callback object completes or cancels
the download operation. The HttpRequest class creates a task-based continuation from this task to set the final
result. The HttpRequest class uses a task-based continuation to ensure that the continuation task runs even if the
previous task produces an error or is canceled. For more information about task-based continuations, see Task
Parallelism

To support cancellation, the HttpRequest , HttpRequestBuffersCallback , and HttpRequestStringCallback classes use
cancellation tokens. The HttpRequestBuffersCallback and HttpRequestStringCallback classes use the
concurrency::cancellation_token::register_callback method to enable the task completion event to respond to
cancellation. This cancellation callback aborts the download. For more info about cancellation, see Cancellation.

#include <ppltasks.h>
#include <string>
#include <sstream>
#include <wrl.h>
#include <msxml6.h>

#pragma once
#include "pch.h"

inline void CheckHResult(HRESULT hResult)
{
 if (hResult == E_ABORT)
 {
 concurrency::cancel_current_task();
 }
 else if (FAILED(hResult))
 {
 throw Platform::Exception::CreateException(hResult);
 }
}

namespace Web
{

namespace Details
{

// Implementation of IXMLHTTPRequest2Callback used when partial buffers are needed from the response.
// When only the complete response is needed, use HttpRequestStringCallback instead.
class HttpRequestBuffersCallback
 : public Microsoft::WRL::RuntimeClass<
 Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::ClassicCom>,
 IXMLHTTPRequest2Callback,

1. From the main menu, choose File > New > Project.

2. Use the C++ Blank App (Universal Windows) template to create a blank XAML app project. This
example names the project UsingIXMLHTTPRequest2 .

3. Add to the project a header file that is named HttpRequest.h and a source file that is named
HttpRequest.cpp.

4. In pch.h, add this code:

5. In HttpRequest.h, add this code:

 IXMLHTTPRequest2Callback,
 Microsoft::WRL::FtmBase>
{
public:
 HttpRequestBuffersCallback(IXMLHTTPRequest2* httpRequest,
 concurrency::cancellation_token ct = concurrency::cancellation_token::none()) :
 request(httpRequest), cancellationToken(ct), responseReceived(false), dataHResult(S_OK),
statusCode(200)
 {
 // Register a callback function that aborts the HTTP operation when
 // the cancellation token is canceled.
 if (cancellationToken != concurrency::cancellation_token::none())
 {
 registrationToken = cancellationToken.register_callback([this]()
 {
 if (request != nullptr)
 {
 request->Abort();
 }
 });
 }

 dataEvent = concurrency::task_completion_event<void>();
 }

 // Called when the HTTP request is being redirected to a new URL.
 IFACEMETHODIMP OnRedirect(IXMLHTTPRequest2*, PCWSTR)
 {
 return S_OK;
 }

 // Called when HTTP headers have been received and processed.
 IFACEMETHODIMP OnHeadersAvailable(IXMLHTTPRequest2*, DWORD statusCode, PCWSTR reasonPhrase)
 {
 HRESULT hr = S_OK;

 // We must not propagate exceptions back to IXHR2.
 try
 {
 this->statusCode = statusCode;
 this->reasonPhrase = reasonPhrase;

 concurrency::critical_section::scoped_lock lock(dataEventLock);
 dataEvent.set();
 }
 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }
 return hr;
 }

 // Called when a portion of the entity body has been received.
 IFACEMETHODIMP OnDataAvailable(IXMLHTTPRequest2*, ISequentialStream* stream)
 {
 HRESULT hr = S_OK;

 // We must not propagate exceptions back to IXHR2.
 try
 {
 // Store a reference on the stream so it can be accessed by the task.
 dataStream = stream;

 // The work must be done as fast as possible, and must not block this thread,
 // for example, waiting on another event object. Here we simply set an event
 // that can be processed by another thread.
 concurrency::critical_section::scoped_lock lock(dataEventLock);
 dataEvent.set();
 }

 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }
 return hr;
 }

 // Called when the entire entity response has been received.
 IFACEMETHODIMP OnResponseReceived(IXMLHTTPRequest2* xhr, ISequentialStream* responseStream)
 {
 responseReceived = true;
 return OnDataAvailable(xhr, responseStream);
 }

 // Called when an error occurs during the HTTP request.
 IFACEMETHODIMP OnError(IXMLHTTPRequest2*, HRESULT hrError)
 {
 HRESULT hr = S_OK;

 // We must not propagate exceptions back to IXHR2.
 try
 {
 concurrency::critical_section::scoped_lock lock(dataEventLock);
 dataHResult = hrError;
 dataEvent.set();
 }
 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }

 return hr;
 }

 // Create a task that completes when data is available, in an exception-safe way.
 concurrency::task<void> CreateDataTask();

 HRESULT GetError() const
 {
 return dataHResult;
 }

 int GetStatusCode() const
 {
 return statusCode;
 }

 std::wstring const& GetReasonPhrase() const
 {
 return reasonPhrase;
 }

 bool IsResponseReceived() const
 {
 return responseReceived;
 }

 // Copy bytes from the sequential stream into the buffer provided until
 // we reach the end of one or the other.
 unsigned int ReadData(
 _Out_writes_(outputBufferSize) byte* outputBuffer,
 unsigned int outputBufferSize);

private:
 ~HttpRequestBuffersCallback()
 {
 // Unregister the callback.
 if (cancellationToken != concurrency::cancellation_token::none())
 {

 cancellationToken.deregister_callback(registrationToken);
 }
 }

 // Signals that the download operation was canceled.
 concurrency::cancellation_token cancellationToken;

 // Used to unregister the cancellation token callback.
 concurrency::cancellation_token_registration registrationToken;

 // The IXMLHTTPRequest2 that processes the HTTP request.
 Microsoft::WRL::ComPtr<IXMLHTTPRequest2> request;

 // Task completion event that is set when data is available or error is triggered.
 concurrency::task_completion_event<void> dataEvent;
 concurrency::critical_section dataEventLock;

 // We cannot store the error obtained from IXHR2 in the dataEvent since any value there is first-
writer-wins,
 // whereas we want a subsequent error to override an initial success.
 HRESULT dataHResult;

 // Referenced pointer to the data stream.
 Microsoft::WRL::ComPtr<ISequentialStream> dataStream;

 // HTTP status code and reason returned by the server.
 int statusCode;
 std::wstring reasonPhrase;

 // Whether the response has been completely received.
 bool responseReceived;
};

};

// Utility class for performing asynchronous HTTP requests.
// This class only supports one outstanding request at a time.
class HttpRequest
{
public:
 HttpRequest();

 int GetStatusCode() const
 {
 return statusCode;
 }

 std::wstring const& GetReasonPhrase() const
 {
 return reasonPhrase;
 }

 // Whether the response has been completely received, if using ReadAsync().
 bool IsResponseComplete() const
 {
 return responseComplete;
 }

 // Start an HTTP GET on the specified URI. The returned task completes once the entire response
 // has been received, and the task produces the HTTP response text. The status code and reason
 // can be read with GetStatusCode() and GetReasonPhrase().
 concurrency::task<std::wstring> GetAsync(
 Windows::Foundation::Uri^ uri,
 concurrency::cancellation_token cancellationToken = concurrency::cancellation_token::none());

 // Start an HTTP POST on the specified URI, using a string body. The returned task produces the
 // HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
 concurrency::task<std::wstring> PostAsync(

 concurrency::task<std::wstring> PostAsync(
 Windows::Foundation::Uri^ uri,
 PCWSTR contentType,
 IStream* postStream,
 uint64 postStreamSizeToSend,
 concurrency::cancellation_token cancellationToken = concurrency::cancellation_token::none());

 // Start an HTTP POST on the specified URI, using a stream body. The returned task produces the
 // HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
 concurrency::task<std::wstring> PostAsync(
 Windows::Foundation::Uri^ uri,
 const std::wstring& str,
 concurrency::cancellation_token cancellationToken = concurrency::cancellation_token::none());

 // Send a request but don't return the response. Instead, let the caller read it with ReadAsync().
 concurrency::task<void> SendAsync(
 const std::wstring& httpMethod,
 Windows::Foundation::Uri^ uri,
 concurrency::cancellation_token cancellationToken = concurrency::cancellation_token::none());

 // Read a chunk of data from the HTTP response, up to a specified length or until we reach the end
 // of the response, and store the value in the provided buffer. This is useful for large content,
 // enabling the streaming of the result.
 concurrency::task<void> ReadAsync(
 Windows::Storage::Streams::IBuffer^ readBuffer,
 unsigned int offsetInBuffer,
 unsigned int requestedBytesToRead);

 static void CreateMemoryStream(IStream **stream);

private:
 // Start a download of the specified URI using the specified method. The returned task produces
the
 // HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
 concurrency::task<std::wstring> DownloadAsync(
 PCWSTR httpMethod,
 PCWSTR uri,
 concurrency::cancellation_token cancellationToken,
 PCWSTR contentType,
 IStream* postStream,
 uint64 postStreamBytesToSend);

 // Referenced pointer to the callback, if using SendAsync/ReadAsync.
 Microsoft::WRL::ComPtr<Details::HttpRequestBuffersCallback> buffersCallback;

 int statusCode;
 std::wstring reasonPhrase;

 // Whether the response has been completely received, if using ReadAsync().
 bool responseComplete;
};

};

#include "pch.h"
#include "HttpRequest.h"
#include <robuffer.h>
#include <shcore.h>

using namespace concurrency;
using namespace Microsoft::WRL;
using namespace Platform;
using namespace std;
using namespace Web;

6. In HttpRequest.cpp, add this code:

using namespace Web;
using namespace Windows::Foundation;
using namespace Windows::Storage::Streams;

// Implementation of IXMLHTTPRequest2Callback used when only the complete response is needed.
// When processing chunks of response data as they are received, use HttpRequestBuffersCallback
instead.
class HttpRequestStringCallback
 : public RuntimeClass<RuntimeClassFlags<ClassicCom>, IXMLHTTPRequest2Callback, FtmBase>
{
public:
 HttpRequestStringCallback(IXMLHTTPRequest2* httpRequest,
 cancellation_token ct = concurrency::cancellation_token::none()) :
 request(httpRequest), cancellationToken(ct)
 {
 // Register a callback function that aborts the HTTP operation when
 // the cancellation token is canceled.
 if (cancellationToken != cancellation_token::none())
 {
 registrationToken = cancellationToken.register_callback([this]()
 {
 if (request != nullptr)
 {
 request->Abort();
 }
 });
 }
 }

 // Called when the HTTP request is being redirected to a new URL.
 IFACEMETHODIMP OnRedirect(IXMLHTTPRequest2*, PCWSTR)
 {
 return S_OK;
 }

 // Called when HTTP headers have been received and processed.
 IFACEMETHODIMP OnHeadersAvailable(IXMLHTTPRequest2*, DWORD statusCode, PCWSTR reasonPhrase)
 {
 HRESULT hr = S_OK;

 // We must not propagate exceptions back to IXHR2.
 try
 {
 this->statusCode = statusCode;
 this->reasonPhrase = reasonPhrase;
 }
 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }

 return hr;
 }

 // Called when a portion of the entity body has been received.
 IFACEMETHODIMP OnDataAvailable(IXMLHTTPRequest2*, ISequentialStream*)
 {
 return S_OK;
 }

 // Called when the entire entity response has been received.
 IFACEMETHODIMP OnResponseReceived(IXMLHTTPRequest2*, ISequentialStream* responseStream)
 {
 wstring wstr;
 HRESULT hr = ReadUtf8StringFromSequentialStream(responseStream, wstr);

 // We must not propagate exceptions back to IXHR2.
 try
 {
 completionEvent.set(make_tuple<HRESULT, wstring>(move(hr), move(wstr)));

 completionEvent.set(make_tuple<HRESULT, wstring>(move(hr), move(wstr)));
 }
 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }

 return hr;
 }

 // Simulate the functionality of DataReader.ReadString().
 // This is needed because DataReader requires IRandomAccessStream and this
 // code has an ISequentialStream that does not have a conversion to IRandomAccessStream like
IStream does.
 HRESULT ReadUtf8StringFromSequentialStream(ISequentialStream* readStream, wstring& str)
 {
 // Convert the response to Unicode wstring.
 HRESULT hr;

 // Holds the response as a Unicode string.
 wstringstream ss;

 while (true)
 {
 ULONG cb;
 char buffer[4096];

 // Read the response as a UTF-8 string. Since UTF-8 characters are 1-4 bytes long,
 // we need to make sure we only read an integral number of characters. So we'll
 // start with 4093 bytes.
 hr = readStream->Read(buffer, sizeof(buffer) - 3, &cb);
 if (FAILED(hr) || (cb == 0))
 {
 break; // Error or no more data to process, exit loop.
 }

 if (cb == sizeof(buffer) - 3)
 {
 ULONG subsequentBytesRead;
 unsigned int i, cl;

 // Find the first byte of the last UTF-8 character in the buffer.
 for (i = cb - 1; (i >= 0) && ((buffer[i] & 0xC0) == 0x80); i--);

 // Calculate the number of subsequent bytes in the UTF-8 character.
 if (((unsigned char)buffer[i]) < 0x80)
 {
 cl = 1;
 }
 else if (((unsigned char)buffer[i]) < 0xE0)
 {
 cl = 2;
 }
 else if (((unsigned char)buffer[i]) < 0xF0)
 {
 cl = 3;
 }
 else
 {
 cl = 4;
 }

 // Read any remaining bytes.
 if (cb < i + cl)
 {
 hr = readStream->Read(buffer + cb, i + cl - cb, &subsequentBytesRead);
 if (FAILED(hr))
 {
 break; // Error, exit loop.
 }

 }
 cb += subsequentBytesRead;
 }
 }

 // First determine the size required to store the Unicode string.
 int const sizeRequired = MultiByteToWideChar(CP_UTF8, 0, buffer, cb, nullptr, 0);
 if (sizeRequired == 0)
 {
 // Invalid UTF-8.
 hr = HRESULT_FROM_WIN32(GetLastError());
 break;
 }
 unique_ptr<char16[]> wstr(new(std::nothrow) char16[sizeRequired + 1]);
 if (wstr.get() == nullptr)
 {
 hr = E_OUTOFMEMORY;
 break;
 }

 // Convert the string from UTF-8 to UTF-16LE. This can never fail, since
 // the previous call above succeeded.
 MultiByteToWideChar(CP_UTF8, 0, buffer, cb, wstr.get(), sizeRequired);
 wstr[sizeRequired] = L'\0'; // Terminate the string.
 ss << wstr.get(); // Write the string to the stream.
 }

 str = SUCCEEDED(hr) ? ss.str() : wstring();
 return (SUCCEEDED(hr)) ? S_OK : hr; // Don't return S_FALSE.
 }

 // Called when an error occurs during the HTTP request.
 IFACEMETHODIMP OnError(IXMLHTTPRequest2*, HRESULT hrError)
 {
 HRESULT hr = S_OK;

 // We must not propagate exceptions back to IXHR2.
 try
 {
 completionEvent.set(make_tuple<HRESULT, wstring>(move(hrError), wstring()));
 }
 catch (std::bad_alloc&)
 {
 hr = E_OUTOFMEMORY;
 }

 return hr;
 }

 // Retrieves the completion event for the HTTP operation.
 task_completion_event<tuple<HRESULT, wstring>> const& GetCompletionEvent() const
 {
 return completionEvent;
 }

 int GetStatusCode() const
 {
 return statusCode;
 }

 wstring GetReasonPhrase() const
 {
 return reasonPhrase;
 }

private:
 ~HttpRequestStringCallback()
 {
 // Unregister the callback.
 if (cancellationToken != cancellation_token::none())

 if (cancellationToken != cancellation_token::none())
 {
 cancellationToken.deregister_callback(registrationToken);
 }
 }

 // Signals that the download operation was canceled.
 cancellation_token cancellationToken;

 // Used to unregister the cancellation token callback.
 cancellation_token_registration registrationToken;

 // The IXMLHTTPRequest2 that processes the HTTP request.
 ComPtr<IXMLHTTPRequest2> request;

 // Task completion event that is set when the
 // download operation completes.
 task_completion_event<tuple<HRESULT, wstring>> completionEvent;

 int statusCode;
 wstring reasonPhrase;
};

// Copy bytes from the sequential stream into the buffer provided until
// we reach the end of one or the other.
unsigned int Web::Details::HttpRequestBuffersCallback::ReadData(
 _Out_writes_(outputBufferSize) byte* outputBuffer,
 unsigned int outputBufferSize)
{
 // Lock the data event while doing the read, to ensure that any bytes we don't read will
 // result in the correct event getting triggered.
 concurrency::critical_section::scoped_lock lock(dataEventLock);

 ULONG bytesRead;
 CheckHResult(dataStream.Get()->Read(outputBuffer, outputBufferSize, &bytesRead));
 if (bytesRead < outputBufferSize)
 {
 // We need to reset the data event, which we can only do by creating a new one.
 dataEvent = task_completion_event<void>();
 }

 return bytesRead;
}

// Create a task that completes when data is available, in an exception-safe way.
task<void> Web::Details::HttpRequestBuffersCallback::CreateDataTask()
{
 concurrency::critical_section::scoped_lock lock(dataEventLock);
 return create_task(dataEvent, cancellationToken);
}

HttpRequest::HttpRequest() : responseComplete(true), statusCode(200)
{
}

// Start a download of the specified URI using the specified method. The returned task produces the
// HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
task<wstring> HttpRequest::DownloadAsync(PCWSTR httpMethod, PCWSTR uri, cancellation_token
cancellationToken,
 PCWSTR contentType, IStream* postStream, uint64 postStreamSizeToSend)
{
 // Create an IXMLHTTPRequest2 object.
 ComPtr<IXMLHTTPRequest2> xhr;
 CheckHResult(CoCreateInstance(CLSID_XmlHttpRequest, nullptr, CLSCTX_INPROC, IID_PPV_ARGS(&xhr)));

 // Create callback.
 auto stringCallback = Make<HttpRequestStringCallback>(xhr.Get(), cancellationToken);
 CheckHResult(stringCallback ? S_OK : E_OUTOFMEMORY);

 auto completionTask = create_task(stringCallback->GetCompletionEvent());

 // Create a request.
 CheckHResult(xhr->Open(httpMethod, uri, stringCallback.Get(), nullptr, nullptr, nullptr, nullptr));

 if (postStream != nullptr && contentType != nullptr)
 {
 CheckHResult(xhr->SetRequestHeader(L"Content-Type", contentType));
 }

 // Send the request.
 CheckHResult(xhr->Send(postStream, postStreamSizeToSend));

 // Return a task that completes when the HTTP operation completes.
 // We pass the callback to the continuation because the lifetime of the
 // callback must exceed the operation to ensure that cancellation
 // works correctly.
 return completionTask.then([this, stringCallback](tuple<HRESULT, wstring> resultTuple)
 {
 // If the GET operation failed, throw an Exception.
 CheckHResult(std::get<0>(resultTuple));

 statusCode = stringCallback->GetStatusCode();
 reasonPhrase = stringCallback->GetReasonPhrase();

 return std::get<1>(resultTuple);
 });
}

// Start an HTTP GET on the specified URI. The returned task completes once the entire response
// has been received, and the task produces the HTTP response text. The status code and reason
// can be read with GetStatusCode() and GetReasonPhrase().
task<wstring> HttpRequest::GetAsync(Uri^ uri, cancellation_token cancellationToken)
{
 return DownloadAsync(L"GET",
 uri->AbsoluteUri->Data(),
 cancellationToken,
 nullptr,
 nullptr,
 0);
}

void HttpRequest::CreateMemoryStream(IStream **stream)
{
 auto randomAccessStream = ref new Windows::Storage::Streams::InMemoryRandomAccessStream();
 CheckHResult(CreateStreamOverRandomAccessStream(randomAccessStream, IID_PPV_ARGS(stream)));
}

// Start an HTTP POST on the specified URI, using a string body. The returned task produces the
// HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
task<wstring> HttpRequest::PostAsync(Uri^ uri, const wstring& body, cancellation_token
cancellationToken)
{
 int length = 0;
 ComPtr<IStream> postStream;
 CreateMemoryStream(&postStream);

 if (body.length() > 0)
 {
 // Get the required buffer size.
 int size = WideCharToMultiByte(CP_UTF8, // UTF-8
 0, // Conversion type
 body.c_str(), // Unicode string to convert
 static_cast<int>(body.length()), // Size
 nullptr, // Output buffer
 0, // Output buffer size
 nullptr,

 nullptr);
 CheckHResult((size != 0) ? S_OK : HRESULT_FROM_WIN32(GetLastError()));

 std::unique_ptr<char[]> tempData(new char[size]);
 length = WideCharToMultiByte(CP_UTF8, // UTF-8
 0, // Conversion type
 body.c_str(), // Unicode string to convert
 static_cast<int>(body.length()), // Size
 tempData.get(), // Output buffer
 size, // Output buffer size
 nullptr,
 nullptr);
 CheckHResult((length != 0) ? S_OK : HRESULT_FROM_WIN32(GetLastError()));
 CheckHResult(postStream->Write(tempData.get(), length, nullptr));
 }

 return DownloadAsync(L"POST",
 uri->AbsoluteUri->Data(),
 cancellationToken,
 L"text/plain;charset=utf-8",
 postStream.Get(),
 length);
}

// Start an HTTP POST on the specified URI, using a stream body. The returned task produces the
// HTTP response text. The status code and reason can be read with GetStatusCode() and
GetReasonPhrase().
task<wstring> HttpRequest::PostAsync(Uri^ uri, PCWSTR contentType, IStream* postStream,
 uint64 postStreamSizeToSend, cancellation_token cancellationToken)
{
 return DownloadAsync(L"POST",
 uri->AbsoluteUri->Data(),
 cancellationToken,
 contentType,
 postStream,
 postStreamSizeToSend);
}

// Send a request but don't return the response. Instead, let the caller read it with ReadAsync().
task<void> HttpRequest::SendAsync(const wstring& httpMethod, Uri^ uri, cancellation_token
cancellationToken)
{
 // Create an IXMLHTTPRequest2 object.
 ComPtr<IXMLHTTPRequest2> xhr;
 CheckHResult(CoCreateInstance(CLSID_XmlHttpRequest, nullptr, CLSCTX_INPROC, IID_PPV_ARGS(&xhr)));

 // Create callback.
 buffersCallback = Make<Web::Details::HttpRequestBuffersCallback>(xhr.Get(), cancellationToken);
 CheckHResult(buffersCallback ? S_OK : E_OUTOFMEMORY);

 ComPtr<IXMLHTTPRequest2Callback> xhrCallback;
 CheckHResult(buffersCallback.As(&xhrCallback));

 // Open and send the request.
 CheckHResult(xhr->Open(httpMethod.c_str(),
 uri->AbsoluteUri->Data(),
 xhrCallback.Get(),
 nullptr,
 nullptr,
 nullptr,
 nullptr));

 responseComplete = false;

 CheckHResult(xhr->Send(nullptr, 0));

 // Return a task that completes when the HTTP operation completes.
 // Since buffersCallback holds a reference on the callback, the lifetime of the callback will
exceed

Using the HttpRequest Class in a UWP App

To Use the HttpRequest Class

 // the operation and ensure that cancellation works correctly.
 return buffersCallback->CreateDataTask().then([this]()
 {
 CheckHResult(buffersCallback->GetError());

 statusCode = buffersCallback->GetStatusCode();
 reasonPhrase = buffersCallback->GetReasonPhrase();
 });
}

// Read a chunk of data from the HTTP response, up to a specified length or until we reach the end
// of the response, and store the value in the provided buffer. This is useful for large content,
// enabling the streaming of the result.
task<void> HttpRequest::ReadAsync(Windows::Storage::Streams::IBuffer^ readBuffer, unsigned int
offsetInBuffer,
 unsigned int requestedBytesToRead)
{
 if (offsetInBuffer + requestedBytesToRead > readBuffer->Capacity)
 {
 throw ref new InvalidArgumentException();
 }

 // Return a task that completes when a read completes.
 // We pass the callback to the continuation because the lifetime of the
 // callback must exceed the operation to ensure that cancellation
 // works correctly.
 return buffersCallback->CreateDataTask().then([this, readBuffer, offsetInBuffer,
requestedBytesToRead]()
 {
 CheckHResult(buffersCallback->GetError());

 // Get a pointer to the location to copy data into.
 ComPtr<IBufferByteAccess> bufferByteAccess;
 CheckHResult(reinterpret_cast<IUnknown*>(readBuffer)-
>QueryInterface(IID_PPV_ARGS(&bufferByteAccess)));
 byte* outputBuffer; // Returned internal pointer, do not free this value.
 CheckHResult(bufferByteAccess->Buffer(&outputBuffer));

 // Copy bytes from the sequential stream into the buffer provided until
 // we reach the end of one or the other.
 readBuffer->Length = buffersCallback->ReadData(outputBuffer + offsetInBuffer,
requestedBytesToRead);
 if (buffersCallback->IsResponseReceived() && (readBuffer->Length < requestedBytesToRead))
 {
 responseComplete = true;
 }
 });
}

This section demonstrates how to use the HttpRequest class in a UWP app. The app provides an input box that
defines a URL resource, and button commands that perform GET and POST operations, and a button command
that cancels the current operation.

1. In MainPage.xaml, define the StackPanel element as follows.

https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.stackpanel.aspx

<StackPanel HorizontalAlignment="Left" Width="440"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBox x:Name="InputTextBox" TextWrapping="Wrap"
 Text="http://www.fourthcoffee.com/"/>
 <StackPanel Orientation="Horizontal">
 <Button x:Name="GetButton" Content="Get" Background="Green"
 Click="GetButton_Click"/>
 <Button x:Name="PostButton" Content="Post" Background="Blue"
 Click="PostButton_Click"/>
 <Button x:Name="CancelButton" Content="Cancel" Background="Red"
 IsEnabled="False" Click="CancelButton_Click"/>
 <ProgressRing x:Name="ResponseProgressRing" />
 </StackPanel>
 <TextBlock x:Name="ResponseTextBlock" TextWrapping="Wrap"/>
</StackPanel>

#include "HttpRequest.h"

// Produces HTTP requets.
Web::HttpRequest m_httpRequest;
// Enables us to cancel the active HTTP request.
concurrency::cancellation_token_source m_cancelHttpRequestSource;

// Displays the result of the provided HTTP request on the UI.
void ProcessHttpRequest(concurrency::task<std::wstring> httpRequest);

using namespace concurrency;
using namespace std;
using namespace Web;

2. In MainPage.xaml.h, add this #include directive:

3. In MainPage.xaml.h, add these private member variables to the MainPage class:

4. In MainPage.xaml.h, declare the private method ProcessHttpRequest :

5. In MainPage.xaml.cpp, add these using statements:

6. In MainPage.xaml.cpp, implement the GetButton_Click , PostButton_Click , and CancelButton_Click

methods of the MainPage class.

void MainPage::GetButton_Click(Object^ sender, RoutedEventArgs^ e)
{
 // Create a new cancellation token source for the web request.
 m_cancelHttpRequestSource = cancellation_token_source();

 // Set up the GET request parameters.
 auto uri = ref new Uri(InputTextBox->Text);
 auto token = m_cancelHttpRequestSource.get_token();

 // Send the request and then update the UI.
 ProcessHttpRequest(m_httpRequest.GetAsync(uri, token));
}

void MainPage::PostButton_Click(Object^ sender, RoutedEventArgs^ e)
{
 // Create a new cancellation token source for the web request.
 m_cancelHttpRequestSource = cancellation_token_source();

 // Set up the POST request parameters.
 auto uri = ref new Uri(InputTextBox->Text);
 wstring postData(L"This is sample POST data.");
 auto token = m_cancelHttpRequestSource.get_token();

 // Send the request and then update the UI.
 ProcessHttpRequest(m_httpRequest.PostAsync(uri, postData, token));
}

void MainPage::CancelButton_Click(Object^ sender, RoutedEventArgs^ e)
{
 // Disable the Cancel button.
 // It will be re-enabled during the next web request.
 CancelButton->IsEnabled = false;

 // Initiate cancellation.
 m_cancelHttpRequestSource.cancel();
}

TIP
If your app does not require support for cancellation, pass concurrency::cancellation_token::none to the
HttpRequest::GetAsync and HttpRequest::PostAsync methods.

7. In MainPage.xaml.cpp, implement the MainPage::ProcessHttpRequest method.

// Displays the result of the provided HTTP request on the UI.
void MainPage::ProcessHttpRequest(task<wstring> httpRequest)
{
 // Enable only the Cancel button.
 GetButton->IsEnabled = false;
 PostButton->IsEnabled = false;
 CancelButton->IsEnabled = true;

 // Clear the previous response and start the progress ring.
 ResponseTextBlock->Text = "";
 ResponseProgressRing->IsActive = true;

 // Create a continuation that shows the results on the UI.
 // The UI must be updated on the ASTA thread.
 // Therefore, schedule the continuation to run on the current context.
 httpRequest.then([this](task<wstring> previousTask)
 {
 try
 {
 //
 // Show the result on the UI.

 wstring response = previousTask.get();
 if (m_httpRequest.GetStatusCode() == 200)
 {
 // The request succeeded. Show the response.
 ResponseTextBlock->Text = ref new String(response.c_str());
 }
 else
 {
 // The request failed. Show the status code and reason.
 wstringstream ss;
 ss << L"The server returned "
 << m_httpRequest.GetStatusCode()
 << L" ("
 << m_httpRequest.GetReasonPhrase()
 << L')';
 ResponseTextBlock->Text = ref new String(ss.str().c_str());
 }
 }
 catch (const task_canceled&)
 {
 // Indicate that the operation was canceled.
 ResponseTextBlock->Text = "The operation was canceled";
 }
 catch (Exception^ e)
 {
 // Indicate that the operation failed.
 ResponseTextBlock->Text = "The operation failed";

 // TODO: Handle the error further.
 (void)e;
 }

 // Enable the Get and Post buttons.
 GetButton->IsEnabled = true;
 PostButton->IsEnabled = true;
 CancelButton->IsEnabled = false;

 // Stop the progress ring.
 ResponseProgressRing->IsActive = false;

 }, task_continuation_context::use_current());
}

8. In the project properties, under Linker, Input, specify shcore.lib and msxml6.lib .

Next Steps

See also

Here is the running app:

Concurrency Runtime Walkthroughs

Task Parallelism
Cancellation in the PPL
Asynchronous programming in C++
Creating Asynchronous Operations in C++ for UWP Apps
Quickstart: Connecting using XML HTTP Request (IXMLHTTPRequest2) task Class (Concurrency Runtime)
task_completion_event Class

https://docs.microsoft.com/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://docs.microsoft.com/previous-versions/windows/apps/hh770550(v=win.10)

Walkthrough: Creating an Agent-Based Application
4/25/2019 • 9 minutes to read • Edit Online

Prerequisites

Sections

Creating the Console Application

To create a C++ console application in Visual Studio 2019

To create a C++ console application in Visual Studio 2017 and earlier

This topic describes how to create a basic agent-based application. In this walkthrough, you can create an agent
that reads data from a text file asynchronously. The application uses the Adler-32 checksum algorithm to calculate
the checksum of the contents of that file.

You must understand the following topics to complete this walkthrough:

Asynchronous Agents

Asynchronous Message Blocks

Message Passing Functions

Synchronization Data Structures

This walkthrough demonstrates how to perform the following tasks:

Creating the Console Application

Creating the file_reader Class

Using the file_reader Class in the Application

This section shows how to create a C++ console application that references the header files that the program will
use. The initial steps vary depending on which version of Visual Studio you are using. Make sure the version
selector is set correctly in the upper left of this page.

1. From the main menu, choose File > New > Project to open the Create a New Project dialog box.

2. At the top of the dialog, set Language to C++, set Platform to Windows, and set Project type to
Console.

3. From the filtered list of project types, choose Console App then choose Next. In the next page, enter
BasicAgent as the name for the project, and specify the project location if desired.

4. Choose the Create button to create the project.

5. Right-click the project node in Solution Explorer, and choose Properties. Under Configuration
Properties > C/C++ > Precompiled Headers > Precompiled header choose Create.

1. On the File menu, click New, and then click Project to display the New Project dialog box.

2. In the New Project dialog box, select the Visual C++ node in the Project types pane and then select
Win32 Console Application in the Templates pane. Type a name for the project, for example,
BasicAgent , and then click OK to display the Win32 Console Application Wizard.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-creating-an-agent-based-application.md

#include <agents.h>
#include <string>
#include <iostream>
#include <algorithm>

Creating the file_reader Class

To create the file_reader class

#pragma once

class file_reader : public concurrency::agent
{
public:
protected:
private:
};

std::string _file_name;
concurrency::ITarget<std::string>& _target;
concurrency::overwrite_buffer<std::exception> _error;

3. In the Win32 Console Application Wizard dialog box, click Finish.

1. In stdafx.h (or pch.h depending on your version of Visual Studio), add the following code.

The header file agents.h contains the functionality of the concurrency::agent class.

1. Verify that the application was created successfully by building and running it. To build the application, on the
Build menu, click Build Solution. If the application builds successfully, run the application by clicking Start
Debugging on the Debug menu.

[Top]

This section shows how to create the file_reader class. The runtime schedules each agent to perform work in its
own context. Therefore, you can create an agent that performs work synchronously, but interacts with other
components asynchronously. The file_reader class reads data from a given input file and sends data from that
file to a given target component.

1. Add a new C++ header file to your project. To do so, right-click the Header Files node in Solution
Explorer, click Add, and then click New Item. In the Templates pane, select Header File (.h). In the Add
New Item dialog box, type file_reader.h in the Name box and then click Add.

2. In file_reader.h, add the following code.

1. In file_reader.h, create a class that is named file_reader that derives from agent .

1. Add the following data members to the private section of your class.

The _file_name member is the file name that the agent reads from. The _target member is a
concurrency::ITarget object that the agent writes the contents of the file to. The _error member holds any error
that occurs during the life of the agent.

1. Add the following code for the file_reader constructors to the public section of the file_reader class.

explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target)
 : _file_name(file_name)
 , _target(target)
{
}

explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target,
 concurrency::Scheduler& scheduler)
 : agent(scheduler)
 , _file_name(file_name)
 , _target(target)
{
}

explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target,
 concurrency::ScheduleGroup& group)
 : agent(group)
 , _file_name(file_name)
 , _target(target)
{
}

bool get_error(std::exception& e)
{
 return try_receive(_error, e);
}

Each constructor overload sets the file_reader data members. The second and third constructor overload
enables your application to use a specific scheduler with your agent. The first overload uses the default scheduler
with your agent.

1. Add the get_error method to the public section of the file_reader class.

The get_error method retrieves any error that occurs during the life of the agent.

1. Implement the concurrency::agent::run method in the protected section of your class.

void run()
{
 FILE* stream;
 try
 {
 // Open the file.
 if (fopen_s(&stream, _file_name.c_str(), "r") != 0)
 {
 // Throw an exception if an error occurs.
 throw std::exception("Failed to open input file.");
 }

 // Create a buffer to hold file data.
 char buf[1024];

 // Set the buffer size.
 setvbuf(stream, buf, _IOFBF, sizeof buf);

 // Read the contents of the file and send the contents
 // to the target.
 while (fgets(buf, sizeof buf, stream))
 {
 asend(_target, std::string(buf));
 }

 // Send the empty string to the target to indicate the end of processing.
 asend(_target, std::string(""));

 // Close the file.
 fclose(stream);
 }
 catch (const std::exception& e)
 {
 // Send the empty string to the target to indicate the end of processing.
 asend(_target, std::string(""));

 // Write the exception to the error buffer.
 send(_error, e);
 }

 // Set the status of the agent to agent_done.
 done();
}

#pragma once

class file_reader : public concurrency::agent
{
public:
 explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target)
 : _file_name(file_name)
 , _target(target)
 {
 }

 explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target,

The run method opens the file and reads data from it. The run method uses exception handling to capture any
errors that occur during file processing.

Each time this method reads data from the file, it calls the concurrency::asend function to send that data to the
target buffer. It sends the empty string to its target buffer to indicate the end of processing.

The following example shows the complete contents of file_reader.h.

 concurrency::ITarget<std::string>& target,
 concurrency::Scheduler& scheduler)
 : agent(scheduler)
 , _file_name(file_name)
 , _target(target)
 {
 }

 explicit file_reader(const std::string& file_name,
 concurrency::ITarget<std::string>& target,
 concurrency::ScheduleGroup& group)
 : agent(group)
 , _file_name(file_name)
 , _target(target)
 {
 }

 // Retrieves any error that occurs during the life of the agent.
 bool get_error(std::exception& e)
 {
 return try_receive(_error, e);
 }

protected:
 void run()
 {
 FILE* stream;
 try
 {
 // Open the file.
 if (fopen_s(&stream, _file_name.c_str(), "r") != 0)
 {
 // Throw an exception if an error occurs.
 throw std::exception("Failed to open input file.");
 }

 // Create a buffer to hold file data.
 char buf[1024];

 // Set the buffer size.
 setvbuf(stream, buf, _IOFBF, sizeof buf);

 // Read the contents of the file and send the contents
 // to the target.
 while (fgets(buf, sizeof buf, stream))
 {
 asend(_target, std::string(buf));
 }

 // Send the empty string to the target to indicate the end of processing.
 asend(_target, std::string(""));

 // Close the file.
 fclose(stream);
 }
 catch (const std::exception& e)
 {
 // Send the empty string to the target to indicate the end of processing.
 asend(_target, std::string(""));

 // Write the exception to the error buffer.
 send(_error, e);
 }

 // Set the status of the agent to agent_done.
 done();
 }

private:

 std::string _file_name;
 concurrency::ITarget<std::string>& _target;
 concurrency::overwrite_buffer<std::exception> _error;
};

Using the file_reader Class in the Application

To use the file_reader class in your application

#include "file_reader.h"

using namespace concurrency;
using namespace std;

event e;

// The components of the Adler-32 sum.
unsigned int a = 1;
unsigned int b = 0;

// A call object that updates the checksum when it receives data.
call<string> calculate_checksum([&] (string s) {
 // If the input string is empty, set the event to signal
 // the end of processing.
 if (s.size() == 0)
 e.set();
 // Perform the Adler-32 checksum algorithm.
 for_each(begin(s), end(s), [&] (char c) {
 a = (a + c) % 65521;
 b = (b + a) % 65521;
 });
});

file_reader reader("test.txt", calculate_checksum);

[Top]

This section shows how to use the file_reader class to read the contents of a text file. It also shows how to create
a concurrency::call object that receives this file data and calculates its Adler-32 checksum.

1. In BasicAgent.cpp, add the following #include statement.

1. In BasicAgent.cpp, add the following using directives.

1. In the _tmain function, create a concurrency::event object that signals the end of processing.

1. Create a call object that updates the checksum when it receives data.

This call object also sets the event object when it receives the empty string to signal the end of processing.

1. Create a file_reader object that reads from the file test.txt and writes the contents of that file to the call

object.

1. Start the agent and wait for it to finish.

reader.start();
agent::wait(&reader);

e.wait();

std::exception error;
if (reader.get_error(error))
{
 wcout << error.what() << endl;
}
else
{
 unsigned int adler32_sum = (b << 16) | a;
 wcout << L"Adler-32 sum is " << hex << adler32_sum << endl;
}

1. Wait for the call object to receive all data and finish.

1. Check the file reader for errors. If no error occurred, calculate the final Adler-32 sum and print the sum to the
console.

The following example shows the complete BasicAgent.cpp file.

// BasicAgent.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include "file_reader.h"

using namespace concurrency;
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 // An event object that signals the end of processing.
 event e;

 // The components of the Adler-32 sum.
 unsigned int a = 1;
 unsigned int b = 0;

 // A call object that updates the checksum when it receives data.
 call<string> calculate_checksum([&] (string s) {
 // If the input string is empty, set the event to signal
 // the end of processing.
 if (s.size() == 0)
 e.set();
 // Perform the Adler-32 checksum algorithm.
 for_each(begin(s), end(s), [&] (char c) {
 a = (a + c) % 65521;
 b = (b + a) % 65521;
 });
 });

 // Create the agent.
 file_reader reader("test.txt", calculate_checksum);

 // Start the agent and wait for it to complete.
 reader.start();
 agent::wait(&reader);

 // Wait for the call object to receive all data and complete.
 e.wait();

 // Check the file reader for errors.
 // If no error occurred, calculate the final Adler-32 sum and print it
 // to the console.
 std::exception error;
 if (reader.get_error(error))
 {
 wcout << error.what() << endl;
 }
 else
 {
 unsigned int adler32_sum = (b << 16) | a;
 wcout << L"Adler-32 sum is " << hex << adler32_sum << endl;
 }
}

Sample Input

[Top]

This is the sample contents of the input file text.txt:

The quick brown fox
jumps
over the lazy dog

Sample Output

Adler-32 sum is fefb0d75

Robust Programming

Next Steps

See also

When used with the sample input, this program produces the following output:

To prevent concurrent access to data members, we recommend that you add methods that perform work to the
protected or private section of your class. Only add methods that send or receive messages to or from the

agent to the public section of your class.

Always call the concurrency::agent::done method to move your agent to the completed state. You typically call this
method before you return from the run method.

For another example of an agent-based application, see Walkthrough: Using join to Prevent Deadlock.

Asynchronous Agents Library
Asynchronous Message Blocks
Message Passing Functions
Synchronization Data Structures
Walkthrough: Using join to Prevent Deadlock

Walkthrough: Creating a Dataflow Agent
4/25/2019 • 16 minutes to read • Edit Online

Prerequisites

Sections

Creating a Basic Control-Flow Agent

This document demonstrates how to create agent-based applications that are based on dataflow, instead of
control flow.

Control flow refers to the execution order of operations in a program. Control flow is regulated by using control
structures such as conditional statements, loops, and so on. Alternatively, dataflow refers to a programming
model in which computations are made only when all required data is available. The dataflow programming
model is related to the concept of message passing, in which independent components of a program
communicate with one another by sending messages.

Asynchronous agents support both the control-flow and dataflow programming models. Although the control-
flow model is appropriate in many cases, the dataflow model is appropriate in others, for example, when an agent
receives data and performs an action that is based on the payload of that data.

Read the following documents before you start this walkthrough:

Asynchronous Agents

Asynchronous Message Blocks

How to: Use a Message Block Filter

This walkthrough contains the following sections:

Creating a Basic Control-Flow Agent

Creating a Basic Dataflow Agent

Creating a Message-Logging Agent

Consider the following example that defines the control_flow_agent class. The control_flow_agent class acts on
three message buffers: one input buffer and two output buffers. The run method reads from the source message
buffer in a loop and uses a conditional statement to direct the flow of program execution. The agent increments
one counter for non-zero, negative values and increments another counter for non-zero, positive values. After the
agent receives the sentinel value of zero, it sends the values of the counters to the output message buffers. The
negatives and positives methods enable the application to read the counts of negative and positive values

from the agent.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-creating-a-dataflow-agent.md

// A basic agent that uses control-flow to regulate the order of program
// execution. This agent reads numbers from a message buffer and counts the
// number of positive and negative values.
class control_flow_agent : public agent
{
public:
 explicit control_flow_agent(ISource<int>& source)
 : _source(source)
 {
 }

 // Retrieves the count of negative numbers that the agent received.
 size_t negatives()
 {
 return receive(_negatives);
 }

 // Retrieves the count of positive numbers that the agent received.
 size_t positives()
 {
 return receive(_positives);
 }

protected:
 void run()
 {
 // Counts the number of negative and positive values that
 // the agent receives.
 size_t negative_count = 0;
 size_t positive_count = 0;

 // Read from the source buffer until we receive
 // the sentinel value of 0.
 int value = 0;
 while ((value = receive(_source)) != 0)
 {
 // Send negative values to the first target and
 // non-negative values to the second target.
 if (value < 0)
 ++negative_count;
 else
 ++positive_count;
 }

 // Write the counts to the message buffers.
 send(_negatives, negative_count);
 send(_positives, positive_count);

 // Set the agent to the completed state.
 done();
 }
private:
 // Source message buffer to read from.
 ISource<int>& _source;

 // Holds the number of negative and positive numbers that the agent receives.
 single_assignment<size_t> _negatives;
 single_assignment<size_t> _positives;
};

Although this example makes basic use of control flow in an agent, it demonstrates the serial nature of control-
flow-based programming. Each message must be processed sequentially, even though multiple messages might
be available in the input message buffer. The dataflow model enables both branches of the conditional statement
to evaluate concurrently. The dataflow model also enables you to create more complex messaging networks that
act on data as it becomes available.

 Creating a Basic Dataflow Agent

To convert the control-flow agent to a dataflow agent

void run()
{
 // Counts the number of negative and positive values that
 // the agent receives.
 size_t negative_count = 0;
 size_t positive_count = 0;

 // Write the counts to the message buffers.
 send(_negatives, negative_count);
 send(_positives, positive_count);

 // Set the agent to the completed state.
 done();
}

// Tracks the count of active operations.
countdown_event active;
// An event that is set by the sentinel.
event received_sentinel;

[Top]

This section shows how to convert the control_flow_agent class to use the dataflow model to perform the same
task.

The dataflow agent works by creating a network of message buffers, each of which serves a specific purpose.
Certain message blocks use a filter function to accept or reject a message on the basis of its payload. A filter
function ensures that a message block receives only certain values.

1. Copy the body of the control_flow_agent class to another class, for example, dataflow_agent .
Alternatively, you can rename the control_flow_agent class.

2. Remove the body of the loop that calls receive from the run method.

1. In the run method, after the initialization of the variables negative_count and positive_count , add a
countdown_event object that tracks the count of active operations.

The countdown_event class is shown later in this topic.

1. Create the message buffer objects that will participate in the dataflow network.

 //
 // Create the members of the dataflow network.
 //

 // Increments the active counter.
 transformer<int, int> increment_active(
 [&active](int value) -> int {
 active.add_count();
 return value;
 });

 // Increments the count of negative values.
 call<int> negatives(
 [&](int value) {
 ++negative_count;
 // Decrement the active counter.
 active.signal();
 },
 [](int value) -> bool {
 return value < 0;
 });

 // Increments the count of positive values.
 call<int> positives(
 [&](int value) {
 ++positive_count;
 // Decrement the active counter.
 active.signal();
 },
 [](int value) -> bool {
 return value > 0;
 });

 // Receives only the sentinel value of 0.
 call<int> sentinel(
 [&](int value) {
 // Decrement the active counter.
 active.signal();
 // Set the sentinel event.
 received_sentinel.set();
 },
 [](int value) -> bool {
 return value == 0;
 });

 // Connects the _source message buffer to the rest of the network.
 unbounded_buffer<int> connector;

//
// Connect the network.
//

// Connect the internal nodes of the network.
connector.link_target(&negatives);
connector.link_target(&positives);
connector.link_target(&sentinel);
increment_active.link_target(&connector);

// Connect the _source buffer to the internal network to
// begin data flow.
_source.link_target(&increment_active);

1. Connect the message buffers to form a network.

// Wait for the sentinel event and for all operations to finish.
received_sentinel.wait();
active.wait();

MEMBER DESCRIPTION

increment_active A concurrency::transformer object that increments the active
event counter and passes the input value to the rest of the
network.

negatives , positives concurrency::call objects that increment the count of numbers
and decrements the active event counter. The objects each
use a filter to accept either negative numbers or positive
numbers.

sentinel A concurrency::call object that accepts only the sentinel value
of zero and decrements the active event counter.

connector A concurrency::unbounded_buffer object that connects the
source message buffer to the internal network.

1. Wait for the event and countdown event objects to be set. These events signal that the agent has received the
sentinel value and that all operations have finished.

The following diagram shows the complete dataflow network for the dataflow_agent class:

The following table describes the members of the network.

Because the run method is called on a separate thread, other threads can send messages to the network before
the network is fully connected. The _source data member is an unbounded_buffer object that buffers all input
that is sent from the application to the agent. To make sure that the network processes all input messages, the
agent first links the internal nodes of the network and then links the start of that network, connector , to the
_source data member. This guarantees that messages do not get processed as the network is being formed.

Because the network in this example is based on dataflow, rather than on control-flow, the network must
communicate to the agent that it has finished processing each input value and that the sentinel node has received
its value. This example uses a countdown_event object to signal that all input values have been processed and a
concurrency::event object to indicate that the sentinel node has received its value. The countdown_event class uses
an event object to signal when a counter value reaches zero. The head of the dataflow network increments the
counter every time that it receives a value. Every terminal node of the network decrements the counter after it
processes the input value. After the agent forms the dataflow network, it waits for the sentinel node to set the
event object and for the countdown_event object to signal that its counter has reached zero.

The following example shows the control_flow_agent , dataflow_agent , and countdown_event classes. The wmain

// dataflow-agent.cpp
// compile with: /EHsc
#include <windows.h>
#include <agents.h>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// A basic agent that uses control-flow to regulate the order of program
// execution. This agent reads numbers from a message buffer and counts the
// number of positive and negative values.
class control_flow_agent : public agent
{
public:
 explicit control_flow_agent(ISource<int>& source)
 : _source(source)
 {
 }

 // Retrieves the count of negative numbers that the agent received.
 size_t negatives()
 {
 return receive(_negatives);
 }

 // Retrieves the count of positive numbers that the agent received.
 size_t positives()
 {
 return receive(_positives);
 }

protected:
 void run()
 {
 // Counts the number of negative and positive values that
 // the agent receives.
 size_t negative_count = 0;
 size_t positive_count = 0;

 // Read from the source buffer until we receive
 // the sentinel value of 0.
 int value = 0;
 while ((value = receive(_source)) != 0)
 {
 // Send negative values to the first target and
 // non-negative values to the second target.
 if (value < 0)
 ++negative_count;
 else
 ++positive_count;
 }

 // Write the counts to the message buffers.
 send(_negatives, negative_count);
 send(_positives, positive_count);

 // Set the agent to the completed state.
 done();
 }
private:
 // Source message buffer to read from.
 ISource<int>& _source;

function creates a control_flow_agent and a dataflow_agent object and uses the send_values function to send a
series of random values to the agents.

 // Holds the number of negative and positive numbers that the agent receives.
 single_assignment<size_t> _negatives;
 single_assignment<size_t> _positives;
};

// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
 countdown_event(unsigned int count = 0L)
 : _current(static_cast<long>(count))
 {
 // Set the event if the initial count is zero.
 if (_current == 0L)
 _event.set();
 }

 // Decrements the event counter.
 void signal() {
 if(InterlockedDecrement(&_current) == 0L) {
 _event.set();
 }
 }

 // Increments the event counter.
 void add_count() {
 if(InterlockedIncrement(&_current) == 1L) {
 _event.reset();
 }
 }

 // Blocks the current context until the event is set.
 void wait() {
 _event.wait();
 }

private:
 // The current count.
 volatile long _current;
 // The event that is set when the counter reaches zero.
 event _event;

 // Disable copy constructor.
 countdown_event(const countdown_event&);
 // Disable assignment.
 countdown_event const & operator=(countdown_event const&);
};

// A basic agent that resembles control_flow_agent, but uses uses dataflow to
// perform computations when data becomes available.
class dataflow_agent : public agent
{
public:
 dataflow_agent(ISource<int>& source)
 : _source(source)
 {
 }

 // Retrieves the count of negative numbers that the agent received.
 size_t negatives()
 {
 return receive(_negatives);
 }

 // Retrieves the count of positive numbers that the agent received.
 size_t positives()
 {
 return receive(_positives);

 return receive(_positives);
 }

protected:
 void run()
 {
 // Counts the number of negative and positive values that
 // the agent receives.
 size_t negative_count = 0;
 size_t positive_count = 0;

 // Tracks the count of active operations.
 countdown_event active;
 // An event that is set by the sentinel.
 event received_sentinel;

 //
 // Create the members of the dataflow network.
 //

 // Increments the active counter.
 transformer<int, int> increment_active(
 [&active](int value) -> int {
 active.add_count();
 return value;
 });

 // Increments the count of negative values.
 call<int> negatives(
 [&](int value) {
 ++negative_count;
 // Decrement the active counter.
 active.signal();
 },
 [](int value) -> bool {
 return value < 0;
 });

 // Increments the count of positive values.
 call<int> positives(
 [&](int value) {
 ++positive_count;
 // Decrement the active counter.
 active.signal();
 },
 [](int value) -> bool {
 return value > 0;
 });

 // Receives only the sentinel value of 0.
 call<int> sentinel(
 [&](int value) {
 // Decrement the active counter.
 active.signal();
 // Set the sentinel event.
 received_sentinel.set();
 },
 [](int value) -> bool {
 return value == 0;
 });

 // Connects the _source message buffer to the rest of the network.
 unbounded_buffer<int> connector;

 //
 // Connect the network.
 //

 // Connect the internal nodes of the network.
 connector.link_target(&negatives);

 connector.link_target(&negatives);
 connector.link_target(&positives);
 connector.link_target(&sentinel);
 increment_active.link_target(&connector);

 // Connect the _source buffer to the internal network to
 // begin data flow.
 _source.link_target(&increment_active);

 // Wait for the sentinel event and for all operations to finish.
 received_sentinel.wait();
 active.wait();

 // Write the counts to the message buffers.
 send(_negatives, negative_count);
 send(_positives, positive_count);

 // Set the agent to the completed state.
 done();
 }

private:
 // Source message buffer to read from.
 ISource<int>& _source;

 // Holds the number of negative and positive numbers that the agent receives.
 single_assignment<size_t> _negatives;
 single_assignment<size_t> _positives;
};

// Sends a number of random values to the provided message buffer.
void send_values(ITarget<int>& source, int sentinel, size_t count)
{
 // Send a series of random numbers to the source buffer.
 mt19937 rnd(42);
 for (size_t i = 0; i < count; ++i)
 {
 // Generate a random number that is not equal to the sentinel value.
 int n;
 while ((n = rnd()) == sentinel);

 send(source, n);
 }
 // Send the sentinel value.
 send(source, sentinel);
}

int wmain()
{
 // Signals to the agent that there are no more values to process.
 const int sentinel = 0;
 // The number of samples to send to each agent.
 const size_t count = 1000000;

 // The source buffer that the application writes numbers to and
 // the agents read numbers from.
 unbounded_buffer<int> source;

 //
 // Use a control-flow agent to process a series of random numbers.
 //
 wcout << L"Control-flow agent:" << endl;

 // Create and start the agent.
 control_flow_agent cf_agent(source);
 cf_agent.start();

 // Send values to the agent.
 send_values(source, sentinel, count);

 // Wait for the agent to finish.
 agent::wait(&cf_agent);

 // Print the count of negative and positive numbers.
 wcout << L"There are " << cf_agent.negatives()
 << L" negative numbers."<< endl;
 wcout << L"There are " << cf_agent.positives()
 << L" positive numbers."<< endl;

 //
 // Perform the same task, but this time with a dataflow agent.
 //
 wcout << L"Dataflow agent:" << endl;

 // Create and start the agent.
 dataflow_agent df_agent(source);
 df_agent.start();

 // Send values to the agent.
 send_values(source, sentinel, count);

 // Wait for the agent to finish.
 agent::wait(&df_agent);

 // Print the count of negative and positive numbers.
 wcout << L"There are " << df_agent.negatives()
 << L" negative numbers."<< endl;
 wcout << L"There are " << df_agent.positives()
 << L" positive numbers."<< endl;
}

Control-flow agent:
There are 500523 negative numbers.
There are 499477 positive numbers.
Dataflow agent:
There are 500523 negative numbers.
There are 499477 positive numbers.

Compiling the Code

Creating a Message-Logging Agent

// log-filter.cpp
// compile with: /EHsc
#include <windows.h>
#include <agents.h>
#include <sstream>

This example produces the following sample output:

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
dataflow-agent.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc dataflow-agent.cpp

[Top]

The following example shows the log_agent class, which resembles the dataflow_agent class. The log_agent

class implements an asynchronous logging agent that writes log messages to a file and to the console. The
log_agent class enables the application to categorize messages as informational, warning, or error. It also

enables the application to specify whether each log category is written to a file, the console, or both. This example
writes all log messages to a file and only error messages to the console.

#include <sstream>
#include <fstream>
#include <iostream>

using namespace concurrency;
using namespace std;

// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
 countdown_event(unsigned int count = 0L)
 : _current(static_cast<long>(count))
 {
 // Set the event if the initial count is zero.
 if (_current == 0L)
 {
 _event.set();
 }
 }

 // Decrements the event counter.
 void signal()
 {
 if(InterlockedDecrement(&_current) == 0L)
 {
 _event.set();
 }
 }

 // Increments the event counter.
 void add_count()
 {
 if(InterlockedIncrement(&_current) == 1L)
 {
 _event.reset();
 }
 }

 // Blocks the current context until the event is set.
 void wait()
 {
 _event.wait();
 }

private:
 // The current count.
 volatile long _current;
 // The event that is set when the counter reaches zero.
 event _event;

 // Disable copy constructor.
 countdown_event(const countdown_event&);
 // Disable assignment.
 countdown_event const & operator=(countdown_event const&);
};

// Defines message types for the logger.
enum log_message_type
{
 log_info = 0x1,
 log_warning = 0x2,
 log_error = 0x4,
};

// An asynchronous logging agent that writes log messages to
// file and to the console.
class log_agent : public agent
{

{
 // Holds a message string and its logging type.
 struct log_message
 {
 wstring message;
 log_message_type type;
 };

public:
 log_agent(const wstring& file_path, log_message_type file_messages, log_message_type console_messages)
 : _file(file_path)
 , _file_messages(file_messages)
 , _console_messages(console_messages)
 , _active(0)
 {
 if (_file.bad())
 {
 throw invalid_argument("Unable to open log file.");
 }
 }

 // Writes the provided message to the log.
 void log(const wstring& message, log_message_type type)
 {
 // Increment the active message count.
 _active.add_count();

 // Send the message to the network.
 log_message msg = { message, type };
 send(_log_buffer, msg);
 }

 void close()
 {
 // Signal that the agent is now closed.
 _closed.set();
 }

protected:

 void run()
 {
 //
 // Create the dataflow network.
 //

 // Writes a log message to file.
 call<log_message> writer([this](log_message msg)
 {
 if ((msg.type & _file_messages) != 0)
 {
 // Write the message to the file.
 write_to_stream(msg, _file);
 }
 if ((msg.type & _console_messages) != 0)
 {
 // Write the message to the console.
 write_to_stream(msg, wcout);
 }
 // Decrement the active counter.
 _active.signal();
 });

 // Connect _log_buffer to the internal network to begin data flow.
 _log_buffer.link_target(&writer);

 // Wait for the closed event to be signaled.
 _closed.wait();

 // Wait for all messages to be processed.

 // Wait for all messages to be processed.
 _active.wait();

 // Close the log file and flush the console.
 _file.close();
 wcout.flush();

 // Set the agent to the completed state.
 done();
 }

private:
 // Writes a logging message to the specified output stream.
 void write_to_stream(const log_message& msg, wostream& stream)
 {
 // Write the message to the stream.
 wstringstream ss;

 switch (msg.type)
 {
 case log_info:
 ss << L"info: ";
 break;
 case log_warning:
 ss << L"warning: ";
 break;
 case log_error:
 ss << L"error: ";
 }

 ss << msg.message << endl;
 stream << ss.str();
 }

private:
 // The file stream to write messages to.
 wofstream _file;

 // The log message types that are written to file.
 log_message_type _file_messages;

 // The log message types that are written to the console.
 log_message_type _console_messages;

 // The head of the network. Propagates logging messages
 // to the rest of the network.
 unbounded_buffer<log_message> _log_buffer;

 // Counts the number of active messages in the network.
 countdown_event _active;

 // Signals that the agent has been closed.
 event _closed;
};

int wmain()
{
 // Union of all log message types.
 log_message_type log_all = log_message_type(log_info | log_warning | log_error);

 // Create a logging agent that writes all log messages to file and error
 // messages to the console.
 log_agent logger(L"log.txt", log_all, log_error);

 // Start the agent.
 logger.start();

 // Log a few messages.

 logger.log(L"===Logging started.===", log_info);

 logger.log(L"===Logging started.===", log_info);

 logger.log(L"This is a sample warning message.", log_warning);
 logger.log(L"This is a sample error message.", log_error);

 logger.log(L"===Logging finished.===", log_info);

 // Close the logger and wait for the agent to finish.
 logger.close();
 agent::wait(&logger);
}

error: This is a sample error message.

info: ===Logging started.===
warning: This is a sample warning message.
error: This is a sample error message.
info: ===Logging finished.===

Compiling the Code

See also

This example writes the following output to the console.

This example also produces the log.txt file, which contains the following text.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named log-filter.cpp

and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc log-filter.cpp

[Top]

Concurrency Runtime Walkthroughs

Walkthrough: Creating an Image-Processing
Network
4/25/2019 • 19 minutes to read • Edit Online

Prerequisites

Sections

Defining Image Processing Functionality

This document demonstrates how to create a network of asynchronous message blocks that perform image
processing.

The network determines which operations to perform on an image on the basis of its characteristics. This
example uses the dataflow model to route images through the network. In the dataflow model, independent
components of a program communicate with one another by sending messages. When a component receives a
message, it can perform some action and then pass the result of that action to another component. Compare this
with the control flow model, in which an application uses control structures, for example, conditional statements,
loops, and so on, to control the order of operations in a program.

A network that is based on dataflow creates a pipeline of tasks. Each stage of the pipeline concurrently performs
part of the overall task. An analogy to this is an assembly line for automobile manufacturing. As each vehicle
passes through the assembly line, one station assembles the frame, another installs the engine, and so on. By
enabling multiple vehicles to be assembled simultaneously, the assembly line provides better throughput than
assembling complete vehicles one at a time.

Read the following documents before you start this walkthrough:

Asynchronous Message Blocks

How to: Use a Message Block Filter

Walkthrough: Creating a Dataflow Agent

We also recommend that you understand the basics of GDI+ before you start this walkthrough.

This walkthrough contains the following sections:

Defining Image Processing Functionality

Creating the Image Processing Network

The Complete Example

This section shows the support functions that the image processing network uses to work with images that are
read from disk.

The following functions, GetRGB and MakeColor , extract and combine the individual components of the given
color, respectively.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-creating-an-image-processing-network.md

// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
 r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
 g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
 b = static_cast<BYTE>((color & 0x000000ff));
}

// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
 return (r<<16) | (g<<8) | (b);
}

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
 int width = bmp->GetWidth();
 int height = bmp->GetHeight();

 // Lock the bitmap.
 BitmapData bitmapData;
 Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
 bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

 // Get a pointer to the bitmap data.
 DWORD* image_bits = (DWORD*)bitmapData.Scan0;

 // Call the function for each pixel in the image.
 parallel_for (0, height, [&, width](int y)
 {
 for (int x = 0; x < width; ++x)
 {
 // Get the current pixel value.
 DWORD* curr_pixel = image_bits + (y * width) + x;

 // Call the function.
 f(*curr_pixel);
 }
 });

 // Unlock the bitmap.
 bmp->UnlockBits(&bitmapData);
}

The following function, ProcessImage , calls the given std::function object to transform the color value of each
pixel in a GDI+ Bitmap object. The ProcessImage function uses the concurrency::parallel_for algorithm to process
each row of the bitmap in parallel.

The following functions, Grayscale , Sepiatone , ColorMask , and Darken , call the ProcessImage function to
transform the color value of each pixel in a Bitmap object. Each of these functions uses a lambda expression to
define the color transformation of one pixel.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class
https://docs.microsoft.com/windows/desktop/api/gdiplusheaders/nl-gdiplusheaders-bitmap

// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
 ProcessImage(bmp,
 [](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);

 // Set each color component to the average of
 // the original components.
 BYTE c = (static_cast<WORD>(r) + g + b) / 3;
 color = MakeColor(c, c, c);
 }
);
 return bmp;
}

// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
 ProcessImage(bmp,
 [](DWORD& color) {
 BYTE r0, g0, b0;
 GetRGB(color, r0, g0, b0);

 WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
 WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
 WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));

 color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
 }
);
 return bmp;
}

// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
 ProcessImage(bmp,
 [mask](DWORD& color) {
 color = color & mask;
 }
);
 return bmp;
}

// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
 if (percent > 100)
 throw invalid_argument("Darken: percent must less than 100.");

 double factor = percent / 100.0;

 ProcessImage(bmp,
 [factor](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);
 r = static_cast<BYTE>(factor*r);
 g = static_cast<BYTE>(factor*g);
 b = static_cast<BYTE>(factor*b);
 color = MakeColor(r, g, b);
 }
);
 return bmp;
}

// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
 // The ProcessImage function processes the image in parallel.
 // The following combinable objects enable the callback function
 // to increment the color counts without using a lock.
 combinable<unsigned int> reds;
 combinable<unsigned int> greens;
 combinable<unsigned int> blues;

 ProcessImage(bmp,
 [&](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);
 if (r >= g && r >= b)
 reds.local()++;
 else if (g >= r && g >= b)
 greens.local()++;
 else
 blues.local()++;
 }
);

 // Determine which color is dominant and return the corresponding
 // color mask.

 unsigned int r = reds.combine(plus<unsigned int>());
 unsigned int g = greens.combine(plus<unsigned int>());
 unsigned int b = blues.combine(plus<unsigned int>());

 if (r + r >= g + b)
 return 0x00ff0000;
 else if (g + g >= r + b)
 return 0x0000ff00;
 else
 return 0x000000ff;
}

The following function, GetColorDominance , also calls the ProcessImage function. However, instead of changing
the value of each color, this function uses concurrency::combinable objects to compute whether the red, green, or
blue color component dominates the image.

The following function, GetEncoderClsid , retrieves the class identifier for the given MIME type of an encoder. The
application uses this function to retrieve the encoder for a bitmap.

// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
 UINT num = 0; // number of image encoders
 UINT size = 0; // size of the image encoder array in bytes

 ImageCodecInfo* pImageCodecInfo = nullptr;

 GetImageEncodersSize(&num, &size);
 if(size == 0)
 return -1; // Failure

 pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
 if(pImageCodecInfo == nullptr)
 return -1; // Failure

 GetImageEncoders(num, size, pImageCodecInfo);

 for(UINT j = 0; j < num; ++j)
 {
 if(wcscmp(pImageCodecInfo[j].MimeType, format) == 0)
 {
 *pClsid = pImageCodecInfo[j].Clsid;
 free(pImageCodecInfo);
 return j; // Success
 }
 }

 free(pImageCodecInfo);
 return -1; // Failure
}

Creating the Image Processing Network

To create the image processing network

[Top]

This section describes how to create a network of asynchronous message blocks that perform image processing
on every JPEG (.jpg) image in a given directory. The network performs the following image-processing
operations:

1. For any image that is authored by Tom, convert to grayscale.

2. For any image that has red as the dominant color, remove the green and blue components and then
darken it.

3. For any other image, apply sepia toning.

The network applies only the first image-processing operation that matches one of these conditions. For
example, if an image is authored by Tom and has red as its dominant color, the image is only converted to
grayscale.

After the network performs each image-processing operation, it saves the image to disk as a bitmap (.bmp) file.

The following steps show how to create a function that implements this image processing network and applies
that network to every JPEG image in a given directory.

1. Create a function, ProcessImages , that takes the name of a directory on disk.

void ProcessImages(const wstring& directory)
{
}

// Holds the number of active image processing operations and
// signals to the main thread that processing is complete.
countdown_event active(0);

// Maps Bitmap objects to their original file names.
map<Bitmap*, wstring> bitmap_file_names;

 //
 // Create the nodes of the network.
 //

 // Loads Bitmap objects from disk.
 transformer<wstring, Bitmap*> load_bitmap(
 [&](wstring file_name) -> Bitmap* {
 Bitmap* bmp = new Bitmap(file_name.c_str());
 if (bmp != nullptr)
 bitmap_file_names.insert(make_pair(bmp, file_name));
 return bmp;
 }
);

 // Holds loaded Bitmap objects.
 unbounded_buffer<Bitmap*> loaded_bitmaps;

 // Converts images that are authored by Tom to grayscale.
 transformer<Bitmap*, Bitmap*> grayscale(
 [](Bitmap* bmp) {
 return Grayscale(bmp);
 },
 nullptr,
 [](Bitmap* bmp) -> bool {
 if (bmp == nullptr)
 return false;

 // Retrieve the artist name from metadata.
 UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
 if (size == 0)
 // Image does not have the Artist property.
 return false;

 PropertyItem* artistProperty = (PropertyItem*) malloc(size);
 bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);
 string artist(reinterpret_cast<char*>(artistProperty->value));
 free(artistProperty);

 return (artist.find("Tom ") == 0);
 }
);

 // Removes the green and blue color components from images that have red as
 // their dominant color.

2. In the ProcessImages function, create a countdown_event variable. The countdown_event class is shown
later in this walkthrough.

3. Create a std::map object that associates a Bitmap object with its original file name.

4. Add the following code to define the members of the image-processing network.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class

 transformer<Bitmap*, Bitmap*> colormask(
 [](Bitmap* bmp) {
 return ColorMask(bmp, 0x00ff0000);
 },
 nullptr,
 [](Bitmap* bmp) -> bool {
 if (bmp == nullptr)
 return false;
 return (GetColorDominance(bmp) == 0x00ff0000);
 }
);

 // Darkens the color of the provided Bitmap object.
 transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
 return Darken(bmp, 50);
 });

 // Applies sepia toning to the remaining images.
 transformer<Bitmap*, Bitmap*> sepiatone(
 [](Bitmap* bmp) {
 return Sepiatone(bmp);
 },
 nullptr,
 [](Bitmap* bmp) -> bool { return bmp != nullptr; }
);

 // Saves Bitmap objects to disk.
 transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
 // Replace the file extension with .bmp.
 wstring file_name = bitmap_file_names[bmp];
 file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");

 // Save the processed image.
 CLSID bmpClsid;
 GetEncoderClsid(L"image/bmp", &bmpClsid);
 bmp->Save(file_name.c_str(), &bmpClsid);

 return bmp;
 });

 // Deletes Bitmap objects.
 transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {
 delete bmp;
 return nullptr;
 });

 // Decrements the event counter.
 call<Bitmap*> decrement([&](Bitmap* _) {
 active.signal();
 });

5. Add the following code to connect the network.

//
// Connect the network.
//

load_bitmap.link_target(&loaded_bitmaps);

loaded_bitmaps.link_target(&grayscale);
loaded_bitmaps.link_target(&colormask);
colormask.link_target(&darken);
loaded_bitmaps.link_target(&sepiatone);
loaded_bitmaps.link_target(&decrement);

grayscale.link_target(&save_bitmap);
darken.link_target(&save_bitmap);
sepiatone.link_target(&save_bitmap);

save_bitmap.link_target(&delete_bitmap);
delete_bitmap.link_target(&decrement);

// Traverse all files in the directory.
wstring searchPattern = directory;
searchPattern.append(L"*");

WIN32_FIND_DATA fileFindData;
HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
if (hFind == INVALID_HANDLE_VALUE)
 return;
do
{
 if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
 {
 wstring file = fileFindData.cFileName;

 // Process only JPEG files.
 if (file.rfind(L".jpg") == file.length() - 4)
 {
 // Form the full path to the file.
 wstring full_path(directory);
 full_path.append(L"\\");
 full_path.append(file);

 // Increment the count of work items.
 active.add_count();

 // Send the path name to the network.
 send(load_bitmap, full_path);
 }
 }
}
while (FindNextFile(hFind, &fileFindData) != 0);
FindClose(hFind);

// Wait for all operations to finish.
active.wait();

6. Add the following code to send to the head of the network the full path of each JPEG file in the directory.

7. Wait for the countdown_event variable to reach zero.

The following table describes the members of the network.

MEMBER DESCRIPTION

load_bitmap A concurrency::transformer object that loads a Bitmap

object from disk and adds an entry to the map object to
associate the image with its original file name.

loaded_bitmaps A concurrency::unbounded_buffer object that sends the
loaded images to the image processing filters.

grayscale A transformer object that converts images that are
authored by Tom to grayscale. It uses the metadata of the
image to determine its author.

colormask A transformer object that removes the green and blue
color components from images that have red as the
dominant color.

darken A transformer object that darkens images that have red as
the dominant color.

sepiatone A transformer object that applies sepia toning to images
that are not authored by Tom and are not predominantly
red.

save_bitmap A transformer object that saves the processed image to
disk as a bitmap. save_bitmap retrieves the original file
name from the map object and changes its file name
extension to .bmp.

delete_bitmap A transformer object that frees the memory for the
images.

decrement A concurrency::call object that acts as the terminal node in
the network. It decrements the countdown_event object to
signal to the main application that an image has been
processed.

The loaded_bitmaps message buffer is important because, as an unbounded_buffer object, it offers Bitmap

objects to multiple receivers. When a target block accepts a Bitmap object, the unbounded_buffer object does not
offer that Bitmap object to any other targets. Therefore, the order in which you link objects to an
unbounded_buffer object is important. The grayscale , colormask , and sepiatone message blocks each use a

filter to accept only certain Bitmap objects. The decrement message buffer is an important target of the
loaded_bitmaps message buffer because it accepts all Bitmap objects that are rejected by the other message

buffers. An unbounded_buffer object is required to propagate messages in order. Therefore, an unbounded_buffer
object blocks until a new target block is linked to it and accepts the message if no current target block accepts
that message.

If your application requires that multiple message blocks process the message, instead of just the one message
block that first accepts the message, you can use another message block type, such as overwrite_buffer . The
overwrite_buffer class holds one message at a time, but it propagates that message to each of its targets.

The following illustration shows the image processing network:

The countdown_event object in this example enables the image processing network to inform the main
application when all images have been processed. The countdown_event class uses a concurrency::event object to
signal when a counter value reaches zero. The main application increments the counter every time that it sends a
file name to the network. The terminal node of the network decrements the counter after each image has been
processed. After the main application traverses the specified directory, it waits for the countdown_event object to
signal that its counter has reached zero.

The following example shows the countdown_event class:

// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
 countdown_event(unsigned int count = 0)
 : _current(static_cast<long>(count))
 {
 // Set the event if the initial count is zero.
 if (_current == 0L)
 _event.set();
 }

 // Decrements the event counter.
 void signal() {
 if(InterlockedDecrement(&_current) == 0L) {
 _event.set();
 }
 }

 // Increments the event counter.
 void add_count() {
 if(InterlockedIncrement(&_current) == 1L) {
 _event.reset();
 }
 }

 // Blocks the current context until the event is set.
 void wait() {
 _event.wait();
 }

private:
 // The current count.
 volatile long _current;
 // The event that is set when the counter reaches zero.
 event _event;

 // Disable copy constructor.
 countdown_event(const countdown_event&);
 // Disable assignment.
 countdown_event const & operator=(countdown_event const&);
};

The Complete Example

// image-processing-network.cpp
// compile with: /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib
#include <windows.h>
#include <gdiplus.h>
#include <iostream>
#include <map>
#include <agents.h>
#include <ppl.h>

using namespace concurrency;
using namespace Gdiplus;
using namespace std;

// Retrieves the red, green, and blue components from the given

[Top]

The following code shows the complete example. The wmain function manages the GDI+ library and calls the
ProcessImages function to process the JPEG files in the Sample Pictures directory.

// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
 r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
 g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
 b = static_cast<BYTE>((color & 0x000000ff));
}

// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
 return (r<<16) | (g<<8) | (b);
}

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
 int width = bmp->GetWidth();
 int height = bmp->GetHeight();

 // Lock the bitmap.
 BitmapData bitmapData;
 Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
 bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

 // Get a pointer to the bitmap data.
 DWORD* image_bits = (DWORD*)bitmapData.Scan0;

 // Call the function for each pixel in the image.
 parallel_for (0, height, [&, width](int y)
 {
 for (int x = 0; x < width; ++x)
 {
 // Get the current pixel value.
 DWORD* curr_pixel = image_bits + (y * width) + x;

 // Call the function.
 f(*curr_pixel);
 }
 });

 // Unlock the bitmap.
 bmp->UnlockBits(&bitmapData);
}

// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
 ProcessImage(bmp,
 [](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);

 // Set each color component to the average of
 // the original components.
 BYTE c = (static_cast<WORD>(r) + g + b) / 3;
 color = MakeColor(c, c, c);
 }
);
 return bmp;
}

// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
 ProcessImage(bmp,
 [](DWORD& color) {
 BYTE r0, g0, b0;

 BYTE r0, g0, b0;
 GetRGB(color, r0, g0, b0);

 WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
 WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
 WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));

 color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
 }
);
 return bmp;
}

// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
 ProcessImage(bmp,
 [mask](DWORD& color) {
 color = color & mask;
 }
);
 return bmp;
}

// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
 if (percent > 100)
 throw invalid_argument("Darken: percent must less than 100.");

 double factor = percent / 100.0;

 ProcessImage(bmp,
 [factor](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);
 r = static_cast<BYTE>(factor*r);
 g = static_cast<BYTE>(factor*g);
 b = static_cast<BYTE>(factor*b);
 color = MakeColor(r, g, b);
 }
);
 return bmp;
}

// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
 // The ProcessImage function processes the image in parallel.
 // The following combinable objects enable the callback function
 // to increment the color counts without using a lock.
 combinable<unsigned int> reds;
 combinable<unsigned int> greens;
 combinable<unsigned int> blues;

 ProcessImage(bmp,
 [&](DWORD& color) {
 BYTE r, g, b;
 GetRGB(color, r, g, b);
 if (r >= g && r >= b)
 reds.local()++;
 else if (g >= r && g >= b)
 greens.local()++;
 else
 blues.local()++;
 }
);

 // Determine which color is dominant and return the corresponding

 // Determine which color is dominant and return the corresponding
 // color mask.

 unsigned int r = reds.combine(plus<unsigned int>());
 unsigned int g = greens.combine(plus<unsigned int>());
 unsigned int b = blues.combine(plus<unsigned int>());

 if (r + r >= g + b)
 return 0x00ff0000;
 else if (g + g >= r + b)
 return 0x0000ff00;
 else
 return 0x000000ff;
}

// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
 UINT num = 0; // number of image encoders
 UINT size = 0; // size of the image encoder array in bytes

 ImageCodecInfo* pImageCodecInfo = nullptr;

 GetImageEncodersSize(&num, &size);
 if(size == 0)
 return -1; // Failure

 pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
 if(pImageCodecInfo == nullptr)
 return -1; // Failure

 GetImageEncoders(num, size, pImageCodecInfo);

 for(UINT j = 0; j < num; ++j)
 {
 if(wcscmp(pImageCodecInfo[j].MimeType, format) == 0)
 {
 *pClsid = pImageCodecInfo[j].Clsid;
 free(pImageCodecInfo);
 return j; // Success
 }
 }

 free(pImageCodecInfo);
 return -1; // Failure
}

// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
 countdown_event(unsigned int count = 0)
 : _current(static_cast<long>(count))
 {
 // Set the event if the initial count is zero.
 if (_current == 0L)
 _event.set();
 }

 // Decrements the event counter.
 void signal() {
 if(InterlockedDecrement(&_current) == 0L) {
 _event.set();
 }
 }

 // Increments the event counter.
 void add_count() {

 if(InterlockedIncrement(&_current) == 1L) {
 _event.reset();
 }
 }

 // Blocks the current context until the event is set.
 void wait() {
 _event.wait();
 }

private:
 // The current count.
 volatile long _current;
 // The event that is set when the counter reaches zero.
 event _event;

 // Disable copy constructor.
 countdown_event(const countdown_event&);
 // Disable assignment.
 countdown_event const & operator=(countdown_event const&);
};

// Demonstrates how to set up a message network that performs a series of
// image processing operations on each JPEG image in the given directory and
// saves each altered image as a Windows bitmap.
void ProcessImages(const wstring& directory)
{
 // Holds the number of active image processing operations and
 // signals to the main thread that processing is complete.
 countdown_event active(0);

 // Maps Bitmap objects to their original file names.
 map<Bitmap*, wstring> bitmap_file_names;

 //
 // Create the nodes of the network.
 //

 // Loads Bitmap objects from disk.
 transformer<wstring, Bitmap*> load_bitmap(
 [&](wstring file_name) -> Bitmap* {
 Bitmap* bmp = new Bitmap(file_name.c_str());
 if (bmp != nullptr)
 bitmap_file_names.insert(make_pair(bmp, file_name));
 return bmp;
 }
);

 // Holds loaded Bitmap objects.
 unbounded_buffer<Bitmap*> loaded_bitmaps;

 // Converts images that are authored by Tom to grayscale.
 transformer<Bitmap*, Bitmap*> grayscale(
 [](Bitmap* bmp) {
 return Grayscale(bmp);
 },
 nullptr,
 [](Bitmap* bmp) -> bool {
 if (bmp == nullptr)
 return false;

 // Retrieve the artist name from metadata.
 UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
 if (size == 0)
 // Image does not have the Artist property.
 return false;

 PropertyItem* artistProperty = (PropertyItem*) malloc(size);
 bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);

 string artist(reinterpret_cast<char*>(artistProperty->value));
 free(artistProperty);

 return (artist.find("Tom ") == 0);
 }
);

 // Removes the green and blue color components from images that have red as
 // their dominant color.
 transformer<Bitmap*, Bitmap*> colormask(
 [](Bitmap* bmp) {
 return ColorMask(bmp, 0x00ff0000);
 },
 nullptr,
 [](Bitmap* bmp) -> bool {
 if (bmp == nullptr)
 return false;
 return (GetColorDominance(bmp) == 0x00ff0000);
 }
);

 // Darkens the color of the provided Bitmap object.
 transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
 return Darken(bmp, 50);
 });

 // Applies sepia toning to the remaining images.
 transformer<Bitmap*, Bitmap*> sepiatone(
 [](Bitmap* bmp) {
 return Sepiatone(bmp);
 },
 nullptr,
 [](Bitmap* bmp) -> bool { return bmp != nullptr; }
);

 // Saves Bitmap objects to disk.
 transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
 // Replace the file extension with .bmp.
 wstring file_name = bitmap_file_names[bmp];
 file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");

 // Save the processed image.
 CLSID bmpClsid;
 GetEncoderClsid(L"image/bmp", &bmpClsid);
 bmp->Save(file_name.c_str(), &bmpClsid);

 return bmp;
 });

 // Deletes Bitmap objects.
 transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {
 delete bmp;
 return nullptr;
 });

 // Decrements the event counter.
 call<Bitmap*> decrement([&](Bitmap* _) {
 active.signal();
 });

 //
 // Connect the network.
 //

 load_bitmap.link_target(&loaded_bitmaps);

 loaded_bitmaps.link_target(&grayscale);
 loaded_bitmaps.link_target(&colormask);
 colormask.link_target(&darken);

 colormask.link_target(&darken);
 loaded_bitmaps.link_target(&sepiatone);
 loaded_bitmaps.link_target(&decrement);

 grayscale.link_target(&save_bitmap);
 darken.link_target(&save_bitmap);
 sepiatone.link_target(&save_bitmap);

 save_bitmap.link_target(&delete_bitmap);
 delete_bitmap.link_target(&decrement);

 // Traverse all files in the directory.
 wstring searchPattern = directory;
 searchPattern.append(L"*");

 WIN32_FIND_DATA fileFindData;
 HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
 if (hFind == INVALID_HANDLE_VALUE)
 return;
 do
 {
 if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
 {
 wstring file = fileFindData.cFileName;

 // Process only JPEG files.
 if (file.rfind(L".jpg") == file.length() - 4)
 {
 // Form the full path to the file.
 wstring full_path(directory);
 full_path.append(L"\\");
 full_path.append(file);

 // Increment the count of work items.
 active.add_count();

 // Send the path name to the network.
 send(load_bitmap, full_path);
 }
 }
 }
 while (FindNextFile(hFind, &fileFindData) != 0);
 FindClose(hFind);

 // Wait for all operations to finish.
 active.wait();
}

int wmain()
{
 GdiplusStartupInput gdiplusStartupInput;
 ULONG_PTR gdiplusToken;

 // Initialize GDI+.
 GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);

 // Perform image processing.
 // TODO: Change this path if necessary.
 ProcessImages(L"C:\\Users\\Public\\Pictures\\Sample Pictures");

 // Shutdown GDI+.
 GdiplusShutdown(gdiplusToken);
}

The following illustration shows sample output. Each source image is above its corresponding modified image.

Compiling the Code

See also

Lighthouse is authored by Tom Alphin and therefore is converted to grayscale. Chrysanthemum , Desert , Koala ,
and Tulips have red as the dominant color and therefore have the blue and green color components removed
and are darkened. Hydrangeas , Jellyfish , and Penguins match the default criteria and therefore are sepia
toned.

[Top]

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
image-processing-network.cpp and then run the following command in a Visual Studio Command Prompt

window.

cl.exe /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib

Concurrency Runtime Walkthroughs

Walkthrough: Implementing Futures
4/25/2019 • 5 minutes to read • Edit Online

IMPORTANT

To implement the async_future class

template <typename T>
class async_future
{
public:
private:
};

// Executes the asynchronous work function.
task_group _tasks;

// Stores the result of the asynchronous work function.
single_assignment<T> _value;

This topic shows how to implement futures in your application. The topic demonstrates how to combine existing
functionality in the Concurrency Runtime into something that does more.

This topic illustrates the concept of futures for demonstration purposes. We recommend that you use std::future or
concurrency::task when you require an asynchronous task that computes a value for later use.

A task is a computation that can be decomposed into additional, more fine-grained, computations. A future is an
asynchronous task that computes a value for later use.

To implement futures, this topic defines the async_future class. The async_future class uses these components
of the Concurrency Runtime: the concurrency::task_group class and the concurrency::single_assignment class. The
async_future class uses the task_group class to compute a value asynchronously and the single_assignment

class to store the result of the computation. The constructor of the async_future class takes a work function that
computes the result, and the get method retrieves the result.

1. Declare a template class named async_future that is parameterized on the type of the resulting computation.
Add public and private sections to this class.

1. In the private section of the async_future class, declare a task_group and a single_assignment data
member.

1. In the public section of the async_future class, implement the constructor. The constructor is a template that
is parameterized on the work function that computes the result. The constructor asynchronously executes the
work function in the task_group data member and uses the concurrency::send function to write the result to
the single_assignment data member.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-implementing-futures.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/future-class

template <class Functor>
explicit async_future(Functor&& fn)
{
 // Execute the work function in a task group and send the result
 // to the single_assignment object.
 _tasks.run([fn, this]() {
 send(_value, fn());
 });
}

~async_future()
{
 // Wait for the task to finish.
 _tasks.wait();
}

// Retrieves the result of the work function.
// This method blocks if the async_future object is still
// computing the value.
T get()
{
 return receive(_value);
}

Example
Description

Code

// futures.cpp
// compile with: /EHsc
#include <ppl.h>
#include <agents.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <random>

using namespace concurrency;
using namespace std;

template <typename T>
class async_future
{
public:
 template <class Functor>
 explicit async_future(Functor&& fn)
 {
 // Execute the work function in a task group and send the result

1. In the public section of the async_future class, implement the destructor. The destructor waits for the task to
finish.

1. In the public section of the async_future class, implement the get method. This method uses the
concurrency::receive function to retrieve the result of the work function.

The following example shows the complete async_future class and an example of its usage. The wmain function
creates a std::vector object that contains 10,000 random integer values. It then uses async_future objects to find
the smallest and largest values that are contained in the vector object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class

 // Execute the work function in a task group and send the result
 // to the single_assignment object.
 _tasks.run([fn, this]() {
 send(_value, fn());
 });
 }

 ~async_future()
 {
 // Wait for the task to finish.
 _tasks.wait();
 }

 // Retrieves the result of the work function.
 // This method blocks if the async_future object is still
 // computing the value.
 T get()
 {
 return receive(_value);
 }

private:
 // Executes the asynchronous work function.
 task_group _tasks;

 // Stores the result of the asynchronous work function.
 single_assignment<T> _value;
};

int wmain()
{
 // Create a vector of 10000 integers, where each element
 // is between 0 and 9999.
 mt19937 gen(2);
 vector<int> values(10000);
 generate(begin(values), end(values), [&gen]{ return gen()%10000; });

 // Create a async_future object that finds the smallest value in the
 // vector.
 async_future<int> min_value([&]() -> int {
 int smallest = INT_MAX;
 for_each(begin(values), end(values), [&](int value) {
 if (value < smallest)
 {
 smallest = value;
 }
 });
 return smallest;
 });

 // Create a async_future object that finds the largest value in the
 // vector.
 async_future<int> max_value([&]() -> int {
 int largest = INT_MIN;
 for_each(begin(values), end(values), [&](int value) {
 if (value > largest)
 {
 largest = value;
 }
 });
 return largest;
 });

 // Calculate the average value of the vector while the async_future objects
 // work in the background.
 int sum = accumulate(begin(values), end(values), 0);
 int average = sum / values.size();

 // Print the smallest, largest, and average values.

 wcout << L"smallest: " << min_value.get() << endl
 << L"largest: " << max_value.get() << endl
 << L"average: " << average << endl;
}

Comments

smallest: 0
largest: 9999
average: 4981

Robust Programming

// futures-with-eh.cpp
// compile with: /EHsc
#include <ppl.h>
#include <agents.h>
#include <vector>
#include <algorithm>
#include <iostream>

using namespace concurrency;
using namespace std;

template <typename T>
class async_future
{
public:
 template <class Functor>
 explicit async_future(Functor&& fn)
 {
 // Execute the work function in a task group and send the result
 // to the single_assignment object.
 _tasks.run([fn, this]() {
 send(_value, fn());
 });
 }

 ~async_future()
 {
 // Wait for the task to finish.
 _tasks.wait();
 }

 // Retrieves the result of the work function.
 // This method blocks if the async_future object is still
 // computing the value.
 T get()
 {
 // Wait for the task to finish.

This example produces the following output:

The example uses the async_future::get method to retrieve the results of the computation. The
async_future::get method waits for the computation to finish if the computation is still active.

To extend the async_future class to handle exceptions that are thrown by the work function, modify the
async_future::get method to call the concurrency::task_group::wait method. The task_group::wait method

throws any exceptions that were generated by the work function.

The following example shows the modified version of the async_future class. The wmain function uses a try -
catch block to print the result of the async_future object or to print the value of the exception that is generated

by the work function.

 // Wait for the task to finish.
 // The wait method throws any exceptions that were generated
 // by the work function.
 _tasks.wait();

 // Return the result of the computation.
 return receive(_value);
 }

private:
 // Executes the asynchronous work function.
 task_group _tasks;

 // Stores the result of the asynchronous work function.
 single_assignment<T> _value;
};

int wmain()
{
 // For illustration, create a async_future with a work
 // function that throws an exception.
 async_future<int> f([]() -> int {
 throw exception("error");
 });

 // Try to read from the async_future object.
 try
 {
 int value = f.get();
 wcout << L"f contains value: " << value << endl;
 }
 catch (const exception& e)
 {
 wcout << L"caught exception: " << e.what() << endl;
 }
}

caught exception: error

Compiling the Code

See also

This example produces the following output:

For more information about the exception handling model in the Concurrency Runtime, see Exception Handling.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named futures.cpp and
then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc futures.cpp

Concurrency Runtime Walkthroughs
Exception Handling
task_group Class
single_assignment Class

Walkthrough: Using join to Prevent Deadlock
4/25/2019 • 10 minutes to read • Edit Online

Prerequisites

Sections

The Dining Philosophers Problem

This topic uses the dining philosophers problem to illustrate how to use the concurrency::join class to prevent
deadlock in your application. In a software application, deadlock occurs when two or more processes each hold a
resource and mutually wait for another process to release some other resource.

The dining philosophers problem is a specific example of the general set of problems that may occur when a set
of resources is shared among multiple concurrent processes.

Read the following topics before you start this walkthrough:

Asynchronous Agents

Walkthrough: Creating an Agent-Based Application

Asynchronous Message Blocks

Message Passing Functions

Synchronization Data Structures

This walkthrough contains the following sections:

The Dining Philosophers Problem

A Naïve Implementation

Using join to Prevent Deadlock

The dining philosophers problem illustrates how deadlock occurs in an application. In this problem, five
philosophers sit at a round table. Every philosopher alternates between thinking and eating. Every philosopher
must share a chopstick with the neighbor to the left and another chopstick with the neighbor to the right. The
following illustration shows this layout.

To eat, a philosopher must hold two chopsticks. If every philosopher holds just one chopstick and is waiting for
another one, then no philosopher can eat and all starve.

[Top]

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-using-join-to-prevent-deadlock.md

 A Naïve Implementation

Example
Description

Code

// philosophers-deadlock.cpp
// compile with: /EHsc
#include <agents.h>
#include <string>
#include <array>
#include <iostream>
#include <algorithm>
#include <random>

using namespace concurrency;
using namespace std;

// Defines a single chopstick.
typedef int chopstick;

// The total number of philosophers.
const int philosopher_count = 5;

// The number of times each philosopher should eat.
const int eat_count = 50;

// A shared array of critical sections. Each critical section
// guards access to a single chopstick.
critical_section locks[philosopher_count];

// Implements the logic for a single dining philosopher.
class philosopher : public agent
{
public:
 explicit philosopher(chopstick& left, chopstick& right, const wstring& name)
 : _left(left)
 , _right(right)
 , _name(name)
 , _random_generator(42)
 {
 send(_times_eaten, 0);
 }

The following example shows a naïve implementation of the dining philosophers problem. The philosopher class,
which derives from concurrency::agent, enables each philosopher to act independently. The example uses a shared
array of concurrency::critical_section objects to give each philosopher object exclusive access to a pair of
chopsticks.

To relate the implementation to the illustration, the philosopher class represents one philosopher. An int
variable represents each chopstick. The critical_section objects serve as holders on which the chopsticks rest.
The run method simulates the life of the philosopher. The think method simulates the act of thinking and the
eat method simulates the act of eating.

A philosopher object locks both critical_section objects to simulate the removal of the chopsticks from the
holders before it calls the eat method. After the call to eat , the philosopher object returns the chopsticks to the
holders by setting the critical_section objects back to the unlocked state.

The pickup_chopsticks method illustrates where deadlock can occur. If every philosopher object gains access to
one of the locks, then no philosopher object can continue because the other lock is controlled by another
philosopher object.

 }

 // Retrieves the number of times the philosopher has eaten.
 int times_eaten()
 {
 return receive(_times_eaten);
 }

 // Retrieves the name of the philosopher.
 wstring name() const
 {
 return _name;
 }

protected:
 // Performs the main logic of the dining philosopher algorithm.
 void run()
 {
 // Repeat the thinks/eat cycle a set number of times.
 for (int n = 0; n < eat_count; ++n)
 {
 think();

 pickup_chopsticks();
 eat();
 send(_times_eaten, n+1);
 putdown_chopsticks();
 }

 done();
 }

 // Gains access to the chopsticks.
 void pickup_chopsticks()
 {
 // Deadlock occurs here if each philosopher gains access to one
 // of the chopsticks and mutually waits for another to release
 // the other chopstick.
 locks[_left].lock();
 locks[_right].lock();
 }

 // Releases the chopsticks for others.
 void putdown_chopsticks()
 {
 locks[_right].unlock();
 locks[_left].unlock();
 }

 // Simulates thinking for a brief period of time.
 void think()
 {
 random_wait(100);
 }

 // Simulates eating for a brief period of time.
 void eat()
 {
 random_wait(100);
 }

private:
 // Yields the current context for a random period of time.
 void random_wait(unsigned int max)
 {
 concurrency::wait(_random_generator()%max);
 }

private:
 // Index of the left chopstick in the chopstick array.

 // Index of the left chopstick in the chopstick array.
 chopstick& _left;
 // Index of the right chopstick in the chopstick array.
 chopstick& _right;

 // The name of the philosopher.
 wstring _name;
 // Stores the number of times the philosopher has eaten.
 overwrite_buffer<int> _times_eaten;

 // A random number generator.
 mt19937 _random_generator;
};

int wmain()
{
 // Create an array of index values for the chopsticks.
 array<chopstick, philosopher_count> chopsticks = {0, 1, 2, 3, 4};

 // Create an array of philosophers. Each pair of neighboring
 // philosophers shares one of the chopsticks.
 array<philosopher, philosopher_count> philosophers = {
 philosopher(chopsticks[0], chopsticks[1], L"aristotle"),
 philosopher(chopsticks[1], chopsticks[2], L"descartes"),
 philosopher(chopsticks[2], chopsticks[3], L"hobbes"),
 philosopher(chopsticks[3], chopsticks[4], L"socrates"),
 philosopher(chopsticks[4], chopsticks[0], L"plato"),
 };

 // Begin the simulation.
 for_each (begin(philosophers), end(philosophers), [](philosopher& p) {
 p.start();
 });

 // Wait for each philosopher to finish and print his name and the number
 // of times he has eaten.
 for_each (begin(philosophers), end(philosophers), [](philosopher& p) {
 agent::wait(&p);
 wcout << p.name() << L" ate " << p.times_eaten() << L" times." << endl;
 });
}

Compiling the Code

Using join to Prevent Deadlock

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
philosophers-deadlock.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc philosophers-deadlock.cpp

[Top]

This section shows how to use message buffers and message-passing functions to eliminate the chance of
deadlock.

To relate this example to the earlier one, the philosopher class replaces each critical_section object by using a
concurrency::unbounded_buffer object and a join object. The join object serves as an arbiter that provides the
chopsticks to the philosopher.

This example uses the unbounded_buffer class because when a target receives a message from an
unbounded_buffer object, the message is removed from the message queue. This enables an unbounded_buffer

object that holds a message to indicate that the chopstick is available. An unbounded_buffer object that holds no

To prevent deadlock in this example

// A shared array of critical sections. Each critical section
// guards access to a single chopstick.
critical_section locks[philosopher_count];

// Message buffer for the left chopstick.
unbounded_buffer<chopstick>& _left;
// Message buffer for the right chopstick.
unbounded_buffer<chopstick>& _right;

explicit philosopher(unbounded_buffer<chopstick>& left,
 unbounded_buffer<chopstick>& right, const wstring& name)
 : _left(left)
 , _right(right)
 , _name(name)
 , _random_generator(42)
{
 send(_times_eaten, 0);
}

// Gains access to the chopsticks.
vector<int> pickup_chopsticks()
{
 // Create a non-greedy join object and link it to the left and right
 // chopstick.
 join<chopstick, non_greedy> j(2);
 _left.link_target(&j);
 _right.link_target(&j);

 // Receive from the join object. This resolves the deadlock situation
 // because a non-greedy join removes the messages only when a message
 // is available from each of its sources.
 return receive(&j);
}

message indicates that the chopstick is being used.

This example uses a non-greedy join object because a non-greedy join gives each philosopher object access to
both chopsticks only when both unbounded_buffer objects contain a message. A greedy join would not prevent
deadlock because a greedy join accepts messages as soon as they become available. Deadlock can occur if all
greedy join objects receive one of the messages but wait forever for the other to become available.

For more information about greedy and non-greedy joins, and the differences between the various message
buffer types, see Asynchronous Message Blocks.

1. Remove the following code from the example.

1. Change the type of the _left and _right data members of the philosopher class to unbounded_buffer .

1. Modify the philosopher constructor to take unbounded_buffer objects as its parameters.

1. Modify the pickup_chopsticks method to use a non-greedy join object to receive messages from the
message buffers for both chopsticks.

1. Modify the putdown_chopsticks method to release access to the chopsticks by sending a message to the
message buffers for both chopsticks.

// Releases the chopsticks for others.
void putdown_chopsticks(int left, int right)
{
 // Add the values of the messages back to the message queue.
 asend(&_left, left);
 asend(&_right, right);
}

// Performs the main logic of the dining philosopher algorithm.
void run()
{
 // Repeat the thinks/eat cycle a set number of times.
 for (int n = 0; n < eat_count; ++n)
 {
 think();

 vector<int> v = pickup_chopsticks();

 eat();

 send(_times_eaten, n+1);

 putdown_chopsticks(v[0], v[1]);
 }

 done();
}

// Create an array of message buffers to hold the chopsticks.
array<unbounded_buffer<chopstick>, philosopher_count> chopsticks;

// Send a value to each message buffer in the array.
// The value of the message is not important. A buffer that contains
// any message indicates that the chopstick is available.
for_each (begin(chopsticks), end(chopsticks),
 [](unbounded_buffer<chopstick>& c) {
 send(c, 1);
});

Example
Description

Code

// philosophers-join.cpp
// compile with: /EHsc
#include <agents.h>
#include <string>
#include <array>
#include <iostream>
#include <algorithm>
#include <random>

1. Modify the run method to hold the results of the pickup_chopsticks method and to pass those results to the
putdown_chopsticks method.

1. Modify the declaration of the chopsticks variable in the wmain function to be an array of unbounded_buffer

objects that each hold one message.

The following shows the completed example that uses non-greedy join objects to eliminate the risk of deadlock.

#include <random>

using namespace concurrency;
using namespace std;

// Defines a single chopstick.
typedef int chopstick;

// The total number of philosophers.
const int philosopher_count = 5;

// The number of times each philosopher should eat.
const int eat_count = 50;

// Implements the logic for a single dining philosopher.
class philosopher : public agent
{
public:
 explicit philosopher(unbounded_buffer<chopstick>& left,
 unbounded_buffer<chopstick>& right, const wstring& name)
 : _left(left)
 , _right(right)
 , _name(name)
 , _random_generator(42)
 {
 send(_times_eaten, 0);
 }

 // Retrieves the number of times the philosopher has eaten.
 int times_eaten()
 {
 return receive(_times_eaten);
 }

 // Retrieves the name of the philosopher.
 wstring name() const
 {
 return _name;
 }

protected:
 // Performs the main logic of the dining philosopher algorithm.
 void run()
 {
 // Repeat the thinks/eat cycle a set number of times.
 for (int n = 0; n < eat_count; ++n)
 {
 think();

 vector<int> v = pickup_chopsticks();

 eat();

 send(_times_eaten, n+1);

 putdown_chopsticks(v[0], v[1]);
 }

 done();
 }

 // Gains access to the chopsticks.
 vector<int> pickup_chopsticks()
 {
 // Create a non-greedy join object and link it to the left and right
 // chopstick.
 join<chopstick, non_greedy> j(2);
 _left.link_target(&j);
 _right.link_target(&j);

 // Receive from the join object. This resolves the deadlock situation
 // because a non-greedy join removes the messages only when a message
 // is available from each of its sources.
 return receive(&j);
 }

 // Releases the chopsticks for others.
 void putdown_chopsticks(int left, int right)
 {
 // Add the values of the messages back to the message queue.
 asend(&_left, left);
 asend(&_right, right);
 }

 // Simulates thinking for a brief period of time.
 void think()
 {
 random_wait(100);
 }

 // Simulates eating for a brief period of time.
 void eat()
 {
 random_wait(100);
 }

private:
 // Yields the current context for a random period of time.
 void random_wait(unsigned int max)
 {
 concurrency::wait(_random_generator()%max);
 }

private:
 // Message buffer for the left chopstick.
 unbounded_buffer<chopstick>& _left;
 // Message buffer for the right chopstick.
 unbounded_buffer<chopstick>& _right;

 // The name of the philosopher.
 wstring _name;
 // Stores the number of times the philosopher has eaten.
 overwrite_buffer<int> _times_eaten;

 // A random number generator.
 mt19937 _random_generator;
};

int wmain()
{
 // Create an array of message buffers to hold the chopsticks.
 array<unbounded_buffer<chopstick>, philosopher_count> chopsticks;

 // Send a value to each message buffer in the array.
 // The value of the message is not important. A buffer that contains
 // any message indicates that the chopstick is available.
 for_each (begin(chopsticks), end(chopsticks),
 [](unbounded_buffer<chopstick>& c) {
 send(c, 1);
 });

 // Create an array of philosophers. Each pair of neighboring
 // philosophers shares one of the chopsticks.
 array<philosopher, philosopher_count> philosophers = {
 philosopher(chopsticks[0], chopsticks[1], L"aristotle"),
 philosopher(chopsticks[1], chopsticks[2], L"descartes"),
 philosopher(chopsticks[2], chopsticks[3], L"hobbes"),
 philosopher(chopsticks[3], chopsticks[4], L"socrates"),
 philosopher(chopsticks[4], chopsticks[0], L"plato"),

 philosopher(chopsticks[4], chopsticks[0], L"plato"),
 };

 // Begin the simulation.
 for_each (begin(philosophers), end(philosophers), [](philosopher& p) {
 p.start();
 });

 // Wait for each philosopher to finish and print his name and the number
 // of times he has eaten.
 for_each (begin(philosophers), end(philosophers), [](philosopher& p) {
 agent::wait(&p);
 wcout << p.name() << L" ate " << p.times_eaten() << L" times." << endl;
 });
}

Comments

aristotle ate 50 times.
descartes ate 50 times.
hobbes ate 50 times.
socrates ate 50 times.
plato ate 50 times.

Compiling the Code

See also

This example produces the following output.

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
philosophers-join.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc philosophers-join.cpp

[Top]

Concurrency Runtime Walkthroughs
Asynchronous Agents Library
Asynchronous Agents
Asynchronous Message Blocks
Message Passing Functions
Synchronization Data Structures

Walkthrough: Removing Work from a User-Interface
Thread
4/25/2019 • 13 minutes to read • Edit Online

Prerequisites

Sections

Creating the MFC Application

To create a Visual C++ MFC application

This document demonstrates how to use the Concurrency Runtime to move the work that is performed by the
user-interface (UI) thread in a Microsoft Foundation Classes (MFC) application to a worker thread. This document
also demonstrates how to improve the performance of a lengthy drawing operation.

Removing work from the UI thread by offloading blocking operations, for example, drawing, to worker threads
can improve the responsiveness of your application. This walkthrough uses a drawing routine that generates the
Mandelbrot fractal to demonstrate a lengthy blocking operation. The generation of the Mandelbrot fractal is also a
good candidate for parallelization because the computation of each pixel is independent of all other computations.

Read the following topics before you start this walkthrough:

Task Parallelism

Asynchronous Message Blocks

Message Passing Functions

Parallel Algorithms

Cancellation in the PPL

We also recommend that you understand the basics of MFC application development and GDI+ before you start
this walkthrough. For more information about MFC, see MFC Desktop Applications. For more information about
GDI+, see GDI+.

This walkthrough contains the following sections:

Creating the MFC Application

Implementing the Serial Version of the Mandelbrot Application

Removing Work from the User-Interface Thread

Improving Drawing Performance

Adding Support for Cancellation

This section describes how to create the basic MFC application.

1. Use the MFC Application Wizard to create an MFC application with all the default settings. See
Walkthrough: Using the New MFC Shell Controls for instructions on how to open the wizard for your
version of Visual Studio.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-removing-work-from-a-user-interface-thread.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://msdn.microsoft.com/library/windows/desktop/ms533798
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/walkthrough-using-the-new-mfc-shell-controls

 Implementing the Serial Version of the Mandelbrot Application

To implement the serial version of the Mandelbrot application

2. Type a name for the project, for example, Mandelbrot , and then click OK to display the MFC Application
Wizard.

3. In the Application Type pane, select Single document. Ensure that the Document/View architecture
support check box is cleared.

4. Click Finish to create the project and close the MFC Application Wizard.

Verify that the application was created successfully by building and running it. To build the application, on
the Build menu, click Build Solution. If the application builds successfully, run the application by clicking
Start Debugging on the Debug menu.

This section describes how to draw the Mandelbrot fractal. This version draws the Mandelbrot fractal to a GDI+
Bitmap object and then copies the contents of that bitmap to the client window.

#include <memory>

typedef std::shared_ptr<Gdiplus::Bitmap> BitmapPtr;

protected:
 // Draws the Mandelbrot fractal to the specified Bitmap object.
 void DrawMandelbrot(BitmapPtr);

protected:
 ULONG_PTR m_gdiplusToken;

//#ifdef _DEBUG
//#define new DEBUG_NEW
//#endif

using namespace Gdiplus;

1. In stdafx.h, add the following #include directive:

2. In ChildView.h, after the pragma directive, define the BitmapPtr type. The BitmapPtr type enables a
pointer to a Bitmap object to be shared by multiple components. The Bitmap object is deleted when it is
no longer referenced by any component.

3. In ChildView.h, add the following code to the protected section of the CChildView class:

4. In ChildView.cpp, comment out or remove the following lines.

In Debug builds, this step prevents the application from using the DEBUG_NEW allocator, which is
incompatible with GDI+.

5. In ChildView.cpp, add a using directive to the Gdiplus namespace.

6. Add the following code to the constructor and destructor of the CChildView class to initialize and shut
down GDI+.

https://docs.microsoft.com/windows/desktop/api/gdiplusheaders/nl-gdiplusheaders-bitmap

CChildView::CChildView()
{
 // Initialize GDI+.
 GdiplusStartupInput gdiplusStartupInput;
 GdiplusStartup(&m_gdiplusToken, &gdiplusStartupInput, NULL);
}

CChildView::~CChildView()
{
 // Shutdown GDI+.
 GdiplusShutdown(m_gdiplusToken);
}

// Draws the Mandelbrot fractal to the specified Bitmap object.
void CChildView::DrawMandelbrot(BitmapPtr pBitmap)
{
 if (pBitmap == NULL)
 return;

 // Get the size of the bitmap.
 const UINT width = pBitmap->GetWidth();
 const UINT height = pBitmap->GetHeight();

 // Return if either width or height is zero.
 if (width == 0 || height == 0)
 return;

 // Lock the bitmap into system memory.
 BitmapData bitmapData;
 Rect rectBmp(0, 0, width, height);
 pBitmap->LockBits(&rectBmp, ImageLockModeWrite, PixelFormat32bppRGB,
 &bitmapData);

 // Obtain a pointer to the bitmap bits.
 int* bits = reinterpret_cast<int*>(bitmapData.Scan0);

 // Real and imaginary bounds of the complex plane.
 double re_min = -2.1;
 double re_max = 1.0;
 double im_min = -1.3;
 double im_max = 1.3;

 // Factors for mapping from image coordinates to coordinates on the complex plane.
 double re_factor = (re_max - re_min) / (width - 1);
 double im_factor = (im_max - im_min) / (height - 1);

 // The maximum number of iterations to perform on each point.
 const UINT max_iterations = 1000;

 // Compute whether each point lies in the Mandelbrot set.
 for (UINT row = 0u; row < height; ++row)
 {
 // Obtain a pointer to the bitmap bits for the current row.
 int *destPixel = bits + (row * width);

 // Convert from image coordinate to coordinate on the complex plane.
 double y0 = im_max - (row * im_factor);

 for (UINT col = 0u; col < width; ++col)
 {
 // Convert from image coordinate to coordinate on the complex plane.
 double x0 = re_min + col * re_factor;

7. Implement the CChildView::DrawMandelbrot method. This method draws the Mandelbrot fractal to the
specified Bitmap object.

 double x = x0;
 double y = y0;

 UINT iter = 0;
 double x_sq, y_sq;
 while (iter < max_iterations && ((x_sq = x*x) + (y_sq = y*y) < 4))
 {
 double temp = x_sq - y_sq + x0;
 y = 2 * x * y + y0;
 x = temp;
 ++iter;
 }

 // If the point is in the set (or approximately close to it), color
 // the pixel black.
 if(iter == max_iterations)
 {
 *destPixel = 0;
 }
 // Otherwise, select a color that is based on the current iteration.
 else
 {
 BYTE red = static_cast<BYTE>((iter % 64) * 4);
 *destPixel = red<<16;
 }

 // Move to the next point.
 ++destPixel;
 }
 }

 // Unlock the bitmap from system memory.
 pBitmap->UnlockBits(&bitmapData);
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // Get the size of the client area of the window.
 RECT rc;
 GetClientRect(&rc);

 // Create a Bitmap object that has the width and height of
 // the client area.
 BitmapPtr pBitmap(new Bitmap(rc.right, rc.bottom));

 if (pBitmap != NULL)
 {
 // Draw the Mandelbrot fractal to the bitmap.
 DrawMandelbrot(pBitmap);

 // Draw the bitmap to the client area.
 Graphics g(dc);
 g.DrawImage(pBitmap.get(), 0, 0);
 }
}

8. Implement the CChildView::OnPaint method. This method calls CChildView::DrawMandelbrot and then
copies the contents of the Bitmap object to the window.

9. Verify that the application was updated successfully by building and running it.

The following illustration shows the results of the Mandelbrot application.

 Removing Work from the UI Thread

To remove the drawing work from the UI thread

Because the computation for each pixel is computationally expensive, the UI thread cannot process additional
messages until the overall computation finishes. This could decrease responsiveness in the application. However,
you can relieve this problem by removing work from the UI thread.

[Top]

This section shows how to remove the drawing work from the UI thread in the Mandelbrot application. By moving
drawing work from the UI thread to a worker thread, the UI thread can process messages as the worker thread
generates the image in the background.

The Concurrency Runtime provides three ways to run tasks: task groups, asynchronous agents, and lightweight
tasks. Although you can use any one of these mechanisms to remove work from the UI thread, this example uses
a concurrency::task_group object because task groups support cancellation. This walkthrough later uses
cancellation to reduce the amount of work that is performed when the client window is resized, and to perform
cleanup when the window is destroyed.

This example also uses a concurrency::unbounded_buffer object to enable the UI thread and the worker thread to
communicate with each other. After the worker thread produces the image, it sends a pointer to the Bitmap object
to the unbounded_buffer object and then posts a paint message to the UI thread. The UI thread then receives from
the unbounded_buffer object the Bitmap object and draws it to the client window.

#include <agents.h>
#include <ppl.h>

concurrency::task_group m_DrawingTasks;
concurrency::unbounded_buffer<BitmapPtr> m_MandelbrotImages;

using namespace concurrency;

1. In stdafx.h, add the following #include directives:

2. In ChildView.h, add task_group and unbounded_buffer member variables to the protected section of the
CChildView class. The task_group object holds the tasks that perform drawing; the unbounded_buffer

object holds the completed Mandelbrot image.

3. In ChildView.cpp, add a using directive to the concurrency namespace.

 Improving Drawing Performance

// Unlock the bitmap from system memory.
pBitmap->UnlockBits(&bitmapData);

// Add the Bitmap object to image queue.
send(m_MandelbrotImages, pBitmap);

// Post a paint message to the UI thread.
PostMessage(WM_PAINT);
// Invalidate the client area.
InvalidateRect(NULL, FALSE);

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // If the unbounded_buffer object contains a Bitmap object,
 // draw the image to the client area.
 BitmapPtr pBitmap;
 if (try_receive(m_MandelbrotImages, pBitmap))
 {
 if (pBitmap != NULL)
 {
 // Draw the bitmap to the client area.
 Graphics g(dc);
 g.DrawImage(pBitmap.get(), 0, 0);
 }
 }
 // Draw the image on a worker thread if the image is not available.
 else
 {
 RECT rc;
 GetClientRect(&rc);
 m_DrawingTasks.run([rc,this]() {
 DrawMandelbrot(BitmapPtr(new Bitmap(rc.right, rc.bottom)));
 });
 }
}

4. In the CChildView::DrawMandelbrot method, after the call to Bitmap::UnlockBits , call the concurrency::send
function to pass the Bitmap object to the UI thread. Then post a paint message to the UI thread and
invalidate the client area.

5. Update the CChildView::OnPaint method to receive the updated Bitmap object and draw the image to the
client window.

The CChildView::OnPaint method creates a task to generate the Mandelbrot image if one does not exist in
the message buffer. The message buffer will not contain a Bitmap object in cases such as the initial paint
message and when another window is moved in front of the client window.

6. Verify that the application was updated successfully by building and running it.

The UI is now more responsive because the drawing work is performed in the background.

[Top]

The generation of the Mandelbrot fractal is a good candidate for parallelization because the computation of each
pixel is independent of all other computations. To parallelize the drawing procedure, convert the outer for loop
in the CChildView::DrawMandelbrot method to a call to the concurrency::parallel_for algorithm, as follows.

// Compute whether each point lies in the Mandelbrot set.
parallel_for (0u, height, [&](UINT row)
{
 // Loop body omitted for brevity.
});

Adding Support for Cancellation

Cancelling Active Tasks

Responding to Cancellation

To a d d su p p o r t fo r c a n c e l l a t i o n i n t h e M a n d e l b r o t a p p l i c a t i o n

Because the computation of each bitmap element is independent, you do not have to synchronize the drawing
operations that access the bitmap memory. This enables performance to scale as the number of available
processors increases.

[Top]

This section describes how to handle window resizing and how to cancel any active drawing tasks when the
window is destroyed.

The document Cancellation in the PPL explains how cancellation works in the runtime. Cancellation is cooperative;
therefore, it does not occur immediately. To stop a canceled task, the runtime throws an internal exception during
a subsequent call from the task into the runtime. The previous section shows how to use the parallel_for

algorithm to improve the performance of the drawing task. The call to parallel_for enables the runtime to stop
the task, and therefore enables cancellation to work.

The Mandelbrot application creates Bitmap objects whose dimensions match the size of the client window. Every
time the client window is resized, the application creates an additional background task to generate an image for
the new window size. The application does not require these intermediate images; it requires only the image for
the final window size. To prevent the application from performing this additional work, you can cancel any active
drawing tasks in the message handlers for the WM_SIZE and WM_SIZING messages and then reschedule drawing
work after the window is resized.

To cancel active drawing tasks when the window is resized, the application calls the
concurrency::task_group::cancel method in the handlers for the WM_SIZING and WM_SIZE messages. The handler
for the WM_SIZE message also calls the concurrency::task_group::wait method to wait for all active tasks to
complete and then reschedules the drawing task for the updated window size.

When the client window is destroyed, it is good practice to cancel any active drawing tasks. Canceling any active
drawing tasks makes sure that worker threads do not post messages to the UI thread after the client window is
destroyed. The application cancels any active drawing tasks in the handler for the WM_DESTROY message.

The CChildView::DrawMandelbrot method, which performs the drawing task, must respond to cancellation. Because
the runtime uses exception handling to cancel tasks, the CChildView::DrawMandelbrot method must use an
exception-safe mechanism to guarantee that all resources are correctly cleaned-up. This example uses the
Resource Acquisition Is Initialization (RAII) pattern to guarantee that the bitmap bits are unlocked when the task is
canceled.

1. In ChildView.h, in the protected section of the CChildView class, add declarations for the OnSize ,
OnSizing , and OnDestroy message map functions.

afx_msg void OnPaint();
afx_msg void OnSize(UINT, int, int);
afx_msg void OnSizing(UINT, LPRECT);
afx_msg void OnDestroy();
DECLARE_MESSAGE_MAP()

BEGIN_MESSAGE_MAP(CChildView, CWnd)
 ON_WM_PAINT()
 ON_WM_SIZE()
 ON_WM_SIZING()
 ON_WM_DESTROY()
END_MESSAGE_MAP()

void CChildView::OnSizing(UINT nSide, LPRECT lpRect)
{
 // The window size is changing; cancel any existing drawing tasks.
 m_DrawingTasks.cancel();
}

void CChildView::OnSize(UINT nType, int cx, int cy)
{
 // The window size has changed; cancel any existing drawing tasks.
 m_DrawingTasks.cancel();
 // Wait for any existing tasks to finish.
 m_DrawingTasks.wait();

 // If the new size is non-zero, create a task to draw the Mandelbrot
 // image on a separate thread.
 if (cx != 0 && cy != 0)
 {
 m_DrawingTasks.run([cx,cy,this]() {
 DrawMandelbrot(BitmapPtr(new Bitmap(cx, cy)));
 });
 }
}

void CChildView::OnDestroy()
{
 // The window is being destroyed; cancel any existing drawing tasks.
 m_DrawingTasks.cancel();
 // Wait for any existing tasks to finish.
 m_DrawingTasks.wait();
}

2. In ChildView.cpp, modify the message map to contain handlers for the WM_SIZE , WM_SIZING , and
WM_DESTROY messages.

3. Implement the CChildView::OnSizing method. This method cancels any existing drawing tasks.

4. Implement the CChildView::OnSize method. This method cancels any existing drawing tasks and creates a
new drawing task for the updated client window size.

5. Implement the CChildView::OnDestroy method. This method cancels any existing drawing tasks.

6. In ChildView.cpp, define the scope_guard class, which implements the RAII pattern.

// Implements the Resource Acquisition Is Initialization (RAII) pattern
// by calling the specified function after leaving scope.
class scope_guard
{
public:
 explicit scope_guard(std::function<void()> f)
 : m_f(std::move(f)) { }

 // Dismisses the action.
 void dismiss() {
 m_f = nullptr;
 }

 ~scope_guard() {
 // Call the function.
 if (m_f) {
 try {
 m_f();
 }
 catch (...) {
 terminate();
 }
 }
 }

private:
 // The function to call when leaving scope.
 std::function<void()> m_f;

 // Hide copy constructor and assignment operator.
 scope_guard(const scope_guard&);
 scope_guard& operator=(const scope_guard&);
};

// Create a scope_guard object that unlocks the bitmap bits when it
// leaves scope. This ensures that the bitmap is properly handled
// when the task is canceled.
scope_guard guard([&pBitmap, &bitmapData] {
 // Unlock the bitmap from system memory.
 pBitmap->UnlockBits(&bitmapData);
});

7. Add the following code to the CChildView::DrawMandelbrot method after the call to Bitmap::LockBits :

This code handles cancellation by creating a scope_guard object. When the object leaves scope, it unlocks
the bitmap bits.

8. Modify the end of the CChildView::DrawMandelbrot method to dismiss the scope_guard object after the
bitmap bits are unlocked, but before any messages are sent to the UI thread. This ensures that the UI
thread is not updated before the bitmap bits are unlocked.

See also

// Unlock the bitmap from system memory.
pBitmap->UnlockBits(&bitmapData);

// Dismiss the scope guard because the bitmap has been
// properly unlocked.
guard.dismiss();

// Add the Bitmap object to image queue.
send(m_MandelbrotImages, pBitmap);

// Post a paint message to the UI thread.
PostMessage(WM_PAINT);
// Invalidate the client area.
InvalidateRect(NULL, FALSE);

9. Verify that the application was updated successfully by building and running it.

When you resize the window, drawing work is performed only for the final window size. Any active drawing tasks
are also canceled when the window is destroyed.

[Top]

Concurrency Runtime Walkthroughs
Task Parallelism
Asynchronous Message Blocks
Message Passing Functions
Parallel Algorithms
Cancellation in the PPL
MFC Desktop Applications

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications

Walkthrough: Using the Concurrency Runtime in a
COM-Enabled Application
4/25/2019 • 14 minutes to read • Edit Online

Prerequisites

Managing the Lifetime of the COM Library

Using COM with the Parallel Patterns Library

This document demonstrates how to use the Concurrency Runtime in an application that uses the Component
Object Model (COM).

Read the following documents before you start this walkthrough:

Task Parallelism

Parallel Algorithms

Asynchronous Agents

Exception Handling

For more information about COM, see Component Object Model (COM).

Although the use of COM with the Concurrency Runtime follows the same principles as any other concurrency
mechanism, the following guidelines can help you use these libraries together effectively.

A thread must call CoInitializeEx before it uses the COM library.

A thread can call CoInitializeEx multiple times as long as it provides the same arguments to every call.

For each call to CoInitializeEx , a thread must also call CoUninitialize. In other words, calls to
CoInitializeEx and CoUninitialize must be balanced.

To switch from one thread apartment to another, a thread must completely free the COM library before it
calls CoInitializeEx with the new threading specification.

Other COM principles apply when you use COM with the Concurrency Runtime. For example, an application that
creates an object in a single-threaded apartment (STA) and marshals that object to another apartment must also
provide a message loop to process incoming messages. Also remember that marshaling objects between
apartments can decrease performance.

When you use COM with a component in the Parallel Patterns Library (PPL), for example, a task group or parallel
algorithm, call CoInitializeEx before you use the COM library during each task or iteration, and call
CoUninitialize before each task or iteration finishes. The following example shows how to manage the lifetime of

the COM library with a concurrency::structured_task_group object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-using-the-concurrency-runtime-in-a-com-enabled-application.md
https://docs.microsoft.com/windows/desktop/com/component-object-model--com--portal
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializeex
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-couninitialize

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 // TODO: Perform task here.

 // Free the COM library.
 CoUninitialize();
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
 bool coinit = false;
 __try {
 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);
 coinit = true;

 // TODO: Perform task here.
 }
 __finally {
 // Free the COM library.
 if (coinit)
 CoUninitialize();
 }
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

You must make sure that the COM library is correctly freed when a task or parallel algorithm is canceled or when
the task body throws an exception. To guarantee that the task calls CoUninitialize before it exits, use a
try-finally block or the Resource Acquisition Is Initialization (RAII) pattern. The following example uses a
try-finally block to free the COM library when the task completes or is canceled, or when an exception is

thrown.

The following example uses the RAII pattern to define the CCoInitializer class, which manages the lifetime of the
COM library in a given scope.

// An exception-safe wrapper class that manages the lifetime
// of the COM library in a given scope.
class CCoInitializer
{
public:
 explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
 : _coinitialized(false)
 {
 // Initialize the COM library on the current thread.
 HRESULT hr = CoInitializeEx(NULL, dwCoInit);
 if (FAILED(hr))
 throw hr;
 _coinitialized = true;
 }
 ~CCoInitializer()
 {
 // Free the COM library.
 if (_coinitialized)
 CoUninitialize();
 }
private:
 // Flags whether COM was properly initialized.
 bool _coinitialized;

 // Hide copy constructor and assignment operator.
 CCoInitializer(const CCoInitializer&);
 CCoInitializer& operator=(const CCoInitializer&);
};

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
 // Enable COM for the lifetime of the task.
 CCoInitializer coinit(COINIT_MULTITHREADED);

 // TODO: Perform task here.

 // The CCoInitializer object frees the COM library
 // when the task exits.
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

Using COM with Asynchronous Agents

You can use the CCoInitializer class to automatically free the COM library when the task exits, as follows.

For more information about cancellation in the Concurrency Runtime, see Cancellation in the PPL.

When you use COM with asynchronous agents, call CoInitializeEx before you use the COM library in the
concurrency::agent::run method for your agent. Then call CoUninitialize before the run method returns. Do not
use COM management routines in the constructor or destructor of your agent, and do not override the
concurrency::agent::start or concurrency::agent::done methods because these methods are called from a different
thread than the run method.

The following example shows a basic agent class, named CCoAgent , which manages the COM library in the run

method.

class CCoAgent : public agent
{
protected:
 void run()
 {
 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 // TODO: Perform work here.

 // Free the COM library.
 CoUninitialize();

 // Set the agent to the finished state.
 done();
 }
};

Using COM with Lightweight Tasks

// A basic lightweight task that you schedule directly from a
// Scheduler or ScheduleGroup object.
void ThreadProc(void* data)
{
 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 // TODO: Perform work here.

 // Free the COM library.
 CoUninitialize();
}

An Example of a COM-Enabled Application

A complete example is provided later in this walkthrough.

The document Task Scheduler describes the role of lightweight tasks in the Concurrency Runtime. You can use
COM with a lightweight task just as you would with any thread routine that you pass to the CreateThread function
in the Windows API. This is shown in the following example.

This section shows a complete COM-enabled application that uses the IScriptControl interface to execute a script
that computes the n Fibonacci number. This example first calls the script from the main thread, and then uses the
PPL and agents to call the script concurrently.

th

Consider the following helper function, RunScriptProcedure , which calls a procedure in an IScriptControl object.

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl,
 _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
 // Create a 1-dimensional, 0-based safe array.
 SAFEARRAYBOUND rgsabound[] = { ArgCount, 0 };
 CComSafeArray<VARIANT> sa(rgsabound, 1U);

 // Copy the arguments to the safe array.
 LONG lIndex = 0;
 for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
 HRESULT hr = sa.SetAt(lIndex, arg);
 if (FAILED(hr))
 throw hr;
 ++lIndex;
 });

 // Call the procedure in the script.
 return pScriptControl->Run(procedureName, &sa.m_psa);
}

int wmain()
{
 HRESULT hr;

 // Enable COM on this thread for the lifetime of the program.
 CCoInitializer coinit(COINIT_MULTITHREADED);

 // Create the script control.
 IScriptControlPtr pScriptControl(__uuidof(ScriptControl));

 // Set script control properties.
 pScriptControl->Language = "JScript";
 pScriptControl->AllowUI = TRUE;

 // Add script code that computes the nth Fibonacci number.
 hr = pScriptControl->AddCode(
 "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }");
 if (FAILED(hr))
 return hr;

 // Test the script control by computing the 15th Fibonacci number.
 wcout << endl << L"Main Thread:" << endl;
 LONG lValue = 15;
 array<_variant_t, 1> args = { _variant_t(lValue) };
 _variant_t result = RunScriptProcedure(
 pScriptControl,
 _bstr_t("fib"),
 args);
 // Print the result.
 wcout << L"fib(" << lValue << L") = " << result.lVal << endl;

 return S_OK;
}

Calling the Script from the PPL

The wmain function creates an IScriptControl object, adds script code to it that computes the n Fibonacci
number, and then calls the RunScriptProcedure function to run that script.

th

The following function, ParallelFibonacci , uses the concurrency::parallel_for algorithm to call the script in parallel.
This function uses the CCoInitializer class to manage the lifetime of the COM library during every iteration of
the task.

// Computes multiple Fibonacci numbers in parallel by using
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
 try {
 parallel_for(10L, 20L, [&pScriptControl](LONG lIndex)
 {
 // Enable COM for the lifetime of the task.
 CCoInitializer coinit(COINIT_MULTITHREADED);

 // Call the helper function to run the script procedure.
 array<_variant_t, 1> args = { _variant_t(lIndex) };
 _variant_t result = RunScriptProcedure(
 pScriptControl,
 _bstr_t("fib"),
 args);

 // Print the result.
 wstringstream ss;
 ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
 wcout << ss.str();
 });
 }
 catch (HRESULT hr) {
 return hr;
 }
 return S_OK;
}

// Use the parallel_for algorithm to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Parallel Fibonacci:" << endl;
if (FAILED(hr = ParallelFibonacci(pScriptControl)))
 return hr;

Calling the Script from an Agent

// A basic agent that calls a script procedure to compute the
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
 FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
 : _pScriptControl(pScriptControl)
 , _source(source) { }

public:
 // Retrieves the result code.
 HRESULT GetHRESULT()
 {
 return receive(_result);
 }

protected:
 void run()
 {
 // Initialize the COM library on the current thread.

To use the ParallelFibonacci function with the example, add the following code before the wmain function
returns.

The following example shows the FibonacciScriptAgent class, which calls a script procedure to compute the n
Fibonacci number. The FibonacciScriptAgent class uses message passing to receive, from the main program, input
values to the script function. The run method manages the lifetime of the COM library throughout the task.

th

 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 // Read values from the message buffer until
 // we receive the sentinel value.
 LONG lValue;
 while ((lValue = receive(_source)) != Sentinel)
 {
 try {
 // Call the helper function to run the script procedure.
 array<_variant_t, 1> args = { _variant_t(lValue) };
 _variant_t result = RunScriptProcedure(
 _pScriptControl,
 _bstr_t("fib"),
 args);

 // Print the result.
 wstringstream ss;
 ss << L"fib(" << lValue << L") = " << result.lVal << endl;
 wcout << ss.str();
 }
 catch (HRESULT hr) {
 send(_result, hr);
 break;
 }
 }

 // Set the result code (does nothing if a value is already set).
 send(_result, S_OK);

 // Free the COM library.
 CoUninitialize();

 // Set the agent to the finished state.
 done();
 }

public:
 // Signals the agent to terminate.
 static const LONG Sentinel = 0L;

private:
 // The IScriptControl object that contains the script procedure.
 IScriptControlPtr _pScriptControl;
 // Message buffer from which to read arguments to the
 // script procedure.
 ISource<LONG>& _source;
 // The result code for the overall operation.
 single_assignment<HRESULT> _result;
};

The following function, AgentFibonacci , creates several FibonacciScriptAgent objects and uses message passing
to send several input values to those objects.

// Computes multiple Fibonacci numbers in parallel by using
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
 // Message buffer to hold arguments to the script procedure.
 unbounded_buffer<LONG> values;

 // Create several agents.
 array<agent*, 3> agents =
 {
 new FibonacciScriptAgent(pScriptControl, values),
 new FibonacciScriptAgent(pScriptControl, values),
 new FibonacciScriptAgent(pScriptControl, values),
 };

 // Start each agent.
 for_each(begin(agents), end(agents), [](agent* a) {
 a->start();
 });

 // Send a few values to the agents.
 send(values, 30L);
 send(values, 22L);
 send(values, 10L);
 send(values, 12L);
 // Send a sentinel value to each agent.
 for_each(begin(agents), end(agents), [&values](agent*) {
 send(values, FibonacciScriptAgent::Sentinel);
 });

 // Wait for all agents to finish.
 agent::wait_for_all(3, &agents[0]);

 // Determine the result code.
 HRESULT hr = S_OK;
 for_each(begin(agents), end(agents), [&hr](agent* a) {
 HRESULT hrTemp;
 if (FAILED(hrTemp =
 reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
 {
 hr = hrTemp;
 }
 });

 // Clean up.
 for_each(begin(agents), end(agents), [](agent* a) {
 delete a;
 });

 return hr;
}

// Use asynchronous agents to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Agent Fibonacci:" << endl;
if (FAILED(hr = AgentFibonacci(pScriptControl)))
 return hr;

The Complete Example

To use the AgentFibonacci function with the example, add the following code before the wmain function returns.

The following code shows the complete example, which uses parallel algorithms and asynchronous agents to call a
script procedure that computes Fibonacci numbers.

// parallel-scripts.cpp
// compile with: /EHsc

#include <agents.h>
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>
#include <atlsafe.h>

// TODO: Change this path if necessary.
#import "C:\windows\system32\msscript.ocx"

using namespace concurrency;
using namespace MSScriptControl;
using namespace std;

// An exception-safe wrapper class that manages the lifetime
// of the COM library in a given scope.
class CCoInitializer
{
public:
 explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
 : _coinitialized(false)
 {
 // Initialize the COM library on the current thread.
 HRESULT hr = CoInitializeEx(NULL, dwCoInit);
 if (FAILED(hr))
 throw hr;
 _coinitialized = true;
 }
 ~CCoInitializer()
 {
 // Free the COM library.
 if (_coinitialized)
 CoUninitialize();
 }
private:
 // Flags whether COM was properly initialized.
 bool _coinitialized;

 // Hide copy constructor and assignment operator.
 CCoInitializer(const CCoInitializer&);
 CCoInitializer& operator=(const CCoInitializer&);
};

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl,
 _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
 // Create a 1-dimensional, 0-based safe array.
 SAFEARRAYBOUND rgsabound[] = { ArgCount, 0 };
 CComSafeArray<VARIANT> sa(rgsabound, 1U);

 // Copy the arguments to the safe array.
 LONG lIndex = 0;
 for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
 HRESULT hr = sa.SetAt(lIndex, arg);
 if (FAILED(hr))
 throw hr;
 ++lIndex;
 });

 // Call the procedure in the script.
 return pScriptControl->Run(procedureName, &sa.m_psa);
}

// Computes multiple Fibonacci numbers in parallel by using
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
 try {
 parallel_for(10L, 20L, [&pScriptControl](LONG lIndex)
 {
 // Enable COM for the lifetime of the task.
 CCoInitializer coinit(COINIT_MULTITHREADED);

 // Call the helper function to run the script procedure.
 array<_variant_t, 1> args = { _variant_t(lIndex) };
 _variant_t result = RunScriptProcedure(
 pScriptControl,
 _bstr_t("fib"),
 args);

 // Print the result.
 wstringstream ss;
 ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
 wcout << ss.str();
 });
 }
 catch (HRESULT hr) {
 return hr;
 }
 return S_OK;
}

// A basic agent that calls a script procedure to compute the
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
 FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
 : _pScriptControl(pScriptControl)
 , _source(source) { }

public:
 // Retrieves the result code.
 HRESULT GetHRESULT()
 {
 return receive(_result);
 }

protected:
 void run()
 {
 // Initialize the COM library on the current thread.
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 // Read values from the message buffer until
 // we receive the sentinel value.
 LONG lValue;
 while ((lValue = receive(_source)) != Sentinel)
 {
 try {
 // Call the helper function to run the script procedure.
 array<_variant_t, 1> args = { _variant_t(lValue) };
 _variant_t result = RunScriptProcedure(
 _pScriptControl,
 _bstr_t("fib"),
 args);

 // Print the result.
 wstringstream ss;
 ss << L"fib(" << lValue << L") = " << result.lVal << endl;
 wcout << ss.str();
 }

 }
 catch (HRESULT hr) {
 send(_result, hr);
 break;
 }
 }

 // Set the result code (does nothing if a value is already set).
 send(_result, S_OK);

 // Free the COM library.
 CoUninitialize();

 // Set the agent to the finished state.
 done();
 }

public:
 // Signals the agent to terminate.
 static const LONG Sentinel = 0L;

private:
 // The IScriptControl object that contains the script procedure.
 IScriptControlPtr _pScriptControl;
 // Message buffer from which to read arguments to the
 // script procedure.
 ISource<LONG>& _source;
 // The result code for the overall operation.
 single_assignment<HRESULT> _result;
};

// Computes multiple Fibonacci numbers in parallel by using
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
 // Message buffer to hold arguments to the script procedure.
 unbounded_buffer<LONG> values;

 // Create several agents.
 array<agent*, 3> agents =
 {
 new FibonacciScriptAgent(pScriptControl, values),
 new FibonacciScriptAgent(pScriptControl, values),
 new FibonacciScriptAgent(pScriptControl, values),
 };

 // Start each agent.
 for_each(begin(agents), end(agents), [](agent* a) {
 a->start();
 });

 // Send a few values to the agents.
 send(values, 30L);
 send(values, 22L);
 send(values, 10L);
 send(values, 12L);
 // Send a sentinel value to each agent.
 for_each(begin(agents), end(agents), [&values](agent*) {
 send(values, FibonacciScriptAgent::Sentinel);
 });

 // Wait for all agents to finish.
 agent::wait_for_all(3, &agents[0]);

 // Determine the result code.
 HRESULT hr = S_OK;
 for_each(begin(agents), end(agents), [&hr](agent* a) {
 HRESULT hrTemp;
 if (FAILED(hrTemp =
 reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))

 reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
 {
 hr = hrTemp;
 }
 });

 // Clean up.
 for_each(begin(agents), end(agents), [](agent* a) {
 delete a;
 });

 return hr;
}

int wmain()
{
 HRESULT hr;

 // Enable COM on this thread for the lifetime of the program.
 CCoInitializer coinit(COINIT_MULTITHREADED);

 // Create the script control.
 IScriptControlPtr pScriptControl(__uuidof(ScriptControl));

 // Set script control properties.
 pScriptControl->Language = "JScript";
 pScriptControl->AllowUI = TRUE;

 // Add script code that computes the nth Fibonacci number.
 hr = pScriptControl->AddCode(
 "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }");
 if (FAILED(hr))
 return hr;

 // Test the script control by computing the 15th Fibonacci number.
 wcout << L"Main Thread:" << endl;
 long n = 15;
 array<_variant_t, 1> args = { _variant_t(n) };
 _variant_t result = RunScriptProcedure(
 pScriptControl,
 _bstr_t("fib"),
 args);
 // Print the result.
 wcout << L"fib(" << n << L") = " << result.lVal << endl;

 // Use the parallel_for algorithm to compute multiple
 // Fibonacci numbers in parallel.
 wcout << endl << L"Parallel Fibonacci:" << endl;
 if (FAILED(hr = ParallelFibonacci(pScriptControl)))
 return hr;

 // Use asynchronous agents to compute multiple
 // Fibonacci numbers in parallel.
 wcout << endl << L"Agent Fibonacci:" << endl;
 if (FAILED(hr = AgentFibonacci(pScriptControl)))
 return hr;

 return S_OK;
}

The example produces the following sample output.

Main Thread:
fib(15) = 610

Parallel Fibonacci:
fib(15) = 610
fib(10) = 55
fib(16) = 987
fib(18) = 2584
fib(11) = 89
fib(17) = 1597
fib(19) = 4181
fib(12) = 144
fib(13) = 233
fib(14) = 377

Agent Fibonacci:
fib(30) = 832040
fib(22) = 17711
fib(10) = 55
fib(12) = 144

Compiling the Code

See also

Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named
parallel-scripts.cpp and then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc parallel-scripts.cpp /link ole32.lib

Concurrency Runtime Walkthroughs
Task Parallelism
Parallel Algorithms
Asynchronous Agents
Exception Handling
Cancellation in the PPL
Task Scheduler

Walkthrough: Adapting Existing Code to Use
Lightweight Tasks
4/25/2019 • 3 minutes to read • Edit Online

Prerequisites

Example
Description

Code

// windows-threads.cpp
#include <windows.h>
#include <tchar.h>
#include <strsafe.h>

#define BUF_SIZE 255

DWORD WINAPI MyThreadFunction(LPVOID param);

// Data structure for threads to use.
typedef struct MyData {
 int val1;
 int val2;
} MYDATA, *PMYDATA;

int _tmain()
{
 // Allocate memory for thread data.
 PMYDATA pData = (PMYDATA) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY, sizeof(MYDATA));

 if(pData == NULL)
 {
 ExitProcess(2);
 }

 // Set the values of the thread data.
 pData->val1 = 50;
 pData->val2 = 100;

 // Create the thread to begin execution on its own.
 DWORD dwThreadId;
 HANDLE hThread = CreateThread(
 NULL, // default security attributes

This topic shows how to adapt existing code that uses the Windows API to create and execute a thread to use a
lightweight task.

A lightweight task is a task that you schedule directly from a concurrency::Scheduler or
concurrency::ScheduleGroup object. Lightweight tasks are useful when you adapt existing code to use the
scheduling functionality of the Concurrency Runtime.

Before you start this walkthrough, read the topic Task Scheduler.

The following example illustrates typical usage of the Windows API to create and execute a thread. This example
uses the CreateThread function to call the MyThreadFunction on a separate thread.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-adapting-existing-code-to-use-lightweight-tasks.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

 0, // use default stack size
 MyThreadFunction, // thread function name
 pData, // argument to thread function
 0, // use default creation flags
 &dwThreadId); // returns the thread identifier

 if (hThread == NULL)
 {
 ExitProcess(3);
 }

 // Wait for the thread to finish.
 WaitForSingleObject(hThread, INFINITE);

 // Close the thread handle and free memory allocation.
 CloseHandle(hThread);
 HeapFree(GetProcessHeap(), 0, pData);

 return 0;
}

DWORD WINAPI MyThreadFunction(LPVOID lpParam)
{
 PMYDATA pData = (PMYDATA)lpParam;

 // Use thread-safe functions to print the parameter values.

 TCHAR msgBuf[BUF_SIZE];
 StringCchPrintf(msgBuf, BUF_SIZE, TEXT("Parameters = %d, %d\n"),
 pData->val1, pData->val2);

 size_t cchStringSize;
 StringCchLength(msgBuf, BUF_SIZE, &cchStringSize);

 DWORD dwChars;
 WriteConsole(GetStdHandle(STD_OUTPUT_HANDLE), msgBuf, (DWORD)cchStringSize, &dwChars, NULL);

 return 0;
}

Comments

Parameters = 50, 100

To adapt the example to use a lightweight task

#include <concrt.h>

using namespace concurrency;

This example produces the following output.

The following steps show how to adapt the code example to use the Concurrency Runtime to perform the same
task.

1. Add a #include directive for the header file concrt.h.

1. Add a using directive for the concurrency namespace.

1. Change the declaration of MyThreadFunction to use the __cdecl calling convention and to return void .

void __cdecl MyThreadFunction(LPVOID param);

typedef struct MyData {
 int val1;
 int val2;
 event signal;
} MYDATA, *PMYDATA;

CurrentScheduler::ScheduleTask(MyThreadFunction, pData);

// Wait for the task to finish.
pData->signal.wait();

void __cdecl MyThreadFunction(LPVOID lpParam)

pData->signal.set();

Example
Description

Code

1. Modify the MyData structure to include a concurrency::event object that signals to the main application that the
task has finished.

1. Replace the call to CreateThread with a call to the concurrency::CurrentScheduler::ScheduleTask method.

1. Replace the call to WaitForSingleObject with a call to the concurrency::event::wait method to wait for the task to
finish.

1. Remove the call to CloseHandle .

2. Change the signature of the definition of MyThreadFunction to match step 3.

9. At the end of the MyThreadFunction function, call the concurrency::event::set method to signal to the main
application that the task has finished.

10. Remove the return statement from MyThreadFunction .

The following completed example shows code that uses a lightweight task to call the MyThreadFunction function.

// migration-lwt.cpp
// compile with: /EHsc
#include <windows.h>
#include <tchar.h>
#include <strsafe.h>
#include <concrt.h>

using namespace concurrency;

#define BUF_SIZE 255

void __cdecl MyThreadFunction(LPVOID param);

// Data structure for threads to use.
typedef struct MyData {
 int val1;
 int val2;
 event signal;
} MYDATA, *PMYDATA;

int _tmain()
{
 // Allocate memory for thread data.
 PMYDATA pData = (PMYDATA) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY, sizeof(MYDATA));

 if(pData == NULL)
 {
 ExitProcess(2);
 }

 // Set the values of the thread data.
 pData->val1 = 50;
 pData->val2 = 100;

 // Create the thread to begin execution on its own.
 CurrentScheduler::ScheduleTask(MyThreadFunction, pData);

 // Wait for the task to finish.
 pData->signal.wait();

 // Free memory allocation.
 HeapFree(GetProcessHeap(), 0, pData);

 return 0;
}

void __cdecl MyThreadFunction(LPVOID lpParam)
{
 PMYDATA pData = (PMYDATA)lpParam;

 // Use thread-safe functions to print the parameter values.

 TCHAR msgBuf[BUF_SIZE];
 StringCchPrintf(msgBuf, BUF_SIZE, TEXT("Parameters = %d, %d\n"),
 pData->val1, pData->val2);

 size_t cchStringSize;
 StringCchLength(msgBuf, BUF_SIZE, &cchStringSize);

 DWORD dwChars;
 WriteConsole(GetStdHandle(STD_OUTPUT_HANDLE), msgBuf, (DWORD)cchStringSize, &dwChars, NULL);

 pData->signal.set();
}

Comments

See also
Task Scheduler
Scheduler Class

Walkthrough: Creating a Custom Message Block
4/25/2019 • 23 minutes to read • Edit Online

Prerequisites

Sections

Designing a Custom Message Block

This document describes how to create a custom message block type that orders incoming messages by priority.

Although the built-in message block types provide a wide-range of functionality, you can create your own
message block type and customize it to meet the requirements of your application. For a description of the built-in
message block types that are provided by the Asynchronous Agents Library, see Asynchronous Message Blocks.

Read the following documents before you start this walkthrough:

Asynchronous Message Blocks

Message Passing Functions

This walkthrough contains the following sections:

Designing a Custom Message Block

Defining the priority_buffer Class

The Complete Example

Message blocks participate in the act of sending and receiving messages. A message block that sends messages is
known as a source block. A message block that receives messages is known as a target block. A message block
that both sends and receives messages is known as a propagator block. The Agents Library uses the abstract class
concurrency::ISource to represent source blocks and the abstract class concurrency::ITarget to represent target
blocks. Message block types that act as sources derive from ISource ; message block types that act as targets
derive from ITarget .

Although you can derive your message block type directly from ISource and ITarget , the Agents Library defines
three base classes that perform much of the functionality that is common to all message block types, for example,
handling errors and connecting message blocks together in a concurrency-safe manner. The
concurrency::source_block class derives from ISource and sends messages to other blocks. The
concurrency::target_block class derives from ITarget and receives messages from other blocks. The
concurrency::propagator_block class derives from ISource and ITarget and sends messages to other blocks and
it receives messages from other blocks. We recommend that you use these three base classes to handle
infrastructure details so that you can focus on the behavior of your message block.

The source_block , target_block , and propagator_block classes are templates that are parameterized on a type
that manages the connections, or links, between source and target blocks and on a type that manages how
messages are processed. The Agents Library defines two types that perform link management,
concurrency::single_link_registry and concurrency::multi_link_registry. The single_link_registry class enables a
message block to be linked to one source or to one target. The multi_link_registry class enables a message block
to be linked to multiple sources or multiple targets. The Agents Library defines one class that performs message
management, concurrency::ordered_message_processor. The ordered_message_processor class enables message

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/walkthrough-creating-a-custom-message-block.md

template<
 class _Input,
 class _Output
>
class transformer : public propagator_block<
 single_link_registry<ITarget<_Output>>,
 multi_link_registry<ISource<_Input>>
>;

Defining the priority_buffer Class

blocks to process messages in the order in which it receives them.

To better understand how message blocks relate to their sources and targets, consider the following example. This
example shows the declaration of the concurrency::transformer class.

The transformer class derives from propagator_block , and therefore acts as both a source block and as a target
block. It accepts messages of type _Input and sends messages of type _Output . The transformer class specifies
single_link_registry as the link manager for any target blocks and multi_link_registry as the link manager for

any source blocks. Therefore, a transformer object can have up to one target and an unlimited number of sources.

A class that derives from source_block must implement six methods: propagate_to_any_targets, accept_message,
reserve_message, consume_message, release_message, and resume_propagation. A class that derives from
target_block must implement the propagate_message method and can optionally implement the send_message

method. Deriving from propagator_block is functionally equivalent to deriving from both source_block and
target_block .

The propagate_to_any_targets method is called by the runtime to asynchronously or synchronously process any
incoming messages and propagate out any outgoing messages. The accept_message method is called by target
blocks to accept messages. Many message block types, such as unbounded_buffer , send messages only to the first
target that would receive it. Therefore, it transfers ownership of the message to the target. Other message block
types, such as concurrency::overwrite_buffer, offer messages to each of its target blocks. Therefore,
overwrite_buffer creates a copy of the message for each of its targets.

The reserve_message , consume_message , release_message , and resume_propagation methods enable message
blocks to participate in message reservation. Target blocks call the reserve_message method when they are offered
a message and have to reserve the message for later use. After a target block reserves a message, it can call the
consume_message method to consume that message or the release_message method to cancel the reservation. As

with the accept_message method, the implementation of consume_message can either transfer ownership of the
message or return a copy of the message. After a target block either consumes or releases a reserved message,
the runtime calls the resume_propagation method. Typically, this method continues message propagation, starting
with the next message in the queue.

The runtime calls the propagate_message method to asynchronously transfer a message from another block to the
current one. The send_message method resembles propagate_message , except that it synchronously, instead of
asynchronously, sends the message to the target blocks. The default implementation of send_message rejects all
incoming messages. The runtime does not call either of these methods if the message does not pass the optional
filter function that is associated with the target block. For more information about message filters, see
Asynchronous Message Blocks.

[Top]

The priority_buffer class is a custom message block type that orders incoming messages first by priority, and
then by the order in which messages are received. The priority_buffer class resembles the
concurrency::unbounded_buffer class because it holds a queue of messages, and also because it acts as both a

To define the priority_buffer class

#pragma once
#include <agents.h>
#include <queue>

source and a target message block and can have both multiple sources and multiple targets. However,
unbounded_buffer bases message propagation only on the order in which it receives messages from its sources.

The priority_buffer class receives messages of type std::tuple that contain PriorityType and Type elements.
PriorityType refers to the type that holds the priority of each message; Type refers to the data portion of the

message. The priority_buffer class sends messages of type Type . The priority_buffer class also manages two
message queues: a std::priority_queue object for incoming messages and a std::queue object for outgoing
messages. Ordering messages by priority is useful when a priority_buffer object receives multiple messages
simultaneously or when it receives multiple messages before any messages are read by consumers.

In addition to the seven methods that a class that derives from propagator_block must implement, the
priority_buffer class also overrides the link_target_notification and send_message methods. The
priority_buffer class also defines two public helper methods, enqueue and dequeue , and a private helper

method, propagate_priority_order .

The following procedure describes how to implement the priority_buffer class.

1. Create a C++ header file and name it priority_buffer.h . Alternatively, you can use an existing header file
that is part of your project.

2. In priority_buffer.h , add the following code.

1. In the std namespace, define specializations of std::less and std::greater that act on concurrency::message
objects.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/tuple-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/priority-queue-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/queue-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/less-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/greater-struct

namespace std
{
 // A specialization of less that tests whether the priority element of a
 // message is less than the priority element of another message.
 template<class Type, class PriorityType>
 struct less<concurrency::message<tuple<PriorityType,Type>>*>
 {
 typedef concurrency::message<tuple<PriorityType, Type>> MessageType;

 bool operator()(const MessageType* left, const MessageType* right) const
 {
 // apply operator< to the first element (the priority)
 // of the tuple payload.
 return (get<0>(left->payload) < get<0>(right->payload));
 }
 };

 // A specialization of less that tests whether the priority element of a
 // message is greater than the priority element of another message.
 template<class Type, class PriorityType>
 struct greater<concurrency::message<tuple<PriorityType, Type>>*>
 {
 typedef concurrency::message<std::tuple<PriorityType,Type>> MessageType;

 bool operator()(const MessageType* left, const MessageType* right) const
 {
 // apply operator> to the first element (the priority)
 // of the tuple payload.
 return (get<0>(left->payload) > get<0>(right->payload));
 }
 };
}

namespace concurrencyex
{
 template<class Type,
 typename PriorityType = int,
 typename Pr = std::less<message<std::tuple<PriorityType, Type>>*>>
 class priority_buffer : public
concurrency::propagator_block<concurrency::multi_link_registry<concurrency::ITarget<Type>>,
 concurrency::multi_link_registry<concurrency::ISource<std::tuple<PriorityType, Type>>>>
 {
 public:
 protected:
 private:
 };
}

The priority_buffer class stores message objects in a priority_queue object. These type specializations enable
the priority queue to sort messages according to their priority. The priority is the first element of the tuple object.

1. In the concurrencyex namespace, declare the priority_buffer class.

The priority_buffer class derives from propagator_block . Therefore, it can both send and receive messages. The
priority_buffer class can have multiple targets that receive messages of type Type . It can also have multiple

sources that send messages of type tuple<PriorityType, Type> .

1. In the private section of the priority_buffer class, add the following member variables.

// Stores incoming messages.
// The type parameter Pr specifies how to order messages by priority.
std::priority_queue<
 concurrency::message<_Source_type>*,
 std::vector<concurrency::message<_Source_type>*>,
 Pr
> _input_messages;

// Synchronizes access to the input message queue.
concurrency::critical_section _input_lock;

// Stores outgoing messages.
std::queue<concurrency::message<_Target_type>*> _output_messages;

// Hide assignment operator and copy constructor.
priority_buffer const &operator =(priority_buffer const&);
priority_buffer(priority_buffer const &);

The priority_queue object holds incoming messages; the queue object holds outgoing messages. A
priority_buffer object can receive multiple messages simultaneously; the critical_section object synchronizes

access to the queue of input messages.

1. In the private section, define the copy constructor and the assignment operator. This prevents
priority_queue objects from being assignable.

1. In the public section, define the constructors that are common to many message block types. Also define the
destructor.

// Constructs a priority_buffer message block.
priority_buffer()
{
 initialize_source_and_target();
}

// Constructs a priority_buffer message block with the given filter function.
priority_buffer(filter_method const& filter)
{
 initialize_source_and_target();
 register_filter(filter);
}

// Constructs a priority_buffer message block that uses the provided
// Scheduler object to propagate messages.
priority_buffer(concurrency::Scheduler& scheduler)
{
 initialize_source_and_target(&scheduler);
}

// Constructs a priority_buffer message block with the given filter function
// and uses the provided Scheduler object to propagate messages.
priority_buffer(concurrency::Scheduler& scheduler, filter_method const& filter)
{
 initialize_source_and_target(&scheduler);
 register_filter(filter);
}

// Constructs a priority_buffer message block that uses the provided
// SchedulerGroup object to propagate messages.
priority_buffer(concurrency::ScheduleGroup& schedule_group)
{
 initialize_source_and_target(NULL, &schedule_group);
}

// Constructs a priority_buffer message block with the given filter function
// and uses the provided SchedulerGroup object to propagate messages.
priority_buffer(concurrency::ScheduleGroup& schedule_group, filter_method const& filter)
{
 initialize_source_and_target(NULL, &schedule_group);
 register_filter(filter);
}

// Destroys the message block.
~priority_buffer()
{
 // Remove all links.
 remove_network_links();
}

// Sends an item to the message block.
bool enqueue(Type const& item)
{
 return concurrency::asend<Type>(this, item);
}

// Receives an item from the message block.
Type dequeue()
{
 return receive<Type>(this);
}

1. In the public section, define the methods enqueue and dequeue . These helper methods provide an alternative
way to send messages to and receive messages from a priority_buffer object.

// Transfers the message at the front of the input queue to the output queue
// and propagates out all messages in the output queue.
virtual void propagate_to_any_targets(concurrency::message<_Target_type>*)
{
 // Retrieve the message from the front of the input queue.
 concurrency::message<_Source_type>* input_message = NULL;
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);
 if (_input_messages.size() > 0)
 {
 input_message = _input_messages.top();
 _input_messages.pop();
 }
 }

 // Move the message to the output queue.
 if (input_message != NULL)
 {
 // The payload of the output message does not contain the
 // priority of the message.
 concurrency::message<_Target_type>* output_message =
 new concurrency::message<_Target_type>(get<1>(input_message->payload));
 _output_messages.push(output_message);

 // Free the memory for the input message.
 delete input_message;

 // Do not propagate messages if the new message is not the head message.
 // In this case, the head message is reserved by another message block.
 if (_output_messages.front()->msg_id() != output_message->msg_id())
 {
 return;
 }
 }

 // Propagate out the output messages.
 propagate_priority_order();
}

// Accepts a message that was offered by this block by transferring ownership
// to the caller.
virtual concurrency::message<_Target_type>* accept_message(concurrency::runtime_object_identity msg_id)
{
 concurrency::message<_Target_type>* message = NULL;

 // Transfer ownership if the provided message identifier matches
 // the identifier of the front of the output message queue.
 if (!_output_messages.empty() &&
 _output_messages.front()->msg_id() == msg_id)
 {
 message = _output_messages.front();
 _output_messages.pop();
 }

 return message;
}

9. In the protected section, define the propagate_to_any_targets method.

The propagate_to_any_targets method transfers the message that is at the front of the input queue to the output
queue and propagates out all messages in the output queue.

10. In the protected section, define the accept_message method.

// Reserves a message that was previously offered by this block.
virtual bool reserve_message(concurrency::runtime_object_identity msg_id)
{
 // Allow the message to be reserved if the provided message identifier
 // is the message identifier of the front of the message queue.
 return (!_output_messages.empty() &&
 _output_messages.front()->msg_id() == msg_id);
}

// Transfers the message that was previously offered by this block
// to the caller. The caller of this method is the target block that
// reserved the message.
virtual concurrency::message<Type>* consume_message(concurrency::runtime_object_identity msg_id)
{
 // Transfer ownership of the message to the caller.
 return accept_message(msg_id);
}

// Releases a previous message reservation.
virtual void release_message(concurrency::runtime_object_identity msg_id)
{
 // The head message must be the one that is reserved.
 if (_output_messages.empty() ||
 _output_messages.front()->msg_id() != msg_id)
 {
 throw message_not_found();
 }
}

// Resumes propagation after a reservation has been released.
virtual void resume_propagation()
{
 // Propagate out any messages in the output queue.
 if (_output_messages.size() > 0)
 {
 async_send(NULL);
 }
}

When a target block calls the accept_message method, the priority_buffer class transfers ownership of the
message to the first target block that accepts it. (This resembles the behavior of unbounded_buffer .)

11. In the protected section, define the reserve_message method.

The priority_buffer class permits a target block to reserve a message when the provided message identifier
matches the identifier of the message that is at the front of the queue. In other words, a target can reserve the
message if the priority_buffer object has not yet received an additional message and has not yet propagated out
the current one.

12. In the protected section, define the consume_message method.

A target block calls consume_message to transfer ownership of the message that it reserved.

13. In the protected section, define the release_message method.

A target block calls release_message to cancel its reservation to a message.

14. In the protected section, define the resume_propagation method.

// Notifies this block that a new target has been linked to it.
virtual void link_target_notification(concurrency::ITarget<_Target_type>*)
{
 // Do not propagate messages if a target block reserves
 // the message at the front of the queue.
 if (_M_pReservedFor != NULL)
 {
 return;
 }

 // Propagate out any messages that are in the output queue.
 propagate_priority_order();
}

The runtime calls resume_propagation after a target block either consumes or releases a reserved message. This
method propagates out any messages that are in the output queue.

15. In the protected section, define the link_target_notification method.

The _M_pReservedFor member variable is defined by the base class, source_block . This member variable points to
the target block, if any, that is holding a reservation to the message that is at the front of the output queue. The
runtime calls link_target_notification when a new target is linked to the priority_buffer object. This method
propagates out any messages that are in the output queue if no target is holding a reservation.

16. In the private section, define the propagate_priority_order method.

// Propagates messages in priority order.
void propagate_priority_order()
{
 // Cancel propagation if another block reserves the head message.
 if (_M_pReservedFor != NULL)
 {
 return;
 }

 // Propagate out all output messages.
 // Because this block preserves message ordering, stop propagation
 // if any of the messages are not accepted by a target block.
 while (!_output_messages.empty())
 {
 // Get the next message.
 concurrency::message<_Target_type> * message = _output_messages.front();

 concurrency::message_status status = declined;

 // Traverse each target in the order in which they are connected.
 for (target_iterator iter = _M_connectedTargets.begin();
 *iter != NULL;
 ++iter)
 {
 // Propagate the message to the target.
 concurrency::ITarget<_Target_type>* target = *iter;
 status = target->propagate(message, this);

 // If the target accepts the message then ownership of message has
 // changed. Do not propagate this message to any other target.
 if (status == accepted)
 {
 break;
 }

 // If the target only reserved this message, we must wait until the
 // target accepts the message.
 if (_M_pReservedFor != NULL)
 {
 break;
 }
 }

 // If status is anything other than accepted, then the head message
 // was not propagated out. To preserve the order in which output
 // messages are propagated, we must stop propagation until the head
 // message is accepted.
 if (status != accepted)
 {
 break;
 }
 }
}

This method propagates out all messages from the output queue. Every message in the queue is offered to every
target block until one of the target blocks accepts the message. The priority_buffer class preserves the order of
the outgoing messages. Therefore, the first message in the output queue must be accepted by a target block
before this method offers any other message to the target blocks.

17. In the protected section, define the propagate_message method.

// Asynchronously passes a message from an ISource block to this block.
// This method is typically called by propagator_block::propagate.
virtual concurrency::message_status propagate_message(concurrency::message<_Source_type>* message,
 concurrency::ISource<_Source_type>* source)
{
 // Accept the message from the source block.
 message = source->accept(message->msg_id(), this);

 if (message != NULL)
 {
 // Insert the message into the input queue. The type parameter Pr
 // defines how to order messages by priority.
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);
 _input_messages.push(message);
 }

 // Asynchronously send the message to the target blocks.
 async_send(NULL);
 return accepted;
 }
 else
 {
 return missed;
 }
}

// Synchronously passes a message from an ISource block to this block.
// This method is typically called by propagator_block::send.
virtual concurrency::message_status send_message(concurrency::message<_Source_type>* message,
 concurrency::ISource<_Source_type>* source)
{
 // Accept the message from the source block.
 message = source->accept(message->msg_id(), this);

 if (message != NULL)
 {
 // Insert the message into the input queue. The type parameter Pr
 // defines how to order messages by priority.
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);
 _input_messages.push(message);
 }

 // Synchronously send the message to the target blocks.
 sync_send(NULL);
 return accepted;
 }
 else
 {
 return missed;
 }
}

The propagate_message method enables the priority_buffer class to act as a message receiver, or target. This
method receives the message that is offered by the provided source block and inserts that message into the
priority queue. The propagate_message method then asynchronously sends all output messages to the target
blocks.

The runtime calls this method when you call the concurrency::asend function or when the message block is
connected to other message blocks.

18. In the protected section, define the send_message method.

 The Complete Example

// priority_buffer.h
#pragma once
#include <agents.h>
#include <queue>

namespace std
{
 // A specialization of less that tests whether the priority element of a
 // message is less than the priority element of another message.
 template<class Type, class PriorityType>
 struct less<concurrency::message<tuple<PriorityType,Type>>*>
 {
 typedef concurrency::message<tuple<PriorityType, Type>> MessageType;

 bool operator()(const MessageType* left, const MessageType* right) const
 {
 // apply operator< to the first element (the priority)
 // of the tuple payload.
 return (get<0>(left->payload) < get<0>(right->payload));
 }
 };

 // A specialization of less that tests whether the priority element of a
 // message is greater than the priority element of another message.
 template<class Type, class PriorityType>
 struct greater<concurrency::message<tuple<PriorityType, Type>>*>
 {
 typedef concurrency::message<std::tuple<PriorityType,Type>> MessageType;

 bool operator()(const MessageType* left, const MessageType* right) const
 {
 // apply operator> to the first element (the priority)
 // of the tuple payload.
 return (get<0>(left->payload) > get<0>(right->payload));
 }
 };
}

namespace concurrencyex
{
 // A message block type that orders incoming messages first by priority,

The send_message method resembles propagate_message . However it sends the output messages synchronously
instead of asynchronously.

The runtime calls this method during a synchronous send operation, such as when you call the concurrency::send
function.

The priority_buffer class contains constructor overloads that are typical in many message block types. Some
constructor overloads take concurrency::Scheduler or concurrency::ScheduleGroup objects, which enable the
message block to be managed by a specific task scheduler. Other constructor overloads take a filter function. Filter
functions enable message blocks to accept or reject a message on the basis of its payload. For more information
about message filters, see Asynchronous Message Blocks. For more information about task schedulers, see Task
Scheduler.

Because the priority_buffer class orders messages by priority and then by the order in which messages are
received, this class is most useful when it receives messages asynchronously, for example, when you call the
concurrency::asend function or when the message block is connected to other message blocks.

[Top]

The following example shows the complete definition of the priority_buffer class.

 // A message block type that orders incoming messages first by priority,
 // and then by the order in which messages are received.
 template<class Type,
 typename PriorityType = int,
 typename Pr = std::less<message<std::tuple<PriorityType, Type>>*>>
 class priority_buffer : public
concurrency::propagator_block<concurrency::multi_link_registry<concurrency::ITarget<Type>>,
 concurrency::multi_link_registry<concurrency::ISource<std::tuple<PriorityType, Type>>>>
 {
 public:
 // Constructs a priority_buffer message block.
 priority_buffer()
 {
 initialize_source_and_target();
 }

 // Constructs a priority_buffer message block with the given filter function.
 priority_buffer(filter_method const& filter)
 {
 initialize_source_and_target();
 register_filter(filter);
 }

 // Constructs a priority_buffer message block that uses the provided
 // Scheduler object to propagate messages.
 priority_buffer(concurrency::Scheduler& scheduler)
 {
 initialize_source_and_target(&scheduler);
 }

 // Constructs a priority_buffer message block with the given filter function
 // and uses the provided Scheduler object to propagate messages.
 priority_buffer(concurrency::Scheduler& scheduler, filter_method const& filter)
 {
 initialize_source_and_target(&scheduler);
 register_filter(filter);
 }

 // Constructs a priority_buffer message block that uses the provided
 // SchedulerGroup object to propagate messages.
 priority_buffer(concurrency::ScheduleGroup& schedule_group)
 {
 initialize_source_and_target(NULL, &schedule_group);
 }

 // Constructs a priority_buffer message block with the given filter function
 // and uses the provided SchedulerGroup object to propagate messages.
 priority_buffer(concurrency::ScheduleGroup& schedule_group, filter_method const& filter)
 {
 initialize_source_and_target(NULL, &schedule_group);
 register_filter(filter);
 }

 // Destroys the message block.
 ~priority_buffer()
 {
 // Remove all links.
 remove_network_links();
 }

 // Sends an item to the message block.
 bool enqueue(Type const& item)
 {
 return concurrency::asend<Type>(this, item);
 }

 // Receives an item from the message block.
 Type dequeue()
 {
 return receive<Type>(this);

 return receive<Type>(this);
 }

 protected:
 // Asynchronously passes a message from an ISource block to this block.
 // This method is typically called by propagator_block::propagate.
 virtual concurrency::message_status propagate_message(concurrency::message<_Source_type>* message,
 concurrency::ISource<_Source_type>* source)
 {
 // Accept the message from the source block.
 message = source->accept(message->msg_id(), this);

 if (message != NULL)
 {
 // Insert the message into the input queue. The type parameter Pr
 // defines how to order messages by priority.
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);
 _input_messages.push(message);
 }

 // Asynchronously send the message to the target blocks.
 async_send(NULL);
 return accepted;
 }
 else
 {
 return missed;
 }
 }

 // Synchronously passes a message from an ISource block to this block.
 // This method is typically called by propagator_block::send.
 virtual concurrency::message_status send_message(concurrency::message<_Source_type>* message,
 concurrency::ISource<_Source_type>* source)
 {
 // Accept the message from the source block.
 message = source->accept(message->msg_id(), this);

 if (message != NULL)
 {
 // Insert the message into the input queue. The type parameter Pr
 // defines how to order messages by priority.
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);
 _input_messages.push(message);
 }

 // Synchronously send the message to the target blocks.
 sync_send(NULL);
 return accepted;
 }
 else
 {
 return missed;
 }
 }

 // Accepts a message that was offered by this block by transferring ownership
 // to the caller.
 virtual concurrency::message<_Target_type>* accept_message(concurrency::runtime_object_identity
msg_id)
 {
 concurrency::message<_Target_type>* message = NULL;

 // Transfer ownership if the provided message identifier matches
 // the identifier of the front of the output message queue.
 if (!_output_messages.empty() &&
 _output_messages.front()->msg_id() == msg_id)
 {

 {
 message = _output_messages.front();
 _output_messages.pop();
 }

 return message;
 }

 // Reserves a message that was previously offered by this block.
 virtual bool reserve_message(concurrency::runtime_object_identity msg_id)
 {
 // Allow the message to be reserved if the provided message identifier
 // is the message identifier of the front of the message queue.
 return (!_output_messages.empty() &&
 _output_messages.front()->msg_id() == msg_id);
 }

 // Transfers the message that was previously offered by this block
 // to the caller. The caller of this method is the target block that
 // reserved the message.
 virtual concurrency::message<Type>* consume_message(concurrency::runtime_object_identity msg_id)
 {
 // Transfer ownership of the message to the caller.
 return accept_message(msg_id);
 }

 // Releases a previous message reservation.
 virtual void release_message(concurrency::runtime_object_identity msg_id)
 {
 // The head message must be the one that is reserved.
 if (_output_messages.empty() ||
 _output_messages.front()->msg_id() != msg_id)
 {
 throw message_not_found();
 }
 }

 // Resumes propagation after a reservation has been released.
 virtual void resume_propagation()
 {
 // Propagate out any messages in the output queue.
 if (_output_messages.size() > 0)
 {
 async_send(NULL);
 }
 }

 // Notifies this block that a new target has been linked to it.
 virtual void link_target_notification(concurrency::ITarget<_Target_type>*)
 {
 // Do not propagate messages if a target block reserves
 // the message at the front of the queue.
 if (_M_pReservedFor != NULL)
 {
 return;
 }

 // Propagate out any messages that are in the output queue.
 propagate_priority_order();
 }

 // Transfers the message at the front of the input queue to the output queue
 // and propagates out all messages in the output queue.
 virtual void propagate_to_any_targets(concurrency::message<_Target_type>*)
 {
 // Retrieve the message from the front of the input queue.
 concurrency::message<_Source_type>* input_message = NULL;
 {
 concurrency::critical_section::scoped_lock lock(_input_lock);

 if (_input_messages.size() > 0)
 {
 input_message = _input_messages.top();
 _input_messages.pop();
 }
 }

 // Move the message to the output queue.
 if (input_message != NULL)
 {
 // The payload of the output message does not contain the
 // priority of the message.
 concurrency::message<_Target_type>* output_message =
 new concurrency::message<_Target_type>(get<1>(input_message->payload));
 _output_messages.push(output_message);

 // Free the memory for the input message.
 delete input_message;

 // Do not propagate messages if the new message is not the head message.
 // In this case, the head message is reserved by another message block.
 if (_output_messages.front()->msg_id() != output_message->msg_id())
 {
 return;
 }
 }

 // Propagate out the output messages.
 propagate_priority_order();
 }

 private:

 // Propagates messages in priority order.
 void propagate_priority_order()
 {
 // Cancel propagation if another block reserves the head message.
 if (_M_pReservedFor != NULL)
 {
 return;
 }

 // Propagate out all output messages.
 // Because this block preserves message ordering, stop propagation
 // if any of the messages are not accepted by a target block.
 while (!_output_messages.empty())
 {
 // Get the next message.
 concurrency::message<_Target_type> * message = _output_messages.front();

 concurrency::message_status status = declined;

 // Traverse each target in the order in which they are connected.
 for (target_iterator iter = _M_connectedTargets.begin();
 *iter != NULL;
 ++iter)
 {
 // Propagate the message to the target.
 concurrency::ITarget<_Target_type>* target = *iter;
 status = target->propagate(message, this);

 // If the target accepts the message then ownership of message has
 // changed. Do not propagate this message to any other target.
 if (status == accepted)
 {
 break;
 }

 // If the target only reserved this message, we must wait until the

 // If the target only reserved this message, we must wait until the
 // target accepts the message.
 if (_M_pReservedFor != NULL)
 {
 break;
 }
 }

 // If status is anything other than accepted, then the head message
 // was not propagated out. To preserve the order in which output
 // messages are propagated, we must stop propagation until the head
 // message is accepted.
 if (status != accepted)
 {
 break;
 }
 }
 }

 private:

 // Stores incoming messages.
 // The type parameter Pr specifies how to order messages by priority.
 std::priority_queue<
 concurrency::message<_Source_type>*,
 std::vector<concurrency::message<_Source_type>*>,
 Pr
 > _input_messages;

 // Synchronizes access to the input message queue.
 concurrency::critical_section _input_lock;

 // Stores outgoing messages.
 std::queue<concurrency::message<_Target_type>*> _output_messages;

 private:
 // Hide assignment operator and copy constructor.
 priority_buffer const &operator =(priority_buffer const&);
 priority_buffer(priority_buffer const &);
 };

}

The following example concurrently performs a number of asend and concurrency::receive operations on a
priority_buffer object.

// priority_buffer.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include "priority_buffer.h"

using namespace concurrency;
using namespace concurrencyex;
using namespace std;

int wmain()
{
 // Concurrently perform a number of asend and receive operations
 // on a priority_buffer object.

 priority_buffer<int> pb;

 parallel_invoke(
 [&pb] { for (int i = 0; i < 25; ++i) asend(pb, make_tuple(2, 36)); },
 [&pb] { for (int i = 0; i < 25; ++i) asend(pb, make_tuple(0, 12)); },
 [&pb] { for (int i = 0; i < 25; ++i) asend(pb, make_tuple(1, 24)); },
 [&pb] {
 for (int i = 0; i < 75; ++i) {
 wcout << receive(pb) << L' ';
 if ((i+1) % 25 == 0)
 wcout << endl;
 }
 }
);
}

36 36
24 24
12 12

Compiling the Code

See also

This example produces the following sample output.

The priority_buffer class orders messages first by priority and then by the order in which it receives messages.
In this example, messages with greater numerical priority are inserted towards the front of the queue.

[Top]

Copy the example code and paste it in a Visual Studio project, or paste the definition of the priority_buffer class
in a file that is named priority_buffer.h and the test program in a file that is named priority_buffer.cpp and
then run the following command in a Visual Studio Command Prompt window.

cl.exe /EHsc priority_buffer.cpp

Concurrency Runtime Walkthroughs
Asynchronous Message Blocks
Message Passing Functions

Concurrency Runtime Best Practices
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section describes best practices that can help you make effective use of the Concurrency Runtime. These best
practices apply to the Parallel Patterns Library (PPL), the Asynchronous Agents Library, and the Task Scheduler.

Best Practices in the Parallel Patterns Library
Describes the best practices to follow when you use the Parallel Patterns Library (PPL).

Best Practices in the Asynchronous Agents Library
Describes the best practices to follow when you use the Asynchronous Agents Library.

General Best Practices in the Concurrency Runtime
Describes best practices that apply to multiple areas of the Concurrency Runtime.

Concurrency Runtime
Introduces the Concurrency Runtime, a concurrency framework for C++.

Parallel Patterns Library (PPL)
Describes how to use various parallel patterns, for example, parallel algorithms, in your applications.

Asynchronous Agents Library
Describes how to use asynchronous agents in your applications.

Synchronization Data Structures
Describes the various synchronization primitives that the Concurrency Runtime provides.

Task Scheduler
Describes how to use the Task Scheduler to adjust the performance of your applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/concurrency-runtime-best-practices.md

Best Practices in the Parallel Patterns Library
3/4/2019 • 22 minutes to read • Edit Online

Sections

Do Not Parallelize Small Loop Bodies

This document describes how best to make effective use of the Parallel Patterns Library (PPL). The PPL provides
general-purpose containers, objects, and algorithms for performing fine-grained parallelism.

For more information about the PPL, see Parallel Patterns Library (PPL).

This document contains the following sections:

Do Not Parallelize Small Loop Bodies

Express Parallelism at the Highest Possible Level

Use parallel_invoke to Solve Divide-and-Conquer Problems

Use Cancellation or Exception Handling to Break from a Parallel Loop

Understand how Cancellation and Exception Handling Affect Object Destruction

Do Not Block Repeatedly in a Parallel Loop

Do Not Perform Blocking Operations When You Cancel Parallel Work

Do Not Write to Shared Data in a Parallel Loop

When Possible, Avoid False Sharing

Make Sure That Variables Are Valid Throughout the Lifetime of a Task

The parallelization of relatively small loop bodies can cause the associated scheduling overhead to outweigh the
benefits of parallel processing. Consider the following example, which adds each pair of elements in two arrays.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/best-practices-in-the-parallel-patterns-library.md

// small-loops.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create three arrays that each have the same size.
 const size_t size = 100000;
 int a[size], b[size], c[size];

 // Initialize the arrays a and b.
 for (size_t i = 0; i < size; ++i)
 {
 a[i] = i;
 b[i] = i * 2;
 }

 // Add each pair of elements in arrays a and b in parallel
 // and store the result in array c.
 parallel_for<size_t>(0, size, [&a,&b,&c](size_t i) {
 c[i] = a[i] + b[i];
 });

 // TODO: Do something with array c.
}

Express Parallelism at the Highest Possible Level

The workload for each parallel loop iteration is too small to benefit from the overhead for parallel processing. You
can improve the performance of this loop by performing more work in the loop body or by performing the loop
serially.

[Top]

When you parallelize code only at the low level, you can introduce a fork-join construct that does not scale as the
number of processors increases. A fork-join construct is a construct where one task divides its work into smaller
parallel subtasks and waits for those subtasks to finish. Each subtask can recursively divide itself into additional
subtasks.

Although the fork-join model can be useful for solving a variety of problems, there are situations where the
synchronization overhead can decrease scalability. For example, consider the following serial code that processes
image data.

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
 int width = bmp->GetWidth();
 int height = bmp->GetHeight();

 // Lock the bitmap.
 BitmapData bitmapData;
 Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
 bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

 // Get a pointer to the bitmap data.
 DWORD* image_bits = (DWORD*)bitmapData.Scan0;

 // Call the function for each pixel in the image.
 for (int y = 0; y < height; ++y)
 {
 for (int x = 0; x < width; ++x)
 {
 // Get the current pixel value.
 DWORD* curr_pixel = image_bits + (y * width) + x;

 // Call the function.
 f(*curr_pixel);
 }
 }

 // Unlock the bitmap.
 bmp->UnlockBits(&bitmapData);
}

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
 int width = bmp->GetWidth();
 int height = bmp->GetHeight();

 // Lock the bitmap.
 BitmapData bitmapData;
 Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
 bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

 // Get a pointer to the bitmap data.
 DWORD* image_bits = (DWORD*)bitmapData.Scan0;

 // Call the function for each pixel in the image.
 parallel_for (0, height, [&, width](int y)
 {
 for (int x = 0; x < width; ++x)
 {
 // Get the current pixel value.
 DWORD* curr_pixel = image_bits + (y * width) + x;

 // Call the function.
 f(*curr_pixel);
 }
 });

 // Unlock the bitmap.
 bmp->UnlockBits(&bitmapData);
}

Because each loop iteration is independent, you can parallelize much of the work, as shown in the following
example. This example uses the concurrency::parallel_for algorithm to parallelize the outer loop.

// Processes each bitmap in the provided vector.
void ProcessImages(vector<Bitmap*> bitmaps, const function<void (DWORD&)>& f)
{
 for_each(begin(bitmaps), end(bitmaps), [&f](Bitmap* bmp) {
 ProcessImage(bmp, f);
 });
}

// Processes each bitmap in the provided vector.
void ProcessImages(vector<Bitmap*> bitmaps, const function<void (DWORD&)>& f)
{
 parallel_for_each(begin(bitmaps), end(bitmaps), [&f](Bitmap* bmp) {
 ProcessImage(bmp, f);
 });
}

Use parallel_invoke to Solve Divide-and-Conquer Problems

The following example illustrates a fork-join construct by calling the ProcessImage function in a loop. Each call to
ProcessImage does not return until each subtask finishes.

If each iteration of the parallel loop either performs almost no work, or the work that is performed by the parallel
loop is imbalanced, that is, some loop iterations take longer than others, the scheduling overhead that is required
to frequently fork and join work can outweigh the benefit to parallel execution. This overhead increases as the
number of processors increases.

To reduce the amount of scheduling overhead in this example, you can parallelize outer loops before you
parallelize inner loops or use another parallel construct such as pipelining. The following example modifies the
ProcessImages function to use the concurrency::parallel_for_each algorithm to parallelize the outer loop.

For a similar example that uses a pipeline to perform image processing in parallel, see Walkthrough: Creating an
Image-Processing Network.

[Top]

A divide-and-conquer problem is a form of the fork-join construct that uses recursion to break a task into
subtasks. In addition to the concurrency::task_group and concurrency::structured_task_group classes, you can also
use the concurrency::parallel_invoke algorithm to solve divide-and-conquer problems. The parallel_invoke

algorithm has a more succinct syntax than task group objects, and is useful when you have a fixed number of
parallel tasks.

The following example illustrates the use of the parallel_invoke algorithm to implement the bitonic sorting
algorithm.

// Sorts the given sequence in the specified order.
template <class T>
void parallel_bitonic_sort(T* items, int lo, int n, bool dir)
{
 if (n > 1)
 {
 // Divide the array into two partitions and then sort
 // the partitions in different directions.
 int m = n / 2;

 parallel_invoke(
 [&] { parallel_bitonic_sort(items, lo, m, INCREASING); },
 [&] { parallel_bitonic_sort(items, lo + m, m, DECREASING); }
);

 // Merge the results.
 parallel_bitonic_merge(items, lo, n, dir);
 }
}

Use Cancellation or Exception Handling to Break from a Parallel Loop

To reduce overhead, the parallel_invoke algorithm performs the last of the series of tasks on the calling context.

For the complete version of this example, see How to: Use parallel_invoke to Write a Parallel Sort Routine. For
more information about the parallel_invoke algorithm, see Parallel Algorithms.

[Top]

The PPL provides two ways to cancel the parallel work that is performed by a task group or parallel algorithm.
One way is to use the cancellation mechanism that is provided by the concurrency::task_group and
concurrency::structured_task_group classes. The other way is to throw an exception in the body of a task work
function. The cancellation mechanism is more efficient than exception handling at canceling a tree of parallel work.
A parallel work tree is a group of related task groups in which some task groups contain other task groups. The
cancellation mechanism cancels a task group and its child task groups in a top-down manner. Conversely,
exception handling works in a bottom-up manner and must cancel each child task group independently as the
exception propagates upward.

When you work directly with a task group object, use the concurrency::task_group::cancel or
concurrency::structured_task_group::cancel methods to cancel the work that belongs to that task group. To cancel a
parallel algorithm, for example, parallel_for , create a parent task group and cancel that task group. For example,
consider the following function, parallel_find_any , which searches for a value in an array in parallel.

// Returns the position in the provided array that contains the given value,
// or -1 if the value is not in the array.
template<typename T>
int parallel_find_any(const T a[], size_t count, const T& what)
{
 // The position of the element in the array.
 // The default value, -1, indicates that the element is not in the array.
 int position = -1;

 // Call parallel_for in the context of a cancellation token to search for the element.
 cancellation_token_source cts;
 run_with_cancellation_token([count, what, &a, &position, &cts]()
 {
 parallel_for(std::size_t(0), count, [what, &a, &position, &cts](int n) {
 if (a[n] == what)
 {
 // Set the return value and cancel the remaining tasks.
 position = n;
 cts.cancel();
 }
 });
 }, cts.get_token());

 return position;
}

// Performs the given work function on the data element of the tree and
// on each child.
template<class Function>
void tree::for_all(Function& action)
{
 // Perform the action on each child.
 parallel_for_each(begin(_children), end(_children), [&](tree& child) {
 child.for_all(action);
 });

 // Perform the action on this node.
 action(*this);
}

Because parallel algorithms use task groups, when one of the parallel iterations cancels the parent task group, the
overall task is canceled. For the complete version of this example, see How to: Use Cancellation to Break from a
Parallel Loop.

Although exception handling is a less efficient way to cancel parallel work than the cancellation mechanism, there
are cases where exception handling is appropriate. For example, the following method, for_all , recursively
performs a work function on each node of a tree structure. In this example, the _children data member is a
std::list that contains tree objects.

The caller of the tree::for_all method can throw an exception if it does not require the work function to be
called on each element of the tree. The following example shows the search_for_value function, which searches
for a value in the provided tree object. The search_for_value function uses a work function that throws an
exception when the current element of the tree matches the provided value. The search_for_value function uses a
try-catch block to capture the exception and print the result to the console.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/list-class

// Searches for a value in the provided tree object.
template <typename T>
void search_for_value(tree<T>& t, int value)
{
 try
 {
 // Call the for_all method to search for a value. The work function
 // throws an exception when it finds the value.
 t.for_all([value](const tree<T>& node) {
 if (node.get_data() == value)
 {
 throw &node;
 }
 });
 }
 catch (const tree<T>* node)
 {
 // A matching node was found. Print a message to the console.
 wstringstream ss;
 ss << L"Found a node with value " << value << L'.' << endl;
 wcout << ss.str();
 return;
 }

 // A matching node was not found. Print a message to the console.
 wstringstream ss;
 ss << L"Did not find node with value " << value << L'.' << endl;
 wcout << ss.str();
}

Understand how Cancellation and Exception Handling Affect Object
Destruction

// parallel-resource-destruction.h
#pragma once
#include <ppl.h>
#include <sstream>
#include <iostream>

// Represents a resource.
class Resource
{
public:
 Resource(const std::wstring& name)
 : _name(name)
 {

For the complete version of this example, see How to: Use Exception Handling to Break from a Parallel Loop.

For more general information about the cancellation and exception-handling mechanisms that are provided by
the PPL, see Cancellation in the PPL and Exception Handling.

[Top]

In a tree of parallel work, a task that is canceled prevents child tasks from running. This can cause problems if one
of the child tasks performs an operation that is important to your application, such as freeing a resource. In
addition, task cancellation can cause an exception to propagate through an object destructor and cause undefined
behavior in your application.

In the following example, the Resource class describes a resource and the Container class describes a container
that holds resources. In its destructor, the Container class calls the cleanup method on two of its Resource

members in parallel and then calls the cleanup method on its third Resource member.

 }

 // Frees the resource.
 void cleanup()
 {
 // Print a message as a placeholder.
 std::wstringstream ss;
 ss << _name << L": Freeing..." << std::endl;
 std::wcout << ss.str();
 }
private:
 // The name of the resource.
 std::wstring _name;
};

// Represents a container that holds resources.
class Container
{
public:
 Container(const std::wstring& name)
 : _name(name)
 , _resource1(L"Resource 1")
 , _resource2(L"Resource 2")
 , _resource3(L"Resource 3")
 {
 }

 ~Container()
 {
 std::wstringstream ss;
 ss << _name << L": Freeing resources..." << std::endl;
 std::wcout << ss.str();

 // For illustration, assume that cleanup for _resource1
 // and _resource2 can happen concurrently, and that
 // _resource3 must be freed after _resource1 and _resource2.

 concurrency::parallel_invoke(
 [this]() { _resource1.cleanup(); },
 [this]() { _resource2.cleanup(); }
);

 _resource3.cleanup();
 }

private:
 // The name of the container.
 std::wstring _name;

 // Resources.
 Resource _resource1;
 Resource _resource2;
 Resource _resource3;
};

Although this pattern has no problems on its own, consider the following code that runs two tasks in parallel. The
first task creates a Container object and the second task cancels the overall task. For illustration, the example uses
two concurrency::event objects to make sure that the cancellation occurs after the Container object is created and
that the Container object is destroyed after the cancellation operation occurs.

// parallel-resource-destruction.cpp
// compile with: /EHsc
#include "parallel-resource-destruction.h"

using namespace concurrency;
using namespace std;

static_assert(false, "This example illustrates a non-recommended practice.");

int main()
{
 // Create a task_group that will run two tasks.
 task_group tasks;

 // Used to synchronize the tasks.
 event e1, e2;

 // Run two tasks. The first task creates a Container object. The second task
 // cancels the overall task group. To illustrate the scenario where a child
 // task is not run because its parent task is cancelled, the event objects
 // ensure that the Container object is created before the overall task is
 // cancelled and that the Container object is destroyed after the overall
 // task is cancelled.

 tasks.run([&tasks,&e1,&e2] {
 // Create a Container object.
 Container c(L"Container 1");

 // Allow the second task to continue.
 e2.set();

 // Wait for the task to be cancelled.
 e1.wait();
 });

 tasks.run([&tasks,&e1,&e2] {
 // Wait for the first task to create the Container object.
 e2.wait();

 // Cancel the overall task.
 tasks.cancel();

 // Allow the first task to continue.
 e1.set();
 });

 // Wait for the tasks to complete.
 tasks.wait();

 wcout << L"Exiting program..." << endl;
}

Container 1: Freeing resources...Exiting program...

This example produces the following output:

This code example contains the following issues that may cause it to behave differently than you expect:

The cancellation of the parent task causes the child task, the call to concurrency::parallel_invoke, to also be
canceled. Therefore, these two resources are not freed.

The cancellation of the parent task causes the child task to throw an internal exception. Because the
Container destructor does not handle this exception, the exception is propagated upward and the third

resource is not freed.

Do Not Block Repeatedly in a Parallel Loop

// repeated-blocking.cpp
// compile with: /EHsc
#include <ppl.h>
#include <agents.h>

using namespace concurrency;

static_assert(false, "This example illustrates a non-recommended practice.");

int main()
{
 // Create a message buffer.
 overwrite_buffer<int> buffer;

 // Repeatedly send data to the buffer in a parallel loop.
 parallel_for(0, 1000, [&buffer](int i) {

 // The send function blocks cooperatively.
 // We discourage the use of repeated blocking in a parallel
 // loop because it can cause the runtime to create
 // a large number of threads over a short period of time.
 send(buffer, i);
 });
}

Do Not Perform Blocking Operations When You Cancel Parallel Work

The exception that is thrown by the child task propagates through the Container destructor. Throwing
from a destructor puts the application in an undefined state.

We recommend that you do not perform critical operations, such as the freeing of resources, in tasks unless you
can guarantee that these tasks will not be canceled. We also recommend that you do not use runtime functionality
that can throw in the destructor of your types.

[Top]

A parallel loop such as concurrency::parallel_for or concurrency::parallel_for_each that is dominated by blocking
operations may cause the runtime to create many threads over a short time.

The Concurrency Runtime performs additional work when a task finishes or cooperatively blocks or yields. When
one parallel loop iteration blocks, the runtime might begin another iteration. When there are no available idle
threads, the runtime creates a new thread.

When the body of a parallel loop occasionally blocks, this mechanism helps maximize the overall task throughput.
However, when many iterations block, the runtime may create many threads to run the additional work. This
could lead to low-memory conditions or poor utilization of hardware resources.

Consider the following example that calls the concurrency::send function in each iteration of a parallel_for loop.
Because send blocks cooperatively, the runtime creates a new thread to run additional work every time send is
called.

We recommend that you refactor your code to avoid this pattern. In this example, you can avoid the creation of
additional threads by calling send in a serial for loop.

[Top]

When possible, do not perform blocking operations before you call the concurrency::task_group::cancel or

concurrency::structured_task_group::cancel method to cancel parallel work.

When a task performs a cooperative blocking operation, the runtime can perform other work while the first task
waits for data. The runtime reschedules the waiting task when it unblocks. The runtime typically reschedules tasks
that were more recently unblocked before it reschedules tasks that were less recently unblocked. Therefore, the
runtime could schedule unnecessary work during the blocking operation, which leads to decreased performance.
Accordingly, when you perform a blocking operation before you cancel parallel work, the blocking operation can
delay the call to cancel . This causes other tasks to perform unnecessary work.

Consider the following example that defines the parallel_find_answer function, which searches for an element of
the provided array that satisfies the provided predicate function. When the predicate function returns true, the
parallel work function creates an Answer object and cancels the overall task.

// blocking-cancel.cpp
// compile with: /c /EHsc
#include <windows.h>
#include <ppl.h>

using namespace concurrency;

// Encapsulates the result of a search operation.
template<typename T>
class Answer
{
public:
 explicit Answer(const T& data)
 : _data(data)
 {
 }

 T get_data() const
 {
 return _data;
 }

 // TODO: Add other methods as needed.

private:
 T _data;

 // TODO: Add other data members as needed.
};

// Searches for an element of the provided array that satisfies the provided
// predicate function.
template<typename T, class Predicate>
Answer<T>* parallel_find_answer(const T a[], size_t count, const Predicate& pred)
{
 // The result of the search.
 Answer<T>* answer = nullptr;
 // Ensures that only one task produces an answer.
 volatile long first_result = 0;

 // Use parallel_for and a task group to search for the element.
 structured_task_group tasks;
 tasks.run_and_wait([&]
 {
 // Declare the type alias for use in the inner lambda function.
 typedef T T;

 parallel_for<size_t>(0, count, [&](const T& n) {
 if (pred(a[n]) && InterlockedExchange(&first_result, 1) == 0)
 {
 // Create an object that holds the answer.
 answer = new Answer<T>(a[n]);
 // Cancel the overall task.
 tasks.cancel();
 }
 });
 });

 return answer;
}

The new operator performs a heap allocation, which might block. The runtime performs other work only when
the task performs a cooperative blocking call, such as a call to concurrency::critical_section::lock.

The following example shows how to prevent unnecessary work, and thereby improve performance. This example
cancels the task group before it allocates the storage for the Answer object.

// Searches for an element of the provided array that satisfies the provided
// predicate function.
template<typename T, class Predicate>
Answer<T>* parallel_find_answer(const T a[], size_t count, const Predicate& pred)
{
 // The result of the search.
 Answer<T>* answer = nullptr;
 // Ensures that only one task produces an answer.
 volatile long first_result = 0;

 // Use parallel_for and a task group to search for the element.
 structured_task_group tasks;
 tasks.run_and_wait([&]
 {
 // Declare the type alias for use in the inner lambda function.
 typedef T T;

 parallel_for<size_t>(0, count, [&](const T& n) {
 if (pred(a[n]) && InterlockedExchange(&first_result, 1) == 0)
 {
 // Cancel the overall task.
 tasks.cancel();
 // Create an object that holds the answer.
 answer = new Answer<T>(a[n]);
 }
 });
 });

 return answer;
}

Do Not Write to Shared Data in a Parallel Loop

critical_section cs;
prime_sum = 0;
parallel_for_each(begin(a), end(a), [&](int i) {
 cs.lock();
 prime_sum += (is_prime(i) ? i : 0);
 cs.unlock();
});

[Top]

The Concurrency Runtime provides several data structures, for example, concurrency::critical_section, that
synchronize concurrent access to shared data. These data structures are useful in many cases, for example, when
multiple tasks infrequently require shared access to a resource.

Consider the following example that uses the concurrency::parallel_for_each algorithm and a critical_section

object to compute the count of prime numbers in a std::array object. This example does not scale because each
thread must wait to access the shared variable prime_sum .

This example can also lead to poor performance because the frequent locking operation effectively serializes the
loop. In addition, when a Concurrency Runtime object performs a blocking operation, the scheduler might create
an additional thread to perform other work while the first thread waits for data. If the runtime creates many
threads because many tasks are waiting for shared data, the application can perform poorly or enter a low-
resource state.

The PPL defines the concurrency::combinable class, which helps you eliminate shared state by providing access to
shared resources in a lock-free manner. The combinable class provides thread-local storage that lets you perform
fine-grained computations and then merge those computations into a final result. You can think of a combinable

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl

combinable<int> sum;
parallel_for_each(begin(a), end(a), [&](int i) {
 sum.local() += (is_prime(i) ? i : 0);
});
prime_sum = sum.combine(plus<int>());

When Possible, Avoid False Sharing

volatile long count = 0L;
concurrency::parallel_invoke(
 [&count] {
 for(int i = 0; i < 100000000; ++i)
 InterlockedIncrement(&count);
 },
 [&count] {
 for(int i = 0; i < 100000000; ++i)
 InterlockedIncrement(&count);
 }
);

long count1 = 0L;
long count2 = 0L;
concurrency::parallel_invoke(
 [&count1] {
 for(int i = 0; i < 100000000; ++i)
 ++count1;
 },
 [&count2] {
 for(int i = 0; i < 100000000; ++i)
 ++count2;
 }
);
long count = count1 + count2;

object as a reduction variable.

The following example modifies the previous one by using a combinable object instead of a critical_section

object to compute the sum. This example scales because each thread holds its own local copy of the sum. This
example uses the concurrency::combinable::combine method to merge the local computations into the final result.

For the complete version of this example, see How to: Use combinable to Improve Performance. For more
information about the combinable class, see Parallel Containers and Objects.

[Top]

False sharing occurs when multiple concurrent tasks that are running on separate processors write to variables
that are located on the same cache line. When one task writes to one of the variables, the cache line for both
variables is invalidated. Each processor must reload the cache line every time that the cache line is invalidated.
Therefore, false sharing can cause decreased performance in your application.

The following basic example shows two concurrent tasks that each increment a shared counter variable.

To eliminate the sharing of data between the two tasks, you can modify the example to use two counter variables.
This example computes the final counter value after the tasks finish. However, this example illustrates false
sharing because the variables count1 and count2 are likely to be located on the same cache line.

One way to eliminate false sharing is to make sure that the counter variables are on separate cache lines. The
following example aligns the variables count1 and count2 on 64-byte boundaries.

__declspec(align(64)) long count1 = 0L;
__declspec(align(64)) long count2 = 0L;
concurrency::parallel_invoke(
 [&count1] {
 for(int i = 0; i < 100000000; ++i)
 ++count1;
 },
 [&count2] {
 for(int i = 0; i < 100000000; ++i)
 ++count2;
 }
);
long count = count1 + count2;

Make Sure That Variables Are Valid Throughout the Lifetime of a Task

This example assumes that the size of the memory cache is 64 or fewer bytes.

We recommend that you use the concurrency::combinable class when you must share data among tasks. The
combinable class creates thread-local variables in such a way that false sharing is less likely. For more information

about the combinable class, see Parallel Containers and Objects.

[Top]

When you provide a lambda expression to a task group or parallel algorithm, the capture clause specifies whether
the body of the lambda expression accesses variables in the enclosing scope by value or by reference. When you
pass variables to a lambda expression by reference, you must guarantee that the lifetime of that variable persists
until the task finishes.

Consider the following example that defines the object class and the perform_action function. The
perform_action function creates an object variable and performs some action on that variable asynchronously.

Because the task is not guaranteed to finish before the perform_action function returns, the program will crash or
exhibit unspecified behavior if the object variable is destroyed when the task is running.

// lambda-lifetime.cpp
// compile with: /c /EHsc
#include <ppl.h>

using namespace concurrency;

// A type that performs an action.
class object
{
public:
 void action() const
 {
 // TODO: Details omitted for brevity.
 }
};

// Performs an action asynchronously.
void perform_action(task_group& tasks)
{
 // Create an object variable and perform some action on
 // that variable asynchronously.
 object obj;
 tasks.run([&obj] {
 obj.action();
 });

 // NOTE: The object variable is destroyed here. The program
 // will crash or exhibit unspecified behavior if the task
 // is still running when this function returns.
}

// Performs an action asynchronously.
void perform_action(task_group& tasks)
{
 // Create an object variable and perform some action on
 // that variable asynchronously.
 object obj;
 tasks.run([obj] {
 obj.action();
 });
}

Depending on the requirements of your application, you can use one of the following techniques to guarantee that
variables remain valid throughout the lifetime of every task.

The following example passes the object variable by value to the task. Therefore, the task operates on its own
copy of the variable.

Because the object variable is passed by value, any state changes that occur to this variable do not appear in the
original copy.

The following example uses the concurrency::task_group::wait method to make sure that the task finishes before
the perform_action function returns.

// Performs an action.
void perform_action(task_group& tasks)
{
 // Create an object variable and perform some action on
 // that variable.
 object obj;
 tasks.run([&obj] {
 obj.action();
 });

 // Wait for the task to finish.
 tasks.wait();
}

// Performs an action asynchronously.
void perform_action(object& obj, task_group& tasks)
{
 // Perform some action on the object variable.
 tasks.run([&obj] {
 obj.action();
 });
}

See also

Because the task now finishes before the function returns, the perform_action function no longer behaves
asynchronously.

The following example modifies the perform_action function to take a reference to the object variable. The caller
must guarantee that the lifetime of the object variable is valid until the task finishes.

You can also use a pointer to control the lifetime of an object that you pass to a task group or parallel algorithm.

For more information about lambda expressions, see Lambda Expressions.

[Top]

Concurrency Runtime Best Practices
Parallel Patterns Library (PPL)
Parallel Containers and Objects
Parallel Algorithms
Cancellation in the PPL
Exception Handling
Walkthrough: Creating an Image-Processing Network
How to: Use parallel_invoke to Write a Parallel Sort Routine
How to: Use Cancellation to Break from a Parallel Loop
How to: Use combinable to Improve Performance
Best Practices in the Asynchronous Agents Library
General Best Practices in the Concurrency Runtime

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp

Best Practices in the Asynchronous Agents Library
3/4/2019 • 13 minutes to read • Edit Online

Sections

Use Agents to Isolate State

This document describes how to make effective use of the Asynchronous Agents Library. The Agents Library
promotes an actor-based programming model and in-process message passing for coarse-grained dataflow and
pipelining tasks.

For more information about the Agents Library, see Asynchronous Agents Library.

This document contains the following sections:

Use Agents to Isolate State

Use a Throttling Mechanism to Limit the Number of Messages in a Data Pipeline

Do Not Perform Fine-Grained Work in a Data Pipeline

Do Not Pass Large Message Payloads by Value

Use shared_ptr in a Data Network When Ownership Is Undefined

The Agents Library provides alternatives to shared state by letting you connect isolated components through an
asynchronous message-passing mechanism. Asynchronous agents are most effective when they isolate their
internal state from other components. By isolating state, multiple components do not typically act on shared data.
State isolation can enable your application to scale because it reduces contention on shared memory. State
isolation also reduces the chance of deadlock and race conditions because components do not have to synchronize
access to shared data.

You typically isolate state in an agent by holding data members in the private or protected sections of the agent
class and by using message buffers to communicate state changes. The following example shows the basic_agent

class, which derives from concurrency::agent. The basic_agent class uses two message buffers to communicate
with external components. One message buffer holds incoming messages; the other message buffer holds
outgoing messages.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/best-practices-in-the-asynchronous-agents-library.md

// basic-agent.cpp
// compile with: /c /EHsc
#include <agents.h>

// An agent that uses message buffers to isolate state and communicate
// with other components.
class basic_agent : public concurrency::agent
{
public:
 basic_agent(concurrency::unbounded_buffer<int>& input)
 : _input(input)
 {
 }

 // Retrieves the message buffer that holds output messages.
 concurrency::unbounded_buffer<int>& output()
 {
 return _output;
 }

protected:
 void run()
 {
 while (true)
 {
 // Read from the input message buffer.
 int value = concurrency::receive(_input);

 // TODO: Do something with the value.
 int result = value;

 // Write the result to the output message buffer.
 concurrency::send(_output, result);
 }
 done();
 }

private:
 // Holds incoming messages.
 concurrency::unbounded_buffer<int>& _input;
 // Holds outgoing messages.
 concurrency::unbounded_buffer<int> _output;
};

Use a Throttling Mechanism to Limit the Number of Messages in a
Data Pipeline

For complete examples about how to define and use agents, see Walkthrough: Creating an Agent-Based
Application and Walkthrough: Creating a Dataflow Agent.

[Top]

Many message-buffer types, such as concurrency::unbounded_buffer, can hold an unlimited number of messages.
When a message producer sends messages to a data pipeline faster than the consumer can process these
messages, the application can enter a low-memory or out-of-memory state. You can use a throttling mechanism,
for example, a semaphore, to limit the number of messages that are concurrently active in a data pipeline.

The following basic example demonstrates how to use a semaphore to limit the number of messages in a data
pipeline. The data pipeline uses the concurrency::wait function to simulate an operation that takes at least 100
milliseconds. Because the sender produces messages faster than the consumer can process those messages, this
example defines the semaphore class to enable the application to limit the number of active messages.

// message-throttling.cpp
// compile with: /EHsc
#include <windows.h> // for GetTickCount()
#include <atomic>
#include <agents.h>
#include <concrt.h>
#include <concurrent_queue.h>
#include <sstream>
#include <iostream>

using namespace concurrency;
using namespace std;

// A semaphore type that uses cooperative blocking semantics.
class semaphore
{
public:
 explicit semaphore(long long capacity)
 : _semaphore_count(capacity)
 {
 }

 // Acquires access to the semaphore.
 void acquire()
 {
 // The capacity of the semaphore is exceeded when the semaphore count
 // falls below zero. When this happens, add the current context to the
 // back of the wait queue and block the current context.
 if (--_semaphore_count < 0)
 {
 _waiting_contexts.push(Context::CurrentContext());
 Context::Block();
 }
 }

 // Releases access to the semaphore.
 void release()
 {
 // If the semaphore count is negative, unblock the first waiting context.
 if (++_semaphore_count <= 0)
 {
 // A call to acquire might have decremented the counter, but has not
 // yet finished adding the context to the queue.
 // Create a spin loop that waits for the context to become available.
 Context* waiting = NULL;
 while (!_waiting_contexts.try_pop(waiting))
 {
 Context::Yield();
 }

 // Unblock the context.
 waiting->Unblock();
 }
 }

private:
 // The semaphore count.
 atomic<long long> _semaphore_count;

 // A concurrency-safe queue of contexts that must wait to
 // acquire the semaphore.
 concurrent_queue<Context*> _waiting_contexts;
};

// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:

public:
 countdown_event(long long count)
 : _current(count)
 {
 // Set the event if the initial count is zero.
 if (_current == 0LL)
 _event.set();
 }

 // Decrements the event counter.
 void signal() {
 if(--_current == 0LL) {
 _event.set();
 }
 }

 // Increments the event counter.
 void add_count() {
 if(++_current == 1LL) {
 _event.reset();
 }
 }

 // Blocks the current context until the event is set.
 void wait() {
 _event.wait();
 }

private:
 // The current count.
 atomic<long long> _current;
 // The event that is set when the counter reaches zero.
 event _event;

 // Disable copy constructor.
 countdown_event(const countdown_event&);
 // Disable assignment.
 countdown_event const & operator=(countdown_event const&);
};

int wmain()
{
 // The number of messages to send to the consumer.
 const long long MessageCount = 5;

 // The number of messages that can be active at the same time.
 const long long ActiveMessages = 2;

 // Used to compute the elapsed time.
 DWORD start_time;

 // Computes the elapsed time, rounded-down to the nearest
 // 100 milliseconds.
 auto elapsed = [&start_time] {
 return (GetTickCount() - start_time)/100*100;
 };

 // Limits the number of active messages.
 semaphore s(ActiveMessages);

 // Enables the consumer message buffer to coordinate completion
 // with the main application.
 countdown_event e(MessageCount);

 // Create a data pipeline that has three stages.

 // The first stage of the pipeline prints a message.
 transformer<int, int> print_message([&elapsed](int n) -> int {
 wstringstream ss;
 ss << elapsed() << L": received " << n << endl;

 ss << elapsed() << L": received " << n << endl;
 wcout << ss.str();

 // Send the input to the next pipeline stage.
 return n;
 });

 // The second stage of the pipeline simulates a
 // time-consuming operation.
 transformer<int, int> long_operation([](int n) -> int {
 wait(100);

 // Send the input to the next pipeline stage.
 return n;
 });

 // The third stage of the pipeline releases the semaphore
 // and signals to the main appliation that the message has
 // been processed.
 call<int> release_and_signal([&](int unused) {
 // Enable the sender to send the next message.
 s.release();

 // Signal that the message has been processed.
 e.signal();
 });

 // Connect the pipeline.
 print_message.link_target(&long_operation);
 long_operation.link_target(&release_and_signal);

 // Send several messages to the pipeline.
 start_time = GetTickCount();
 for(auto i = 0; i < MessageCount; ++i)
 {
 // Acquire access to the semaphore.
 s.acquire();

 // Print the message to the console.
 wstringstream ss;
 ss << elapsed() << L": sending " << i << L"..." << endl;
 wcout << ss.str();

 // Send the message.
 send(print_message, i);
 }

 // Wait for the consumer to process all messages.
 e.wait();
}
/* Sample output:
 0: sending 0...
 0: received 0
 0: sending 1...
 0: received 1
 100: sending 2...
 100: received 2
 200: sending 3...
 200: received 3
 300: sending 4...
 300: received 4
*/

The semaphore object limits the pipeline to process at most two messages at the same time.

The producer in this example sends relatively few messages to the consumer. Therefore, this example does not
demonstrate a potential low-memory or out-of-memory condition. However, this mechanism is useful when a

Do Not Perform Fine-Grained Work in a Data Pipeline

Do Not Pass Large Message Payloads by Value

// message-payloads.cpp
// compile with: /EHsc
#include <Windows.h>
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
 __int64 begin = GetTickCount();
 f();
 return GetTickCount() - begin;
}

// A message structure that contains large payload data.
struct message_data

data pipeline contains a relatively high number of messages.

For more information about how to create the semaphore class that is used in this example, see How to: Use the
Context Class to Implement a Cooperative Semaphore.

[Top]

The Agents Library is most useful when the work that is performed by a data pipeline is fairly coarse-grained. For
example, one application component might read data from a file or a network connection and occasionally send
that data to another component. The protocol that the Agents Library uses to propagate messages causes the
message-passing mechanism to have more overhead than the task parallel constructs that are provided by the
Parallel Patterns Library (PPL). Therefore, make sure that the work that is performed by a data pipeline is long
enough to offset this overhead.

Although a data pipeline is most effective when its tasks are coarse-grained, each stage of the data pipeline can
use PPL constructs such as task groups and parallel algorithms to perform more fine-grained work. For an
example of a coarse-grained data network that uses fine-grained parallelism at each processing stage, see
Walkthrough: Creating an Image-Processing Network.

[Top]

In some cases, the runtime creates a copy of every message that it passes from one message buffer to another
message buffer. For example, the concurrency::overwrite_buffer class offers a copy of every message that it
receives to each of its targets. The runtime also creates a copy of the message data when you use message-
passing functions such as concurrency::send and concurrency::receive to write messages to and read messages
from a message buffer. Although this mechanism helps eliminate the risk of concurrently writing to shared data, it
could lead to poor memory performance when the message payload is relatively large.

You can use pointers or references to improve memory performance when you pass messages that have a large
payload. The following example compares passing large messages by value to passing pointers to the same
message type. The example defines two agent types, producer and consumer , that act on message_data objects.
The example compares the time that is required for the producer to send several message_data objects to the
consumer to the time that is required for the producer agent to send several pointers to message_data objects to
the consumer.

struct message_data
{
 int id;
 string source;
 unsigned char binary_data[32768];
};

// A basic agent that produces values.
template <typename T>
class producer : public agent
{
public:
 explicit producer(ITarget<T>& target, unsigned int message_count)
 : _target(target)
 , _message_count(message_count)
 {
 }
protected:
 void run();

private:
 // The target buffer to write to.
 ITarget<T>& _target;
 // The number of messages to send.
 unsigned int _message_count;
};

// Template specialization for message_data.
template <>
void producer<message_data>::run()
{
 // Send a number of messages to the target buffer.
 while (_message_count > 0)
 {
 message_data message;
 message.id = _message_count;
 message.source = "Application";

 send(_target, message);
 --_message_count;
 }

 // Set the agent to the finished state.
 done();
}

// Template specialization for message_data*.
template <>
void producer<message_data*>::run()
{
 // Send a number of messages to the target buffer.
 while (_message_count > 0)
 {
 message_data* message = new message_data;
 message->id = _message_count;
 message->source = "Application";

 send(_target, message);
 --_message_count;
 }

 // Set the agent to the finished state.
 done();
}

// A basic agent that consumes values.
template <typename T>
class consumer : public agent
{
public:

public:
 explicit consumer(ISource<T>& source, unsigned int message_count)
 : _source(source)
 , _message_count(message_count)
 {
 }

protected:
 void run();

private:
 // The source buffer to read from.
 ISource<T>& _source;
 // The number of messages to receive.
 unsigned int _message_count;
};

// Template specialization for message_data.
template <>
void consumer<message_data>::run()
{
 // Receive a number of messages from the source buffer.
 while (_message_count > 0)
 {
 message_data message = receive(_source);
 --_message_count;

 // TODO: Do something with the message.
 // ...
 }

 // Set the agent to the finished state.
 done();
}

template <>
void consumer<message_data*>::run()
{
 // Receive a number of messages from the source buffer.
 while (_message_count > 0)
 {
 message_data* message = receive(_source);
 --_message_count;

 // TODO: Do something with the message.
 // ...

 // Release the memory for the message.
 delete message;
 }

 // Set the agent to the finished state.
 done();
}

int wmain()
{
 // The number of values for the producer agent to send.
 const unsigned int count = 10000;

 __int64 elapsed;

 // Run the producer and consumer agents.
 // This version uses message_data as the message payload type.

 wcout << L"Using message_data..." << endl;
 elapsed = time_call([count] {
 // A message buffer that is shared by the agents.
 unbounded_buffer<message_data> buffer;

 // Create and start the producer and consumer agents.
 producer<message_data> prod(buffer, count);
 consumer<message_data> cons(buffer, count);
 prod.start();
 cons.start();

 // Wait for the agents to finish.
 agent::wait(&prod);
 agent::wait(&cons);
 });
 wcout << L"took " << elapsed << L"ms." << endl;

 // Run the producer and consumer agents a second time.
 // This version uses message_data* as the message payload type.

 wcout << L"Using message_data*..." << endl;
 elapsed = time_call([count] {
 // A message buffer that is shared by the agents.
 unbounded_buffer<message_data*> buffer;

 // Create and start the producer and consumer agents.
 producer<message_data*> prod(buffer, count);
 consumer<message_data*> cons(buffer, count);
 prod.start();
 cons.start();

 // Wait for the agents to finish.
 agent::wait(&prod);
 agent::wait(&cons);
 });
 wcout << L"took " << elapsed << L"ms." << endl;
}

Using message_data...
took 437ms.
Using message_data*...
took 47ms.

Use shared_ptr in a Data Network When Ownership Is Undefined

This example produces the following sample output:

The version that uses pointers performs better because it eliminates the requirement for the runtime to create a
full copy of every message_data object that it passes from the producer to the consumer.

[Top]

When you send messages by pointer through a message-passing pipeline or network, you typically allocate the
memory for each message at the front of the network and free that memory at the end of the network. Although
this mechanism frequently works well, there are cases in which it is difficult or not possible to use it. For example,
consider the case in which the data network contains multiple end nodes. In this case, there is no clear location to
free the memory for the messages.

To solve this problem, you can use a mechanism, for example, std::shared_ptr, that enables a pointer to be owned
by multiple components. When the final shared_ptr object that owns a resource is destroyed, the resource is also
freed.

The following example demonstrates how to use shared_ptr to share pointer values among multiple message
buffers. The example connects a concurrency::overwrite_buffer object to three concurrency::call objects. The
overwrite_buffer class offers messages to each of its targets. Because there are multiple owners of the data at the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/shared-ptr-class

// message-sharing.cpp
// compile with: /EHsc
#include <agents.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// A type that holds a resource.
class resource
{
public:
 resource(int id) : _id(id)
 {
 wcout << L"Creating resource " << _id << L"..." << endl;
 }
 ~resource()
 {
 wcout << L"Destroying resource " << _id << L"..." << endl;
 }

 // Retrieves the identifier for the resource.
 int id() const { return _id; }

 // TODO: Add additional members here.
private:
 // An identifier for the resource.
 int _id;

 // TODO: Add additional members here.
};

int wmain()
{
 // A message buffer that sends messages to each of its targets.
 overwrite_buffer<shared_ptr<resource>> input;

 // Create three call objects that each receive resource objects
 // from the input message buffer.

 call<shared_ptr<resource>> receiver1(
 [](shared_ptr<resource> res) {
 wstringstream ss;
 ss << L"receiver1: received resource " << res->id() << endl;
 wcout << ss.str();
 },
 [](shared_ptr<resource> res) {
 return res != nullptr;
 }
);

 call<shared_ptr<resource>> receiver2(
 [](shared_ptr<resource> res) {
 wstringstream ss;
 ss << L"receiver2: received resource " << res->id() << endl;
 wcout << ss.str();
 },
 [](shared_ptr<resource> res) {
 return res != nullptr;
 }
);

 event e;
 call<shared_ptr<resource>> receiver3(

end of the data network, this example uses shared_ptr to enable each call object to share ownership of the
messages.

 call<shared_ptr<resource>> receiver3(
 [&e](shared_ptr<resource> res) {
 e.set();
 },
 [](shared_ptr<resource> res) {
 return res == nullptr;
 }
);

 // Connect the call objects to the input message buffer.
 input.link_target(&receiver1);
 input.link_target(&receiver2);
 input.link_target(&receiver3);

 // Send a few messages through the network.
 send(input, make_shared<resource>(42));
 send(input, make_shared<resource>(64));
 send(input, shared_ptr<resource>(nullptr));

 // Wait for the receiver that accepts the nullptr value to
 // receive its message.
 e.wait();
}

Creating resource 42...
receiver1: received resource 42
Creating resource 64...
receiver2: received resource 42
receiver1: received resource 64
Destroying resource 42...
receiver2: received resource 64
Destroying resource 64...

See also

This example produces the following sample output:

Concurrency Runtime Best Practices
Asynchronous Agents Library
Walkthrough: Creating an Agent-Based Application
Walkthrough: Creating a Dataflow Agent
Walkthrough: Creating an Image-Processing Network
Best Practices in the Parallel Patterns Library
General Best Practices in the Concurrency Runtime

General Best Practices in the Concurrency Runtime
3/4/2019 • 10 minutes to read • Edit Online

Sections

Use Cooperative Synchronization Constructs When Possible

Avoid Lengthy Tasks That Do Not Yield

This document describes best practices that apply to multiple areas of the Concurrency Runtime.

This document contains the following sections:

Use Cooperative Synchronization Constructs When Possible

Avoid Lengthy Tasks That Do Not Yield

Use Oversubscription to Offset Operations That Block or Have High Latency

Use Concurrent Memory Management Functions When Possible

Use RAII to Manage the Lifetime of Concurrency Objects

Do Not Create Concurrency Objects at Global Scope

Do Not Use Concurrency Objects in Shared Data Segments

The Concurrency Runtime provides many concurrency-safe constructs that do not require an external
synchronization object. For example, the concurrency::concurrent_vector class provides concurrency-safe append
and element access operations. However, for cases where you require exclusive access to a resource, the runtime
provides the concurrency::critical_section, concurrency::reader_writer_lock, and concurrency::event classes. These
types behave cooperatively; therefore, the task scheduler can reallocate processing resources to another context
as the first task waits for data. When possible, use these synchronization types instead of other synchronization
mechanisms, such as those provided by the Windows API, which do not behave cooperatively. For more
information about these synchronization types and a code example, see Synchronization Data Structures and
Comparing Synchronization Data Structures to the Windows API.

[Top]

Because the task scheduler behaves cooperatively, it does not provide fairness among tasks. Therefore, a task can
prevent other tasks from starting. Although this is acceptable in some cases, in other cases this can cause
deadlock or starvation.

The following example performs more tasks than the number of allocated processing resources. The first task
does not yield to the task scheduler and therefore the second task does not start until the first task finishes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/general-best-practices-in-the-concurrency-runtime.md

// cooperative-tasks.cpp
// compile with: /EHsc
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Data that the application passes to lightweight tasks.
struct task_data_t
{
 int id; // a unique task identifier.
 event e; // signals that the task has finished.
};

// A lightweight task that performs a lengthy operation.
void task(void* data)
{
 task_data_t* task_data = reinterpret_cast<task_data_t*>(data);

 // Create a large loop that occasionally prints a value to the console.
 int i;
 for (i = 0; i < 1000000000; ++i)
 {
 if (i > 0 && (i % 250000000) == 0)
 {
 wstringstream ss;
 ss << task_data->id << L": " << i << endl;
 wcout << ss.str();
 }
 }
 wstringstream ss;
 ss << task_data->id << L": " << i << endl;
 wcout << ss.str();

 // Signal to the caller that the thread is finished.
 task_data->e.set();
}

int wmain()
{
 // For illustration, limit the number of concurrent
 // tasks to one.
 Scheduler::SetDefaultSchedulerPolicy(SchedulerPolicy(2,
 MinConcurrency, 1, MaxConcurrency, 1));

 // Schedule two tasks.

 task_data_t t1;
 t1.id = 0;
 CurrentScheduler::ScheduleTask(task, &t1);

 task_data_t t2;
 t2.id = 1;
 CurrentScheduler::ScheduleTask(task, &t2);

 // Wait for the tasks to finish.

 t1.e.wait();
 t2.e.wait();
}

This example produces the following output:

1: 250000000 1: 500000000 1: 750000000 1: 1000000000 2: 250000000 2: 500000000 2: 750000000 2:

// A lightweight task that performs a lengthy operation.
void task(void* data)
{
 task_data_t* task_data = reinterpret_cast<task_data_t*>(data);

 // Create a large loop that occasionally prints a value to the console.
 int i;
 for (i = 0; i < 1000000000; ++i)
 {
 if (i > 0 && (i % 250000000) == 0)
 {
 wstringstream ss;
 ss << task_data->id << L": " << i << endl;
 wcout << ss.str();

 // Yield control back to the task scheduler.
 Context::Yield();
 }
 }
 wstringstream ss;
 ss << task_data->id << L": " << i << endl;
 wcout << ss.str();

 // Signal to the caller that the thread is finished.
 task_data->e.set();
}

1: 250000000
2: 250000000
1: 500000000
2: 500000000
1: 750000000
2: 750000000
1: 1000000000
2: 1000000000

Use Oversubscription to Offset Operations That Block or Have High
Latency

1000000000

There are several ways to enable cooperation between the two tasks. One way is to occasionally yield to the task
scheduler in a long-running task. The following example modifies the task function to call the
concurrency::Context::Yield method to yield execution to the task scheduler so that another task can run.

This example produces the following output:

The Context::Yield method yields only another active thread on the scheduler to which the current thread
belongs, a lightweight task, or another operating system thread. This method does not yield to work that is
scheduled to run in a concurrency::task_group or concurrency::structured_task_group object but has not yet
started.

There are other ways to enable cooperation among long-running tasks. You can break a large task into smaller
subtasks. You can also enable oversubscription during a lengthy task. Oversubscription lets you create more
threads than the available number of hardware threads. Oversubscription is especially useful when a lengthy task
contains a high amount of latency, for example, reading data from disk or from a network connection. For more
information about lightweight tasks and oversubscription, see Task Scheduler.

[Top]

// Downloads the file at the given URL.
string download(const string& url)
{
 // Enable oversubscription.
 Context::Oversubscribe(true);

 // Download the file.
 string content = GetHttpFile(_session, url.c_str());

 // Disable oversubscription.
 Context::Oversubscribe(false);

 return content;
}

Use Concurrent Memory Management Functions When Possible

Use RAII to Manage the Lifetime of Concurrency Objects

The Concurrency Runtime provides synchronization primitives, such as concurrency::critical_section, that enable
tasks to cooperatively block and yield to each other. When one task cooperatively blocks or yields, the task
scheduler can reallocate processing resources to another context as the first task waits for data.

There are cases in which you cannot use the cooperative blocking mechanism that is provided by the
Concurrency Runtime. For example, an external library that you use might use a different synchronization
mechanism. Another example is when you perform an operation that could have a high amount of latency, for
example, when you use the Windows API ReadFile function to read data from a network connection. In these
cases, oversubscription can enable other tasks to run when another task is idle. Oversubscription lets you create
more threads than the available number of hardware threads.

Consider the following function, download , which downloads the file at the given URL. This example uses the
concurrency::Context::Oversubscribe method to temporarily increase the number of active threads.

Because the GetHttpFile function performs a potentially latent operation, oversubscription can enable other
tasks to run as the current task waits for data. For the complete version of this example, see How to: Use
Oversubscription to Offset Latency.

[Top]

Use the memory management functions, concurrency::Alloc and concurrency::Free, when you have fine-grained
tasks that frequently allocate small objects that have a relatively short lifetime. The Concurrency Runtime holds a
separate memory cache for each running thread. The Alloc and Free functions allocate and free memory from
these caches without the use of locks or memory barriers.

For more information about these memory management functions, see Task Scheduler. For an example that uses
these functions, see How to: Use Alloc and Free to Improve Memory Performance.

[Top]

The Concurrency Runtime uses exception handling to implement features such as cancellation. Therefore, write
exception-safe code when you call into the runtime or call another library that calls into the runtime.

The Resource Acquisition Is Initialization (RAII) pattern is one way to safely manage the lifetime of a concurrency
object under a given scope. Under the RAII pattern, a data structure is allocated on the stack. That data structure
initializes or acquires a resource when it is created and destroys or releases that resource when the data structure
is destroyed. The RAII pattern guarantees that the destructor is called before the enclosing scope exits. This
pattern is useful when a function contains multiple return statements. This pattern also helps you write

// account.h
#pragma once
#include <exception>
#include <sstream>

// Represents a bank account.
class account
{
public:
 explicit account(int initial_balance = 0)
 : _balance(initial_balance)
 {
 }

 // Retrieves the current balance.
 int balance() const
 {
 return _balance;
 }

 // Deposits the specified amount into the account.
 int deposit(int amount)
 {
 _balance += amount;
 return _balance;
 }

 // Withdraws the specified amount from the account.
 int withdraw(int amount)
 {
 if (_balance < 0)
 {
 std::stringstream ss;
 ss << "negative balance: " << _balance << std::endl;
 throw std::exception((ss.str().c_str()));
 }

 _balance -= amount;
 return _balance;
 }

private:
 // The current balance.
 int _balance;
};

exception-safe code. When a throw statement causes the stack to unwind, the destructor for the RAII object is
called; therefore, the resource is always correctly deleted or released.

The runtime defines several classes that use the RAII pattern, for example,
concurrency::critical_section::scoped_lock and concurrency::reader_writer_lock::scoped_lock. These helper classes
are known as scoped locks. These classes provide several benefits when you work with
concurrency::critical_section or concurrency::reader_writer_lock objects. The constructor of these classes acquires
access to the provided critical_section or reader_writer_lock object; the destructor releases access to that
object. Because a scoped lock releases access to its mutual exclusion object automatically when it is destroyed,
you do not manually unlock the underlying object.

Consider the following class, account , which is defined by an external library and therefore cannot be modified.

The following example performs multiple transactions on an account object in parallel. The example uses a
critical_section object to synchronize access to the account object because the account class is not

concurrency-safe. Each parallel operation uses a critical_section::scoped_lock object to guarantee that the
critical_section object is unlocked when the operation either succeeds or fails. When the account balance is

// account-transactions.cpp
// compile with: /EHsc
#include "account.h"
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

int wmain()
{
 // Create an account that has an initial balance of 1924.
 account acc(1924);

 // Synchronizes access to the account object because the account class is
 // not concurrency-safe.
 critical_section cs;

 // Perform multiple transactions on the account in parallel.
 try
 {
 parallel_invoke(
 [&acc, &cs] {
 critical_section::scoped_lock lock(cs);
 wcout << L"Balance before deposit: " << acc.balance() << endl;
 acc.deposit(1000);
 wcout << L"Balance after deposit: " << acc.balance() << endl;
 },
 [&acc, &cs] {
 critical_section::scoped_lock lock(cs);
 wcout << L"Balance before withdrawal: " << acc.balance() << endl;
 acc.withdraw(50);
 wcout << L"Balance after withdrawal: " << acc.balance() << endl;
 },
 [&acc, &cs] {
 critical_section::scoped_lock lock(cs);
 wcout << L"Balance before withdrawal: " << acc.balance() << endl;
 acc.withdraw(3000);
 wcout << L"Balance after withdrawal: " << acc.balance() << endl;
 }
);
 }
 catch (const exception& e)
 {
 wcout << L"Error details:" << endl << L"\t" << e.what() << endl;
 }
}

Balance before deposit: 1924
Balance after deposit: 2924
Balance before withdrawal: 2924
Balance after withdrawal: -76
Balance before withdrawal: -76
Error details:
 negative balance: -76

negative, the withdraw operation fails by throwing an exception.

This example produces the following sample output:

For additional examples that use the RAII pattern to manage the lifetime of concurrency objects, see
Walkthrough: Removing Work from a User-Interface Thread, How to: Use the Context Class to Implement a
Cooperative Semaphore, and How to: Use Oversubscription to Offset Latency.

Do Not Create Concurrency Objects at Global Scope

// global-scheduler.cpp
// compile with: /EHsc
#include <concrt.h>

using namespace concurrency;

static_assert(false, "This example illustrates a non-recommended practice.");

// Create a Scheduler object at global scope.
// BUG: This practice is not recommended because it can cause deadlock.
Scheduler* globalScheduler = Scheduler::Create(SchedulerPolicy(2,
 MinConcurrency, 2, MaxConcurrency, 4));

int wmain()
{
}

Do Not Use Concurrency Objects in Shared Data Segments

See also

[Top]

When you create a concurrency object at global scope you can cause issues such as deadlock or memory access
violations to occur in your application.

For example, when you create a Concurrency Runtime object, the runtime creates a default scheduler for you if
one was not yet created. A runtime object that is created during global object construction will accordingly cause
the runtime to create this default scheduler. However, this process takes an internal lock, which can interfere with
the initialization of other objects that support the Concurrency Runtime infrastructure. This internal lock might be
required by another infrastructure object that has not yet been initialized, and can thus cause deadlock to occur in
your application.

The following example demonstrates the creation of a global concurrency::Scheduler object. This pattern applies
not only to the Scheduler class but all other types that are provided by the Concurrency Runtime. We
recommend that you do not follow this pattern because it can cause unexpected behavior in your application.

For examples of the correct way to create Scheduler objects, see Task Scheduler.

[Top]

The Concurrency Runtime does not support the use of concurrency objects in a shared data section, for example,
a data section that is created by the data_seg #pragma directive. A concurrency object that is shared across
process boundaries could put the runtime in an inconsistent or invalid state.

[Top]

Concurrency Runtime Best Practices
Parallel Patterns Library (PPL)
Asynchronous Agents Library
Task Scheduler
Synchronization Data Structures
Comparing Synchronization Data Structures to the Windows API
How to: Use Alloc and Free to Improve Memory Performance
How to: Use Oversubscription to Offset Latency

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/data-seg

How to: Use the Context Class to Implement a Cooperative Semaphore
Walkthrough: Removing Work from a User-Interface Thread
Best Practices in the Parallel Patterns Library
Best Practices in the Asynchronous Agents Library

Reference (Concurrency Runtime)
10/31/2018 • 2 minutes to read • Edit Online

NOTE

In This Section

This section contains reference information for the Concurrency Runtime.

The C++ language standard reserves the use of identifiers that begin with an underscore (_) character for implementations
such as libraries. Do not use these names in your code. The behavior of code elements whose names follow this convention
are not guaranteed and are subject to change in future releases. For these reasons, such code elements are omitted from
the Concurrency Runtime documentation.

concurrency Namespace
The concurrency namespace provides classes and functions that give you access to the Concurrency Runtime, a
concurrent programming framework for C++. For more information, see Concurrency Runtime.

std namespace

stdx namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/reference-concurrency-runtime.md

concurrency Namespace
3/4/2019 • 25 minutes to read • Edit Online

Syntax
namespace concurrency;

Members
Typedefs

NAME DESCRIPTION

runtime_object_identity Each message instance has an identity that follows it
as it is cloned and passed between messaging
components. This cannot be the address of the
message object.

task_status A type that represents the terminal state of a task.
Valid values are completed and canceled .

TaskProc An elementary abstraction for a task, defined as
void (__cdecl * TaskProc)(void *) . A TaskProc

is called to invoke the body of a task.

TaskProc_t An elementary abstraction for a task, defined as
void (__cdecl * TaskProc_t)(void *) . A
TaskProc is called to invoke the body of a task.

Classes

NAME DESCRIPTION

affinity_partitioner Class The affinity_partitioner class is similar to the
static_partitioner class, but it improves cache

affinity by its choice of mapping subranges to worker
threads. It can improve performance significantly when
a loop is re-executed over the same data set, and the
data fits in cache. Note that the same
affinity_partitioner object must be used with

subsequent iterations of a parallel loop that is
executed over a particular data set, to benefit from
data locality.

agent Class A class intended to be used as a base class for all
independent agents. It is used to hide state from other
agents and interact using message-passing.

The Concurrency namespace provides classes and functions that give you access to the Concurrency
Runtime, a concurrent programming framework for C++. For more information, see Concurrency
Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrency-namespace.md

auto_partitioner Class The auto_partitioner class represents the default
method parallel_for , parallel_for_each and
parallel_transform use to partition the range they

iterates over. This method of partitioning employes
range stealing for load balancing as well as per-iterate
cancellation.

bad_target Class This class describes an exception thrown when a
messaging block is given a pointer to a target which is
invalid for the operation being performed.

call Class A call messaging block is a multi-source, ordered
target_block that invokes a specified function when

receiving a message.

cancellation_token Class The cancellation_token class represents the ability
to determine whether some operation has been
requested to cancel. A given token can be associated
with a task_group , structured_task_group , or
task to provide implicit cancellation. It can also be

polled for cancellation or have a callback registered for
if and when the associated
cancellation_token_source is canceled.

cancellation_token_registration Class The cancellation_token_registration class
represents a callback notification from a
cancellation_token . When the register method

on a cancellation_token is used to receive
notification of when cancellation occurs, a
cancellation_token_registration object is

returned as a handle to the callback so that the caller
can request a specific callback no longer be made
through use of the deregister method.

cancellation_token_source Class The cancellation_token_source class represents
the ability to cancel some cancelable operation.

choice Class A choice messaging block is a multi-source, single-
target block that represents a control-flow interaction
with a set of sources. The choice block will wait for any
one of multiple sources to produce a message and will
propagate the index of the source that produced the
message.

combinable Class The combinable<T> object is intended to provide
thread-private copies of data, to perform lock-free
thread-local sub-computations during parallel
algorithms. At the end of the parallel operation, the
thread-private sub-computations can then be merged
into a final result. This class can be used instead of a
shared variable, and can result in a performance
improvement if there would otherwise be a lot of
contention on that shared variable.

NAME DESCRIPTION

concurrent_priority_queue Class The concurrent_priority_queue class is a container
that allows multiple threads to concurrently push and
pop items. Items are popped in priority order where
priority is determined by a functor supplied as a
template argument.

concurrent_queue Class The concurrent_queue class is a sequence container
class that allows first-in, first-out access to its
elements. It enables a limited set of concurrency-safe
operations, such as push and try_pop .

concurrent_unordered_map Class The concurrent_unordered_map class is a
concurrency-safe container that controls a varying-
length sequence of elements of type
std::pair<const K, _Element_type> . The sequence

is represented in a way that enables concurrency-safe
append, element access, iterator access, and iterator
traversal operations.

concurrent_unordered_multimap Class The concurrent_unordered_multimap class is an
concurrency-safe container that controls a varying-
length sequence of elements of type
std::pair<const K, _Element_type> . The sequence

is represented in a way that enables concurrency-safe
append, element access, iterator access and iterator
traversal operations.

concurrent_unordered_multiset Class The concurrent_unordered_multiset class is an
concurrency-safe container that controls a varying-
length sequence of elements of type K. The sequence
is represented in a way that enables concurrency-safe
append, element access, iterator access and iterator
traversal operations.

concurrent_unordered_set Class The concurrent_unordered_set class is an
concurrency-safe container that controls a varying-
length sequence of elements of type K. The sequence
is represented in a way that enables concurrency-safe
append, element access, iterator access and iterator
traversal operations.

concurrent_vector Class The concurrent_vector class is a sequence container
class that allows random access to any element. It
enables concurrency-safe append, element access,
iterator access, and iterator traversal operations.

Context Class Represents an abstraction for an execution context.

context_self_unblock Class This class describes an exception thrown when the
Unblock method of a Context object is called from

the same context. This would indicate an attempt by a
given context to unblock itself.

context_unblock_unbalanced Class This class describes an exception thrown when calls to
the Block and Unblock methods of a Context

object are not properly paired.

NAME DESCRIPTION

critical_section Class A non-reentrant mutex which is explicitly aware of the
Concurrency Runtime.

CurrentScheduler Class Represents an abstraction for the current scheduler
associated with the calling context.

default_scheduler_exists Class This class describes an exception thrown when the
Scheduler::SetDefaultSchedulerPolicy method is

called when a default scheduler already exists within
the process.

event Class A manual reset event which is explicitly aware of the
Concurrency Runtime.

improper_lock Class This class describes an exception thrown when a lock is
acquired improperly.

improper_scheduler_attach Class This class describes an exception thrown when the
Attach method is called on a Scheduler object

which is already attached to the current context.

improper_scheduler_detach Class This class describes an exception thrown when the
CurrentScheduler::Detach method is called on a

context which has not been attached to any scheduler
using the Attach method of a Scheduler object.

improper_scheduler_reference Class This class describes an exception thrown when the
Reference method is called on a Scheduler object

that is shutting down, from a context that is not part
of that scheduler.

invalid_link_target Class This class describes an exception thrown when the
link_target method of a messaging block is called

and the messaging block is unable to link to the
target. This can be the result of exceeding the number
of links the messaging block is allowed or attempting
to link a specific target twice to the same source.

invalid_multiple_scheduling Class This class describes an exception thrown when a
task_handle object is scheduled multiple times using

the run method of a task_group or
structured_task_group object without an

intervening call to either the wait or run_and_wait

methods.

invalid_operation Class This class describes an exception thrown when an
invalid operation is performed that is not more
accurately described by another exception type thrown
by the Concurrency Runtime.

NAME DESCRIPTION

invalid_oversubscribe_operation Class This class describes an exception thrown when the
Context::Oversubscribe method is called with the
_BeginOversubscription parameter set to false

without a prior call to the Context::Oversubscribe

method with the _BeginOversubscription

parameter set to true .

invalid_scheduler_policy_key Class This class describes an exception thrown when an
invalid or unknown key is passed to a
SchedulerPolicy object constructor, or the
SetPolicyValue method of a SchedulerPolicy

object is passed a key that must be changed using
other means such as the SetConcurrencyLimits

method.

invalid_scheduler_policy_thread_specification Class This class describes an exception thrown when an
attempt is made to set the concurrency limits of a
SchedulerPolicy object such that the value of the
MinConcurrency key is less than the value of the
MaxConcurrency key.

invalid_scheduler_policy_value Class This class describes an exception thrown when a policy
key of a SchedulerPolicy object is set to an invalid
value for that key.

ISource Class The ISource class is the interface for all source
blocks. Source blocks propagate messages to
ITarget blocks.

ITarget Class The ITarget class is the interface for all target
blocks. Target blocks consume messages offered to
them by ISource blocks.

join Class A join messaging block is a single-target, multi-
source, ordered propagator_block which combines
together messages of type T from each of its
sources.

location Class An abstraction of a physical location on hardware.

message Class The basic message envelope containing the data
payload being passed between messaging blocks.

message_not_found Class This class describes an exception thrown when a
messaging block is unable to find a requested
message.

message_processor Class The message_processor class is the abstract base
class for processing of message objects. There is no
guarantee on the ordering of the messages.

NAME DESCRIPTION

missing_wait Class This class describes an exception thrown when there
are tasks still scheduled to a task_group or
structured_task_group object at the time that

object's destructor executes. This exception will never
be thrown if the destructor is reached because of a
stack unwinding as the result of an exception.

multi_link_registry Class The multi_link_registry object is a
network_link_registry that manages multiple

source blocks or multiple target blocks.

multitype_join Class A multitype_join messaging block is a multi-
source, single-target messaging block that combines
together messages of different types from each of its
sources and offers a tuple of the combined messages
to its targets.

nested_scheduler_missing_detach Class This class describes an exception thrown when the
Concurrency Runtime detects that you neglected to
call the CurrentScheduler::Detach method on a
context that attached to a second scheduler using the
Attach method of the Scheduler object.

network_link_registry Class The network_link_registry abstract base class
manages the links between source and target blocks.

operation_timed_out Class This class describes an exception thrown when an
operation has timed out.

ordered_message_processor Class An ordered_message_processor is a
message_processor that allows message blocks to

process messages in the order they were received.

overwrite_buffer Class An overwrite_buffer messaging block is a multi-
target, multi-source, ordered propagator_block

capable of storing a single message at a time. New
messages overwrite previously held ones.

progress_reporter Class The progress reporter class allows reporting progress
notifications of a specific type. Each progress_reporter
object is bound to a particular asynchronous action or
operation.

propagator_block Class The propagator_block class is an abstract base class
for message blocks that are both a source and target.
It combines the functionality of both the
source_block and target_block classes.

reader_writer_lock Class A writer-preference queue-based reader-writer lock
with local only spinning. The lock grants first in - first
out (FIFO) access to writers and starves readers under
a continuous load of writers.

NAME DESCRIPTION

ScheduleGroup Class Represents an abstraction for a schedule group.
Schedule groups organize a set of related work that
benefits from being scheduled close together either
temporally, by executing another task in the same
group before moving to another group, or spatially, by
executing multiple items within the same group on the
same NUMA node or physical socket.

Scheduler Class Represents an abstraction for a Concurrency Runtime
scheduler.

scheduler_not_attached Class This class describes an exception thrown when an
operation is performed which requires a scheduler to
be attached to the current context and one is not.

scheduler_resource_allocation_error Class This class describes an exception thrown because of a
failure to acquire a critical resource in the Concurrency
Runtime.

scheduler_worker_creation_error Class This class describes an exception thrown because of a
failure to create a worker execution context in the
Concurrency Runtime.

SchedulerPolicy Class The SchedulerPolicy class contains a set of
key/value pairs, one for each policy element, that
control the behavior of a scheduler instance.

simple_partitioner Class The simple_partitioner class represents a static
partitioning of the range iterated over by
parallel_for . The partitioner divides the range into

chunks such that each chunk has at least the number
of iterations specified by the chunk size.

single_assignment Class A single_assignment messaging block is a multi-
target, multi-source, ordered propagator_block

capable of storing a single, write-once message .

single_link_registry Class The single_link_registry object is a
network_link_registry that manages only a single

source or target block.

source_block Class The source_block class is an abstract base class for
source-only blocks. The class provides basic link
management functionality as well as common error
checks.

source_link_manager Class The source_link_manager object manages
messaging block network links to ISource blocks.

static_partitioner Class The static_partitioner class represents a static
partitioning of the range iterated over by
parallel_for . The partitioner divides the range into

as many chunks as there are workers available to the
underyling scheduler.

NAME DESCRIPTION

structured_task_group Class The structured_task_group class represents a
highly structured collection of parallel work. You can
queue individual parallel tasks to a
structured_task_group using task_handle

objects, and wait for them to complete, or cancel the
task group before they have finished executing, which
will abort any tasks that have not begun execution.

target_block Class The target_block class is an abstract base class that
provides basic link management functionality and
error checking for target only blocks.

task Class (Concurrency Runtime) The Parallel Patterns Library (PPL) task class. A
task object represents work that can be executed

asynchronously, and concurrently with other tasks and
parallel work produced by parallel algorithms in the
Concurrency Runtime. It produces a result of type
_ResultType on successful completion. Tasks of type
task<void> produce no result. A task can be waited

upon and canceled independently of other tasks. It can
also be composed with other tasks using
continuations(then), and join(when_all) and
choice(when_any) patterns.

task_canceled Class This class describes an exception thrown by the PPL
tasks layer in order to force the current task to cancel.
It is also thrown by the get() method on task, for a
canceled task.

task_completion_event Class The task_completion_event class allows you to
delay the execution of a task until a condition is
satisfied, or start a task in response to an external
event.

task_continuation_context Class The task_continuation_context class allows you to
specify where you would like a continuation to be
executed. It is only useful to use this class from a UWP
app. For non-Windows Runtime apps, the task
continuation's execution context is determined by the
runtime, and not configurable.

task_group Class The task_group class represents a collection of
parallel work which can be waited on or canceled.

task_handle Class The task_handle class represents an individual
parallel work item. It encapsulates the instructions and
the data required to execute a piece of work.

task_options Class (Concurrency Runtime) Represents the allowed options for creating a task

timer Class A timer messaging block is a single-target
source_block capable of sending a message to its

target after a specified time period has elapsed or at
specific intervals.

NAME DESCRIPTION

transformer Class A transformer messaging block is a single-target,
multi-source, ordered propagator_block which can
accept messages of one type and is capable of storing
an unbounded number of messages of a different
type.

unbounded_buffer Class An unbounded_buffer messaging block is a multi-
target, multi-source, ordered propagator_block

capable of storing an unbounded number of
messages.

unsupported_os Class This class describes an exception thrown when an
unsupported operating system is used.

NAME DESCRIPTION

Structures

NAME DESCRIPTION

DispatchState Structure The DispatchState structure is used to transfer
state to the IExecutionContext::Dispatch method.
It describes the circumstances under which the
Dispatch method is invoked on an
IExecutionContext interface.

IExecutionContext Structure An interface to an execution context which can run on
a given virtual processor and be cooperatively context
switched.

IExecutionResource Structure An abstraction for a hardware thread.

IResourceManager Structure An interface to the Concurrency Runtime's Resource
Manager. This is the interface by which schedulers
communicate with the Resource Manager.

IScheduler Structure An interface to an abstraction of a work scheduler. The
Concurrency Runtime's Resource Manager uses this
interface to communicate with work schedulers.

ISchedulerProxy Structure The interface by which schedulers communicate with
the Concurrency Runtime's Resource Manager to
negotiate resource allocation.

IThreadProxy Structure An abstraction for a thread of execution. Depending
on the SchedulerType policy key of the scheduler
you create, the Resource Manager will grant you a
thread proxy that is backed by either a regular Win32
thread or a user-mode schedulable (UMS) thread.
UMS threads are supported on 64-bit operating
systems with version Windows 7 and higher.

ITopologyExecutionResource Structure An interface to an execution resource as defined by
the Resource Manager.

ITopologyNode Structure An interface to a topology node as defined by the
Resource Manager. A node contains one or more
execution resources.

IUMSCompletionList Structure Represents a UMS completion list. When a UMS
thread blocks, the scheduler's designated scheduling
context is dispatched in order to make a decision of
what to schedule on the underlying virtual processor
root while the original thread is blocked. When the
original thread unblocks, the operating system queues
it to the completion list which is accessible through
this interface. The scheduler can query the completion
list on the designated scheduling context or any other
place it searches for work.

IUMSScheduler Structure An interface to an abstraction of a work scheduler that
wants the Concurrency Runtime's Resource Manager
to hand it user-mode schedulable (UMS) threads. The
Resource Manager uses this interface to communicate
with UMS thread schedulers. The IUMSScheduler

interface inherits from the IScheduler interface.

IUMSThreadProxy Structure An abstraction for a thread of execution. If you want
your scheduler to be granted user-mode schedulable
(UMS) threads, set the value for the scheduler policy
element SchedulerKind to UmsThreadDefault , and
implement the IUMSScheduler interface. UMS
threads are only supported on 64-bit operating
systems with version Windows 7 and higher.

IUMSUnblockNotification Structure Represents a notification from the Resource Manager
that a thread proxy which blocked and triggered a
return to the scheduler's designated scheduling
context has unblocked and is ready to be scheduled.
This interface is invalid once the thread proxy's
associated execution context, returned from the
GetContext method, is rescheduled.

IVirtualProcessorRoot Structure An abstraction for a hardware thread on which a
thread proxy can execute.

scheduler_interface Structure Scheduler Interface

scheduler_ptr Structure (Concurrency Runtime) Represents a pointer to a scheduler. This class exists to
allow the specification of a shared lifetime by using
shared_ptr or just a plain reference by using raw
pointer.

NAME DESCRIPTION

Enumerations

NAME DESCRIPTION

agent_status The valid states for an agent .

Agents_EventType The types of events that can be traced using the
tracing functionality offered by the Agents Library

ConcRT_EventType The types of events that can be traced using the
tracing functionality offered by the Concurrency
Runtime.

Concrt_TraceFlags Trace flags for the event types

CriticalRegionType The type of critical region a context is inside.

DynamicProgressFeedbackType Used by the DynamicProgressFeedback policy to
describe whether resources for the scheduler will be
rebalanced according to statistical information
gathered from the scheduler or only based on virtual
processors going in and out of the idle state through
calls to the Activate and Deactivate methods on
the IVirtualProcessorRoot interface. For more
information on available scheduler policies, see
PolicyElementKey.

join_type The type of a join messaging block.

message_status The valid responses for an offer of a message object
to a block.

PolicyElementKey Policy keys describing aspects of scheduler behavior.
Each policy element is described by a key-value pair.
For more information about scheduler policies and
their impact on schedulers, see Task Scheduler.

SchedulerType Used by the SchedulerKind policy to describe the
type of threads that the scheduler should utilize for
underlying execution contexts. For more information
on available scheduler policies, see PolicyElementKey.

SchedulingProtocolType Used by the SchedulingProtocol policy to describe
which scheduling algorithm will be utilized for the
scheduler. For more information on available scheduler
policies, see PolicyElementKey.

SwitchingProxyState Used to denote the state a thread proxy is in, when it
is executing a cooperative context switch to a different
thread proxy.

task_group_status Describes the execution status of a task_group or
structured_task_group object. A value of this type

is returned by numerous methods that wait on tasks
scheduled to a task group to complete.

WinRTInitializationType Used by the WinRTInitialization policy to describe
whether and how the Windows Runtime will be
initialized on scheduler threads for an application
which runs on operating systems with version
Windows 8 or higher. For more information on
available scheduler policies, see PolicyElementKey.

NAME DESCRIPTION

Functions

NAME DESCRIPTION

Alloc Function Allocates a block of memory of the size specified from
the Concurrency Runtime Caching Suballocator.

asend Function Overloaded. An asynchronous send operation, which
schedules a task to propagate the data to the target
block.

cancel_current_task Function Cancels the currently executing task. This function can
be called from within the body of a task to abort the
task's execution and cause it to enter the canceled

state.

It is not a supported scenario to call this function if
you are not within the body of a task . Doing so will
result in undefined behavior such as a crash or a hang
in your application.

create_async Function Creates a Windows Runtime asynchronous construct
based on a user supplied lambda or function object.
The return type of create_async is one of either
IAsyncAction^ ,
IAsyncActionWithProgress<TProgress>^ ,
IAsyncOperation<TResult>^ , or
IAsyncOperationWithProgress<TResult,
TProgress>^

based on the signature of the lambda passed to the
method.

create_task Function Overloaded. Creates a PPL task object. create_task

can be used anywhere you would have used a task
constructor. It is provided mainly for convenience,
because it allows use of the auto keyword while
creating tasks.

CreateResourceManager Function Returns an interface that represents the singleton
instance of the Concurrency Runtime's Resource
Manager. The Resource Manager is responsible for
assigning resources to schedulers that want to
cooperate with each other.

DisableTracing Function Disables tracing in the Concurrency Runtime. This
function is deprecated because ETW tracing is
unregistered by default.

EnableTracing Function Enables tracing in the Concurrency Runtime. This
function is deprecated because ETW tracing is now on
by default.

Free Function Releases a block of memory previously allocated by
the Alloc method to the Concurrency Runtime
Caching Suballocator.

get_ambient_scheduler Function (Concurrency
Runtime)

GetExecutionContextId Function Returns a unique identifier that can be assigned to an
execution context that implements the
IExecutionContext interface.

GetOSVersion Function Returns the operating system version.

GetProcessorCount Function Returns the number of hardware threads on the
underlying system.

GetProcessorNodeCount Function Returns the number of NUMA nodes or processor
packages on the underlying system.

GetSchedulerId Function Returns a unique identifier that can be assigned to a
scheduler that implements the IScheduler interface.

interruption_point Function Creates an interruption point for cancellation. If a
cancellation is in progress in the context where this
function is called, this will throw an internal exception
that aborts the execution of the currently executing
parallel work. If cancellation is not in progress, the
function does nothing.

is_current_task_group_canceling Function Returns an indication of whether the task group which
is currently executing inline on the current context is in
the midst of an active cancellation (or will be shortly).
Note that if there is no task group currently executing
inline on the current context, false will be returned.

make_choice Function Overloaded. Constructs a choice messaging block
from an optional Scheduler or ScheduleGroup and
two or more input sources.

make_greedy_join Function Overloaded. Constructs a greedy multitype_join

messaging block from an optional Scheduler or
ScheduleGroup and two or more input sources.

make_join Function Overloaded. Constructs a
non_greedy multitype_join messaging block from

an optional Scheduler or ScheduleGroup and two
or more input sources.

make_task Function A factory method for creating a task_handle object.

parallel_buffered_sort Function Overloaded. Arranges the elements in a specified
range into a nondescending order, or according to an
ordering criterion specified by a binary predicate, in
parallel. This function is semantically similar to
std::sort in that it is a compare-based, unstable,

in-place sort except that it needs O(n) additional
space, and requires default initialization for the
elements being sorted.

NAME DESCRIPTION

parallel_for Function Overloaded. parallel_for iterates over a range of
indices and executes a user-supplied function at each
iteration, in parallel.

parallel_for_each Function Overloaded. parallel_for_each applies a specified
function to each element within a range, in parallel. It
is semantically equivalent to the for_each function
in the std namespace, except that iteration over the
elements is performed in parallel, and the order of
iteration is unspecified. The argument _Func must
support a function call operator of the form
operator()(T) where the parameter T is the item

type of the container being iterated over.

parallel_invoke Function Overloaded. Executes the function objects supplied as
parameters in parallel, and blocks until they have
finished executing. Each function object could be a
lambda expression, a pointer to function, or any object
that supports the function call operator with the
signature void operator()() .

parallel_radixsort Function Overloaded. Arranges elements in a specified range
into an non descending order using a radix sorting
algorithm. This is a stable sort function which requires
a projection function that can project elements to be
sorted into unsigned integer-like keys. Default
initialization is required for the elements being sorted.

parallel_reduce Function Overloaded. Computes the sum of all elements in a
specified range by computing successive partial sums,
or computes the result of successive partial results
similarly obtained from using a specified binary
operation other than sum, in parallel.
parallel_reduce is semantically similar to
std::accumulate , except that it requires the binary

operation to be associative, and requires an identity
value instead of an initial value.

parallel_sort Function Overloaded. Arranges the elements in a specified
range into a nondescending order, or according to an
ordering criterion specified by a binary predicate, in
parallel. This function is semantically similar to
std::sort in that it is a compare-based, unstable,

in-place sort.

parallel_transform Function Overloaded. Applies a specified function object to each
element in a source range, or to a pair of elements
from two source ranges, and copies the return values
of the function object into a destination range, in
parallel. This functional is semantically equivalent to
std::transform .

receive Function Overloaded. A general receive implementation,
allowing a context to wait for data from exactly one
source and filter the values that are accepted.

NAME DESCRIPTION

run_with_cancellation_token Function Executes a function object immediately and
synchronously in the context of a given cancellation
token.

send Function Overloaded. A synchronous send operation, which
waits until the target either accepts or declines the
message.

set_ambient_scheduler Function (Concurrency
Runtime)

set_task_execution_resources Function Overloaded. Restricts the execution resources used by
the Concurrency Runtime internal worker threads to
the affinity set specified.

It is valid to call this method only before the Resource
Manager has been created, or between two Resource
Manager lifetimes. It can be invoked multiple times as
long as the Resource Manager does not exist at the
time of invocation. After an affinity limit has been set,
it remains in effect until the next valid call to the
set_task_execution_resources method.

The affinity mask provided need not be a subset of the
process affinity mask. The process affinity will be
updated if necessary.

swap Function Exchanges the elements of two concurrent_vector

objects.

task_from_exception Function (Concurrency Runtime)

task_from_result Function (Concurrency Runtime)

Trace_agents_register_name Function Associates the given name to the message block or
agent in the ETW trace.

try_receive Function Overloaded. A general try-receive implementation,
allowing a context to look for data from exactly one
source and filter the values that are accepted. If the
data is not ready, the method will return false.

wait Function Pauses the current context for a specified amount of
time.

when_all Function Creates a task that will complete successfully when all
of the tasks supplied as arguments complete
successfully.

when_any Function Overloaded. Creates a task that will complete
successfully when any of the tasks supplied as
arguments completes successfully.

NAME DESCRIPTION

Operators

NAME DESCRIPTION

operator!= Tests if the concurrent_vector object on the left
side of the operator is not equal to the
concurrent_vector object on the right side.

operator&& Overloaded. Creates a task that will complete
succesfully when both of the tasks supplied as
arguments complete successfully.

operator|| Overloaded. Creates a task that will complete
successfully when either of the tasks supplied as
arguments completes successfully.

operator< Tests if the concurrent_vector object on the left
side of the operator is less than the
concurrent_vector object on the right side.

operator<= Tests if the concurrent_vector object on the left
side of the operator is less than or equal to the
concurrent_vector object on the right side.

operator== Tests if the concurrent_vector object on the left
side of the operator is equal to the
concurrent_vector object on the right side.

operator> Tests if the concurrent_vector object on the left
side of the operator is greater than the
concurrent_vector object on the right side.

operator>= Tests if the concurrent_vector object on the left
side of the operator is greater than or equal to the
concurrent_vector object on the right side.

Constants

NAME DESCRIPTION

AgentEventGuid A category GUID ({B9B5B78C-0713-4898-A21A-
C67949DCED07}) describing ETW events fired by the
Agents library in the Concurrency Runtime.

ChoreEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to
chores or tasks.

ConcRT_ProviderGuid The ETW provider GUID for the Concurrency Runtime.

CONCRT_RM_VERSION_1 Indicates support of the Resource Manager interface
defined in Visual Studio 2010.

ConcRTEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are not more specifically
described by another category.

ContextEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to
contexts.

COOPERATIVE_TIMEOUT_INFINITE Value indicating that a wait should never time out.

COOPERATIVE_WAIT_TIMEOUT Value indicating that a wait timed out.

INHERIT_THREAD_PRIORITY Special value for the policy key ContextPriority

indicating that the thread priority of all contexts in the
scheduler should be the same as that of the thread
which created the scheduler.

LockEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to locks.

MaxExecutionResources Special value for the policy keys MinConcurrency and
MaxConcurrency . Defaults to the number of

hardware threads on the machine in the absence of
other constraints.

PPLParallelForeachEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to usage
of the parallel_for_each function.

PPLParallelForEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to usage
of the parallel_for function.

PPLParallelInvokeEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to usage
of the parallel_invoke function.

ResourceManagerEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to the
resource manager.

ScheduleGroupEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to
schedule groups.

SchedulerEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to
scheduler activity.

VirtualProcessorEventGuid A category GUID describing ETW events fired by the
Concurrency Runtime that are directly related to
virtual processors.

NAME DESCRIPTION

Requirements
Header: agents.h, concrt.h, concrtrm.h, concurrent_priority_queue.h, concurrent_queue.h,
concurrent_unordered_map.h, concurrent_unordered_set.h, concurrent_vector.h,
internal_concurrent_hash.h, internal_split_ordered_list.h, ppl.h, pplcancellation_token.h, pplconcrt.h,

See also

pplinterface.h, ppltasks.h

Reference

concurrency namespace functions
3/4/2019 • 38 minutes to read • Edit Online

Alloc CreateResourceManager DisableTracing

EnableTracing Free GetExecutionContextId

GetOSVersion GetProcessorCount GetProcessorNodeCount

GetSchedulerId Trace_agents_register_name asend

cancel_current_task clear create_async

create_task get_ambient_scheduler internal_assign_iterators

interruption_point is_current_task_group_canceling make_choice

make_greedy_join make_join make_task

parallel_buffered_sort parallel_for parallel_for_each

parallel_invoke parallel_radixsort parallel_reduce

parallel_sort parallel_transform receive

run_with_cancellation_token send set_ambient_scheduler

set_task_execution_resources swap task_from_exception

task_from_result try_receive wait

when_all when_any

Alloc

void* __cdecl Alloc(size_t _NumBytes);

Parameters

Return Value

Remarks

Allocates a block of memory of the size specified from the Concurrency Runtime Caching Suballocator.

_NumBytes
The number of bytes of memory to allocate.

A pointer to newly allocated memory.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrency-namespace-functions.md

asend

template <class T>
bool asend(
 Inout ITarget<T>* _Trg,
 const T& _Data);

template <class T>
bool asend(
 ITarget<T>& _Trg,
 const T& _Data);

Parameters

Return Value

Remarks

cancel_current_task

inline __declspec(noreturn) void __cdecl cancel_current_task();

clear

template<typename T, class _Ax>
void concurrent_queue<T, _Ax>::clear();

Parameters

For more information about which scenarios in your application could benefit from using the Caching
Suballocator, see Task Scheduler.

An asynchronous send operation, which schedules a task to propagate the data to the target block.

T
The type of the data to be sent.

_Trg
A pointer or reference to the target to which data is sent.

_Data
A reference to the data to be sent.

true if the message was accepted before the method returned, false otherwise.

For more information, see Message Passing Functions.

Cancels the currently executing task. This function can be called from within the body of a task to abort the task's
execution and cause it to enter the canceled state.

It is not a supported scenario to call this function if you are not within the body of a task . Doing so will result in
undefined behavior such as a crash or a hang in your application.

Clears the concurrent queue, destroying any currently enqueued elements. This method is not concurrency-safe.

T

_Ax

 create_async

template<typename _Function>
__declspec(noinline) auto create_async(const _Function& _Func)
 -> decltype(ref new details::_AsyncTaskGeneratorThunk<_Function>(_Func));

Parameters

Return Value

Remarks

Creates a Windows Runtime asynchronous construct based on a user supplied lambda or function object. The
return type of create_async is one of either IAsyncAction^ , IAsyncActionWithProgress<TProgress>^ ,
IAsyncOperation<TResult>^ , or IAsyncOperationWithProgress<TResult, TProgress>^ based on the signature of the

lambda passed to the method.

_Function
Type.

_Func
The lambda or function object from which to create a Windows Runtime asynchronous construct.

An asynchronous construct represented by an IAsyncAction^, IAsyncActionWithProgress<TProgress>^,
IAsyncOperation<TResult>^, or an IAsyncOperationWithProgress<TResult, TProgress>^. The interface returned
depends on the signature of the lambda passed into the function.

The return type of the lambda determines whether the construct is an action or an operation.

Lambdas that return void cause the creation of actions. Lambdas that return a result of type TResult cause the
creation of operations of TResult.

The lambda may also return a task<TResult> which encapsulates the aysnchronous work within itself or is the
continuation of a chain of tasks that represent the asynchronous work. In this case, the lambda itself is executed
inline, since the tasks are the ones that execute asynchronously, and the return type of the lambda is unwrapped to
produce the asynchronous construct returned by create_async . This implies that a lambda that returns a
task<void> will cause the creation of actions, and a lambda that returns a task<TResult> will cause the creation of
operations of TResult.

The lambda may take either zero, one or two arguments. The valid arguments are progress_reporter<TProgress>

and cancellation_token , in that order if both are used. A lambda without arguments causes the creation of an
asynchronous construct without the capability for progress reporting. A lambda that takes a
progress_reporter<TProgress> will cause create_async to return an asynchronous construct which reports
progress of type TProgress each time the report method of the progress_reporter object is called. A lambda that
takes a cancellation_token may use that token to check for cancellation, or pass it to tasks that it creates so that
cancellation of the asynchronous construct causes cancellation of those tasks.

If the body of the lambda or function object returns a result (and not a task<TResult>), the lamdba will be
executed asynchronously within the process MTA in the context of a task the Runtime implicitly creates for it. The
IAsyncInfo::Cancel method will cause cancellation of the implicit task.

If the body of the lambda returns a task, the lamba executes inline, and by declaring the lambda to take an
argument of type cancellation_token you can trigger cancellation of any tasks you create within the lambda by
passing that token in when you create them. You may also use the register_callback method on the token to
cause the Runtime to invoke a callback when you call IAsyncInfo::Cancel on the async operation or action
produced..

This function is only available to Windows Runtime apps.

CreateResourceManager

IResourceManager* __cdecl CreateResourceManager();

Return Value

Remarks

create_task

template<typename T>
__declspec(noinline) auto create_task(T _Param, const task_options& _TaskOptions = task_options())
 -> task<typename details::_TaskTypeFromParam<T>::T>;

template<typename _ReturnType>
__declspec(noinline) task<_ReturnType> create_task(const task<_ReturnType>& _Task);

Parameters

Return Value

Remarks

Returns an interface that represents the singleton instance of the Concurrency Runtime's Resource Manager. The
Resource Manager is responsible for assigning resources to schedulers that want to cooperate with each other.

An IResourceManager interface.

Multiple subsequent calls to this method will return the same instance of the Resource Manager. Each call to the
method increments a reference count on the Resource Manager, and must be matched with a call to the
IResourceManager::Release method when your scheduler is done communicating with the Resource Manager.

unsupported_os is thrown if the operating system is not supported by the Concurrency Runtime.

Creates a PPL task object. create_task can be used anywhere you would have used a task constructor. It is
provided mainly for convenience, because it allows use of the auto keyword while creating tasks.

T
The type of the parameter from which the task is to be constructed.

_ReturnType
Type.

_Param
The parameter from which the task is to be constructed. This could be a lambda or function object, a
task_completion_event object, a different task object, or a Windows::Foundation::IAsyncInfo interface if you are

using tasks in your UWP app.

_TaskOptions
The task options.

_Task
The task to create.

A new task of type T , that is inferred from _Param .

The first overload behaves like a task constructor that takes a single parameter.

The second overload associates the cancellation token provided with the newly created task. If you use this
overload you are not allowed to pass in a different task object as the first parameter.

DisableTracing

__declspec(deprecated("Concurrency::DisableTracing is a deprecated function.")) _CRTIMP HRESULT __cdecl
DisableTracing();

Return Value

EnableTracing

__declspec(deprecated("Concurrency::EnableTracing is a deprecated function.")) _CRTIMP HRESULT __cdecl
EnableTracing();

Return Value

Free

void __cdecl Free(_Pre_maybenull_ _Post_invalid_ void* _PAllocation);

Parameters

Remarks

get_ambient_scheduler

The type of the returned task is inferred from the first parameter to the function. If _Param is a
task_completion_event<T> , a task<T> , or a functor that returns either type T or task<T> , the type of the created

task is task<T> .

In a UWP app, if _Param is of type Windows::Foundation::IAsyncOperation<T>^ or
Windows::Foundation::IAsyncOperationWithProgress<T,P>^, or a functor that returns either of those types, the
created task will be of type task<T> . If _Param is of type Windows::Foundation::IAsyncAction^ or
Windows::Foundation::IAsyncActionWithProgress<P>^, or a functor that returns either of those types, the created
task will have type task<void> .

Disables tracing in the Concurrency Runtime. This function is deprecated because ETW tracing is unregistered by
default.

If tracing was correctly disabled, S_OK is returned. If tracing was not previously initiated, E_NOT_STARTED is
returned

Enables tracing in the Concurrency Runtime. This function is deprecated because ETW tracing is now on by
default.

If tracing was correctly initiated, S_OK is returned; otherwise, E_NOT_STARTED is returned.

Releases a block of memory previously allocated by the Alloc method to the Concurrency Runtime Caching
Suballocator.

_PAllocation
A pointer to memory previously allocated by the Alloc method which is to be freed. If the parameter
_PAllocation is set to the value NULL , this method will ignore it and return immediately.

For more information about which scenarios in your application could benefit from using the Caching
Suballocator, see Task Scheduler.

inline std::shared_ptr<::Concurrency::scheduler_interface> get_ambient_scheduler();

Return Value

GetExecutionContextId

unsigned int __cdecl GetExecutionContextId();

Return Value

Remarks

GetOSVersion

IResourceManager::OSVersion __cdecl GetOSVersion();

Return Value

Remarks

GetProcessorCount

unsigned int __cdecl GetProcessorCount();

Return Value

Remarks

GetProcessorNodeCount

unsigned int __cdecl GetProcessorNodeCount();

Return Value

Returns a unique identifier that can be assigned to an execution context that implements the IExecutionContext

interface.

A unique identifier for an execution context.

Use this method to obtain an identifier for your execution context before you pass an IExecutionContext interface
as a parameter to any of the methods offered by the Resource Manager.

Returns the operating system version.

An enumerated value representing the operating system.

unsupported_os is thrown if the operating system is not supported by the Concurrency Runtime.

Returns the number of hardware threads on the underlying system.

The number of hardware threads.

unsupported_os is thrown if the operating system is not supported by the Concurrency Runtime.

Returns the number of NUMA nodes or processor packages on the underlying system.

The number of NUMA nodes or processor packages.

Remarks

GetSchedulerId

unsigned int __cdecl GetSchedulerId();

Return Value

Remarks

internal_assign_iterators
template<typename T, class _Ax>
template<class _I>
void concurrent_vector<T, _Ax>::internal_assign_iterators(
 _I first,
 _I last);

Parameters

interruption_point

inline void interruption_point();

Remarks

is_current_task_group_canceling

If the system contains more NUMA nodes than processor packages, the number of NUMA nodes is returned,
otherwise, the number of processor packages is returned.

unsupported_os is thrown if the operating system is not supported by the Concurrency Runtime.

Returns a unique identifier that can be assigned to a scheduler that implements the IScheduler interface.

A unique identifier for a scheduler.

Use this method to obtain an identifier for your scheduler before you pass an IScheduler interface as a parameter
to any of the methods offered by the Resource Manager.

T

_Ax

_I

first

last

Creates an interruption point for cancellation. If a cancellation is in progress in the context where this function is
called, this will throw an internal exception that aborts the execution of the currently executing parallel work. If
cancellation is not in progress, the function does nothing.

You should not catch the internal cancellation exception thrown by the interruption_point() function. The
exception will be caught and handled by the runtime, and catching it may cause your program to behave
abnormally.

bool __cdecl is_current_task_group_canceling();

Return Value

Remarks

make_choice

template<typename T1, typename T2, typename... Ts>
choice<std::tuple<T1, T2, Ts...>> make_choice(
 Scheduler& _PScheduler,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
choice<std::tuple<T1, T2, Ts...>> make_choice(
 ScheduleGroup& _PScheduleGroup,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
choice<std::tuple<T1, T2, Ts...>> make_choice(
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

Parameters

Returns an indication of whether the task group which is currently executing inline on the current context is in the
midst of an active cancellation (or will be shortly). Note that if there is no task group currently executing inline on
the current context, false will be returned.

true if the task group which is currently executing is canceling, false otherwise.

For more information, see Cancellation.

Constructs a choice messaging block from an optional Scheduler or ScheduleGroup and two or more input
sources.

T1
The message block type of the first source.

T2
The message block type of the second source.

_PScheduler
The Scheduler object within which the propagation task for the choice messaging block is scheduled.

_Item1
The first source.

_Item2
The second source.

_Items
Additional sources.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the choice messaging block is scheduled. The

Return Value

make_greedy_join

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>,greedy> make_greedy_join(
 Scheduler& _PScheduler,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>, greedy> make_greedy_join(
 ScheduleGroup& _PScheduleGroup,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>, greedy> make_greedy_join(
 T1 _Item1,
 T2 _Items,
 Ts... _Items);

Parameters

Return Value

make_join

Scheduler object used is implied by the schedule group.

A choice message block with two or more input sources.

Constructs a greedy multitype_join messaging block from an optional Scheduler or ScheduleGroup and two or
more input sources.

T1
The message block type of the first source.

T2
The message block type of the second source.

_PScheduler
The Scheduler object within which the propagation task for the multitype_join messaging block is scheduled.

_Item1
The first source.

_Item2
The second source.

_Items
Additional sources.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the multitype_join messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

A greedy multitype_join message block with two or more input sources.

Constructs a non_greedy multitype_join messaging block from an optional Scheduler or ScheduleGroup and two

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>>
 make_join(
Scheduler& _PScheduler,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>> make_join(
ScheduleGroup& _PScheduleGroup,
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

template<typename T1, typename T2, typename... Ts>
multitype_join<std::tuple<T1, T2, Ts...>> make_join(
 T1 _Item1,
 T2 _Item2,
 Ts... _Items);

Parameters

Return Value

make_task

template <class _Function>
task_handle<_Function> make_task(const _Function& _Func);

Parameters

or more input sources.

T1
The message block type of the first source.

T2
The message block type of the second source.

_PScheduler
The Scheduler object within which the propagation task for the multitype_join messaging block is scheduled.

_Item1
The first source.

_Item2
The second source.

_Items
Additional sources.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the multitype_join messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

A non_greedy multitype_join message block with two or more input sources.

A factory method for creating a task_handle object.

_Function

Return Value

Remarks

parallel_buffered_sort

The type of the function object that will be invoked to execute the work represented by the task_handle object.

_Func
The function that will be invoked to execute the work represented by the task_handle object. This may be a
lambda functor, a pointer to a function, or any object that supports a version of the function call operator with the
signature void operator()() .

A task_handle object.

This function is useful when you need to create a task_handle object with a lambda expression, because it allows
you to create the object without knowing the true type of the lambda functor.

Arranges the elements in a specified range into a nondescending order, or according to an ordering criterion
specified by a binary predicate, in parallel. This function is semantically similar to std::sort in that it is a
compare-based, unstable, in-place sort except that it needs O(n) additional space, and requires default
initialization for the elements being sorted.

template<typename _Random_iterator>
inline void parallel_buffered_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Allocator,
 typename _Random_iterator>
inline void parallel_buffered_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Allocator,
 typename _Random_iterator>
inline void parallel_buffered_sort(
 const _Allocator& _Alloc,
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Random_iterator,
 typename _Function>
inline void parallel_buffered_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Func,
 const size_t _Chunk_size = 2048);

template<typename _Allocator,
 typename _Random_iterator,
 typename _Function>
inline void parallel_buffered_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Func,
 const size_t _Chunk_size = 2048);

template<typename _Allocator,
 typename _Random_iterator,
 typename _Function>
inline void parallel_buffered_sort(
 const _Allocator& _Alloc,
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Func,
 const size_t _Chunk_size = 2048);

Parameters
_Random_iterator
The iterator type of the input range.

_Allocator
The type of a C++ Standard Library compatible memory allocator.

_Function
The type of the binary comparator.

_Begin
A random-access iterator addressing the position of the first element in the range to be sorted.

_End
A random-access iterator addressing the position one past the final element in the range to be sorted.

_Alloc
An instance of a C++ Standard Library compatible memory allocator.

Remarks

parallel_for

_Func
A user-defined predicate function object that defines the comparison criterion to be satisfied by successive
elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when
not satisfied. This comparator function must impose a strict weak ordering on pairs of elements from the
sequence.

_Chunk_size
The mimimum size of a chunk that will be split into two for parallel execution.

All overloads require n * sizeof(T) additional space, where n is the number of elements to be sorted, and T is
the element type. In most cases parallel_buffered_sort will show an improvement in performance over
parallel_sort, and you should use it over parallel_sort if you have the memory available.

If you do not supply a binary comparator std::less is used as the default, which requires the element type to
provide the operator operator<() .

If you do not supply an allocator type or instance, the C++ Standard Library memory allocator std::allocator<T>

is used to allocate the buffer.

The algorithm divides the input range into two chunks and successively divides each chunk into two sub-chunks
for execution in parallel. The optional argument _Chunk_size can be used to indicate to the algorithm that it
should handles chunks of size < _Chunk_size serially.

parallel_for iterates over a range of indices and executes a user-supplied function at each iteration, in parallel.

template <typename _Index_type, typename _Function, typename _Partitioner>
void parallel_for(
 _Index_type first,
 _Index_type last,
 _Index_type _Step,
 const _Function& _Func,
 _Partitioner&& _Part);

template <typename _Index_type, typename _Function>
void parallel_for(
 _Index_type first,
 _Index_type last,
 _Index_type _Step,
 const _Function& _Func);

template <typename _Index_type, typename _Function>
void parallel_for(
 _Index_type first,
 _Index_type last,
 const _Function& _Func,
 const auto_partitioner& _Part = auto_partitioner());

template <typename _Index_type, typename _Function>
void parallel_for(
 _Index_type first,
 _Index_type last,
 const _Function& _Func,
 const static_partitioner& _Part);

template <typename _Index_type, typename _Function>
void parallel_for(
 _Index_type first,
 _Index_type last,
 const _Function& _Func,
 const simple_partitioner& _Part);

template <typename _Index_type, typename _Function>
void parallel_for(
 _Index_type first,
 _Index_type last,
 const _Function& _Func,
 affinity_partitioner& _Part);

Parameters
_Index_type
The type of the index being used for the iteration.

_Function
The type of the function that will be executed at each iteration.

_Partitioner
The type of the partitioner that is used to partition the supplied range.

first
The first index to be included in the iteration.

last
The index one past the last index to be included in the iteration.

_Step
The value by which to step when iterating from first to last . The step must be positive. invalid_argument is
thrown if the step is less than 1.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

Remarks

parallel_for_each

template <typename _Iterator, typename _Function>
void parallel_for_each(
 _Iterator first,
 _Iterator last,
 const _Function& _Func);

template <typename _Iterator, typename _Function, typename _Partitioner>
void parallel_for_each(
 _Iterator first,
 _Iterator last,
 const _Function& _Func,
 _Partitioner&& _Part);

Parameters

Remarks

_Func
The function to be executed at each iteration. This may be a lambda expression, a function pointer, or any object
that supports a version of the function call operator with the signature void operator()(_Index_type) .

_Part
A reference to the partitioner object. The argument can be one of const auto_partitioner & , const

static_partitioner & , const simple_partitioner & or affinity_partitioner & If an affinity_partitioner object is used,
the reference must be a non-const l-value reference, so that the algorithm can store state for future loops to re-
use.

For more information, see Parallel Algorithms.

parallel_for_each applies a specified function to each element within a range, in parallel. It is semantically
equivalent to the for_each function in the std namespace, except that iteration over the elements is performed
in parallel, and the order of iteration is unspecified. The argument _Func must support a function call operator of
the form operator()(T) where the parameter T is the item type of the container being iterated over.

_Iterator
The type of the iterator being used to iterate over the container.

_Function
The type of the function that will be applied to each element within the range.

_Partitioner
first
An iterator addressing the position of the first element to be included in parallel iteration.

last
An iterator addressing the position one past the final element to be included in parallel iteration.

_Func
A user-defined function object that is applied to each element in the range.

_Part
A reference to the partitioner object. The argument can be one of const auto_partitioner & , const

static_partitioner & , const simple_partitioner & or affinity_partitioner & If an affinity_partitioner object is used,
the reference must be a non-const l-value reference, so that the algorithm can store state for future loops to re-
use.

 parallel_invoke

template <typename _Function1, typename _Function2>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2);

template <typename _Function1, typename _Function2, typename _Function3>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5,
 typename _Function6>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5,
 const _Function6& _Func6);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5,
 typename _Function6,
 typename _Function7>

auto_partitioner will be used for the overload without an explicit partitioner.

For iterators that do not support random access, only auto_partitioner is supported.

For more information, see Parallel Algorithms.

Executes the function objects supplied as parameters in parallel, and blocks until they have finished executing.
Each function object could be a lambda expression, a pointer to function, or any object that supports the function
call operator with the signature void operator()() .

void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5,
 const _Function6& _Func6,
 const _Function7& _Func7);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5,
 typename _Function6,
 typename _Function7,
 typename _Function8>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5,
 const _Function6& _Func6,
 const _Function7& _Func7,
 const _Function8& _Func8);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5,
 typename _Function6,
 typename _Function7,
 typename _Function8,
 typename _Function9>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5,
 const _Function6& _Func6,
 const _Function7& _Func7,
 const _Function8& _Func8,
 const _Function9& _Func9);

template <typename _Function1,
 typename _Function2,
 typename _Function3,
 typename _Function4,
 typename _Function5,
 typename _Function6,
 typename _Function7,
 typename _Function8,
 typename _Function9,
 typename _Function10>
void parallel_invoke(
 const _Function1& _Func1,
 const _Function2& _Func2,
 const _Function3& _Func3,
 const _Function4& _Func4,
 const _Function5& _Func5,
 const _Function6& _Func6,
 const _Function7& _Func7,
 const _Function8& _Func8,
 const _Function9& _Func9,
 const _Function10& _Func10);

Parameters
_Function1
The type of the first function object to be executed in parallel.

_Function2
The type of the second function object to be executed in parallel.

_Function3
The type of the third function object to be executed in parallel.

_Function4
The type of the fourth function object to be executed in parallel.

_Function5
The type of the fifth function object to be executed in parallel.

_Function6
The type of the sixth function object to be executed in parallel.

_Function7
The type of the seventh function object to be executed in parallel.

_Function8
The type of the eighth function object to be executed in parallel.

_Function9
The type of the ninth function object to be executed in parallel.

_Function10
The type of the tenth function object to be executed in parallel.

_Func1
The first function object to be executed in parallel.

_Func2
The second function object to be executed in parallel.

_Func3
The third function object to be executed in parallel.

_Func4
The fourth function object to be executed in parallel.

_Func5
The fifth function object to be executed in parallel.

_Func6
The sixth function object to be executed in parallel.

_Func7
The seventh function object to be executed in parallel.

_Func8
The eighth function object to be executed in parallel.

_Func9
The ninth function object to be executed in parallel.

_Func10

Remarks

parallel_radixsort

template<typename _Random_iterator>
inline void parallel_radixsort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Allocator, typename _Random_iterator>
inline void parallel_radixsort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Allocator, typename _Random_iterator>
inline void parallel_radixsort(
 const _Allocator& _Alloc,
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Random_iterator, typename _Function>
inline void parallel_radixsort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Proj_func,
 const size_t _Chunk_size = 256* 256);

template<typename _Allocator, typename _Random_iterator,
 typename _Function>
inline void parallel_radixsort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Proj_func,
 const size_t _Chunk_size = 256* 256);

template<typename _Allocator,
 typename _Random_iterator,
 typename _Function>
inline void parallel_radixsort(
 const _Allocator& _Alloc,
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Proj_func,
 const size_t _Chunk_size = 256* 256);

Parameters

The tenth function object to be executed in parallel.

Note that one or more of the function objects supplied as parameters may execute inline on the calling context.

If one or more of the function objects passed as parameters to this function throws an exception, the runtime will
select one such exception of its choosing and propagate it out of the call to parallel_invoke .

For more information, see Parallel Algorithms.

Arranges elements in a specified range into an non descending order using a radix sorting algorithm. This is a
stable sort function which requires a projection function that can project elements to be sorted into unsigned
integer-like keys. Default initialization is required for the elements being sorted.

_Random_iterator
The iterator type of the input range.

_Allocator

Remarks

parallel_reduce

The type of a C++ Standard Library compatible memory allocator.

_Function
The type of the projection function.

_Begin
A random-access iterator addressing the position of the first element in the range to be sorted.

_End
A random-access iterator addressing the position one past the final element in the range to be sorted.

_Alloc
An instance of a C++ Standard Library compatible memory allocator.

_Proj_func
A user-defined projection function object that converts an element into an integral value.

_Chunk_size
The mimimum size of a chunk that will be split into two for parallel execution.

All overloads require n * sizeof(T) additional space, where n is the number of elements to be sorted, and T is
the element type. An unary projection functor with the signature I _Proj_func(T) is required to return a key when
given an element, where T is the element type and I is an unsigned integer-like type.

If you do not supply a projection function, a default projection function which simply returns the element is used
for integral types. The function will fail to compile if the element is not an integral type in the absence of a
projection function.

If you do not supply an allocator type or instance, the C++ Standard Library memory allocator std::allocator<T>

is used to allocate the buffer.

The algorithm divides the input range into two chunks and successively divides each chunk into two sub-chunks
for execution in parallel. The optional argument _Chunk_size can be used to indicate to the algorithm that it
should handles chunks of size < _Chunk_size serially.

Computes the sum of all elements in a specified range by computing successive partial sums, or computes the
result of successive partial results similarly obtained from using a specified binary operation other than sum, in
parallel. parallel_reduce is semantically similar to std::accumulate , except that it requires the binary operation to
be associative, and requires an identity value instead of an initial value.

template<typename _Forward_iterator>
inline typename std::iterator_traits<_Forward_iterator>::value_type parallel_reduce(
 _Forward_iterator _Begin,
 _Forward_iterator _End,
 const typename std::iterator_traits<_Forward_iterator>::value_type& _Identity);

template<typename _Forward_iterator, typename _Sym_reduce_fun>
inline typename std::iterator_traits<_Forward_iterator>::value_type parallel_reduce(
 _Forward_iterator _Begin,
 _Forward_iterator _End,
 const typename std::iterator_traits<_Forward_iterator>::value_type& _Identity,
 _Sym_reduce_fun _Sym_fun);

template<typename _Reduce_type,
 typename _Forward_iterator,
 typename _Range_reduce_fun,
 typename _Sym_reduce_fun>
inline _Reduce_type parallel_reduce(
 _Forward_iterator _Begin,
 _Forward_iterator _End,
 const _Reduce_type& _Identity,
 const _Range_reduce_fun& _Range_fun,
 const _Sym_reduce_fun& _Sym_fun);

Parameters
_Forward_iterator
The iterator type of input range.

_Sym_reduce_fun
The type of the symmetric reduction function. This must be a function type with signature
_Reduce_type _Sym_fun(_Reduce_type, _Reduce_type) , where _Reduce_type is the same as the identity type and the

result type of the reduction. For the third overload, this should be consistent with the output type of
_Range_reduce_fun .

_Reduce_type
The type that the input will reduce to, which can be different from the input element type. The return value and
identity value will has this type.

_Range_reduce_fun
The type of the range reduction function. This must be a function type with signature
_Reduce_type _Range_fun(_Forward_iterator, _Forward_iterator, _Reduce_type) , _Reduce_type is the same as the

identity type and the result type of the reduction.

_Begin
An input iterator addressing the first element in the range to be reduced.

_End
An input iterator addressing the element that is one position beyond the final element in the range to be reduced.

_Identity
The identity value _Identity is of the same type as the result type of the reduction and also the value_type of the
iterator for the first and second overloads. For the third overload, the identity value must have the same type as
the result type of the reduction, but can be different from the value_type of the iterator. It must have an
appropriate value such that the range reduction operator _Range_fun , when applied to a range of a single element
of type value_type and the identity value, behaves like a type cast of the value from type value_type to the
identity type.

_Sym_fun
The symmetric function that will be used in the second of the reduction. Refer to Remarks for more information.

Return Value

Remarks

parallel_sort

template<typename _Random_iterator>
inline void parallel_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End);

template<typename _Random_iterator,typename _Function>
inline void parallel_sort(
 const _Random_iterator& _Begin,
 const _Random_iterator& _End,
 const _Function& _Func,
 const size_t _Chunk_size = 2048);

Parameters

_Range_fun
The function that will be used in the first phase of the reduction. Refer to Remarks for more information.

The result of the reduction.

To perform a parallel reduction, the function divides the range into chunks based on the number of workers
available to the underlying scheduler. The reduction takes place in two phases, the first phase performs a reduction
within each chunk, and the second phase performs a reduction between the partial results from each chunk.

The first overload requires that the iterator's value_type , T , be the same as the identity value type as well as the
reduction result type. The element type T must provide the operator T T::operator + (T) to reduce elements in
each chunk. The same operator is used in the second phase as well.

The second overload also requires that the iterator's value_type be the same as the identity value type as well as
the reduction result type. The supplied binary operator _Sym_fun is used in both reduction phases, with the
identity value as the initial value for the first phase.

For the third overload, the identity value type must be the same as the reduction result type, but the iterator's
value_type may be different from both. The range reduction function _Range_fun is used in the first phase with

the identity value as the initial value, and the binary function _Sym_reduce_fun is applied to sub results in the
second phase.

Arranges the elements in a specified range into a nondescending order, or according to an ordering criterion
specified by a binary predicate, in parallel. This function is semantically similar to std::sort in that it is a
compare-based, unstable, in-place sort.

_Random_iterator
The iterator type of the input range.

_Function
The type of the binary comparison functor.

_Begin
A random-access iterator addressing the position of the first element in the range to be sorted.

_End
A random-access iterator addressing the position one past the final element in the range to be sorted.

_Func
A user-defined predicate function object that defines the comparison criterion to be satisfied by successive

Remarks

parallel_transform

elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when
not satisfied. This comparator function must impose a strict weak ordering on pairs of elements from the
sequence.

_Chunk_size
The mimimum size of a chunk that will be split into two for parallel execution.

The first overload uses the binary comparator std::less .

The second overloaded uses the supplied binary comparator that should have the signature bool _Func(T, T)

where T is the type of the elements in the input range.

The algorithm divides the input range into two chunks and successively divides each chunk into two sub-chunks
for execution in parallel. The optional argument _Chunk_size can be used to indicate to the algorithm that it
should handles chunks of size < _Chunk_size serially.

Applies a specified function object to each element in a source range, or to a pair of elements from two source
ranges, and copies the return values of the function object into a destination range, in parallel. This functional is
semantically equivalent to std::transform .

template <typename _Input_iterator1,
 typename _Output_iterator,
 typename _Unary_operator>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Output_iterator _Result,
 const _Unary_operator& _Unary_op,
 const auto_partitioner& _Part = auto_partitioner());

template <typename _Input_iterator1,
 typename _Output_iterator,
 typename _Unary_operator>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Output_iterator _Result,
 const _Unary_operator& _Unary_op,
 const static_partitioner& _Part);

template <typename _Input_iterator1,
 typename _Output_iterator,
 typename _Unary_operator>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Output_iterator _Result,
 const _Unary_operator& _Unary_op,
 const simple_partitioner& _Part);

template <typename _Input_iterator1,
 typename _Output_iterator,
 typename _Unary_operator>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Output_iterator _Result,
 const _Unary_operator& _Unary_op,
 affinity_partitioner& _Part);

template <typename _Input_iterator1,
 typename _Input_iterator2,
 typename _Output_iterator,
 typename _Binary_operator,
 typename _Partitioner>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Input_iterator2
first2,
 _Output_iterator _Result,
 const _Binary_operator& _Binary_op,
 _Partitioner&& _Part);

template <typename _Input_iterator1,
 typename _Input_iterator2,
 typename _Output_iterator,
 typename _Binary_operator>
_Output_iterator parallel_transform(
 _Input_iterator1 first1,
 _Input_iterator1 last1,
 _Input_iterator2
first2,
 _Output_iterator _Result,
 const _Binary_operator& _Binary_op);

Parameters

Return Value

Remarks

_Input_iterator1
The type of the first or only input iterator.

_Output_iterator
The type of the output iterator.

_Unary_operator
The type of the unary functor to be executed on each element in the input range.

_Input_iterator2
The type of second input iterator.

_Binary_operator
The type of the binary functor executed pairwise on elements from the two source ranges.

_Partitioner
first1
An input iterator addressing the position of the first element in the first or only source range to be operated on.

last1
An input iterator addressing the position one past the final element in the first or only source range to be operated
on.

_Result
An output iterator addressing the position of the first element in the destination range.

_Unary_op
A user-defined unary function object that is applied to each element in the source range.

_Part
A reference to the partitioner object. The argument can be one of const auto_partitioner & , const

static_partitioner & , const simple_partitioner & or affinity_partitioner & If an affinity_partitioner object is used,
the reference must be a non-const l-value reference, so that the algorithm can store state for future loops to re-
use.

first2
An input iterator addressing the position of the first element in the second source range to be operated on.

_Binary_op
A user-defined binary function object that is applied pairwise, in a forward order, to the two source ranges.

An output iterator addressing the position one past the final element in the destination range that is receiving the
output elements transformed by the function object.

auto_partitioner will be used for the overloads without an explicit partitioner argument.

For iterators that do not support random access, only auto_partitioner is supported.

The overloads that take the argument _Unary_op transform the input range into the output range by applying the
unary functor to each element in the input range. _Unary_op must support the function call operator with
signature operator()(T) where T is the value type of the range being iterated over.

The overloads that take the argument _Binary_op transform two input ranges into the output range by applying
the binary functor to one element from the first input range and one element from the second input range.
_Binary_op must support the function call operator with signature operator()(T, U) where T , U are value

receive

template <class T>
T receive(
 Inout ISource<T>* _Src,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

template <class T>
T receive(
 Inout ISource<T>* _Src,
 typename ITarget<T>::filter_method const& _Filter_proc,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

template <class T>
T receive(
 ISource<T>& _Src,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

template <class T>
T receive(
 ISource<T>& _Src,
 typename ITarget<T>::filter_method const& _Filter_proc,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Return Value

Remarks

run_with_cancellation_token

types of the two input iterators.

For more information, see Parallel Algorithms.

A general receive implementation, allowing a context to wait for data from exactly one source and filter the values
that are accepted.

T
The payload type.

_Src
A pointer or reference to the source from which data is expected.

_Timeout
The maximum time for which the method should for the data, in milliseconds.

_Filter_proc
A filter function which determines whether messages should be accepted.

A value from the source, of the payload type.

If the parameter _Timeout has a value other than the constant COOPERATIVE_TIMEOUT_INFINITE , the exception
operation_timed_out is thrown if the specified amount of time expires before a message is received. If you want a
zero length timeout, you should use the try_receive function, as opposed to calling receive with a timeout of 0

(zero), as it is more efficient and does not throw exceptions on timeouts.

For more information, see Message Passing Functions.

Executes a function object immediately and synchronously in the context of a given cancellation token.

template<typename _Function>
void run_with_cancellation_token(
 const _Function& _Func,
 cancellation_token _Ct);

Parameters

Remarks

send

template <class T>
bool send(_Inout_ ITarget<T>* _Trg, const T& _Data);

template <class T>
bool send(ITarget<T>& _Trg, const T& _Data);

Parameters

Return Value

Remarks

set_ambient_scheduler
inline void set_ambient_scheduler(std::shared_ptr<::Concurrency::scheduler_interface> _Scheduler);

Parameters

_Function
The type of the function object that will be invoked.

_Func
The function object which will be executed. This object must support the function call operator with a signature of
void(void).

_Ct
The cancellation token which will control implicit cancellation of the function object. Use
cancellation_token::none() if you want the function execute without any possibility of implicit cancellation from a

parent task group being canceled.

Any interruption points in the function object will be triggered when the cancellation_token is canceled. The
explicit token _Ct will isolate this _Func from parent cancellation if the parent has a different token or no token.

A synchronous send operation, which waits until the target either accepts or declines the message.

T
The payload type.

_Trg
A pointer or reference to the target to which data is sent.

_Data
A reference to the data to be sent.

true if the message was accepted, false otherwise.

For more information, see Message Passing Functions.

set_task_execution_resources

void __cdecl set_task_execution_resources(
 DWORD_PTR _ProcessAffinityMask);

void __cdecl set_task_execution_resources(
 unsigned short count,
 PGROUP_AFFINITY _PGroupAffinity);

Parameters

Remarks

swap

template<typename T, class _Ax>
inline void swap(
 concurrent_vector<T, _Ax>& _A,
 concurrent_vector<T, _Ax>& _B);

_Scheduler
The ambient scheduler to set.

Restricts the execution resources used by the Concurrency Runtime internal worker threads to the affinity set
specified.

It is valid to call this method only before the Resource Manager has been created, or between two Resource
Manager lifetimes. It can be invoked multiple times as long as the Resource Manager does not exist at the time of
invocation. After an affinity limit has been set, it remains in effect until the next valid call to the
set_task_execution_resources method.

The affinity mask provided need not be a subset of the process affinity mask. The process affinity will be updated
if necessary.

_ProcessAffinityMask
The affinity mask that the Concurrency Runtime worker threads are to be restricted to. Use this method on a
system with greater than 64 hardware threads only if you want to limit the Concurrency Runtime to a subset of
the current processor group. In general, you should use the version of the method that accepts an array of group
affinities as a parameter, to restrict affinity on machines with greater than 64 hardware threads.

count
The number of GROUP_AFFINITY entries in the array specified by the parameter _PGroupAffinity .

_PGroupAffinity
An array of GROUP_AFFINITY entries.

The method will throw an invalid_operation exception if a Resource Manager is present at the time it is invoked,
and an invalid_argument exception if the affinity specified results in an empty set of resources.

The version of the method that takes an array of group affinities as a parameter should only be used on operating
systems with version Windows 7 or higher. Otherwise, an invalid_operation exception is thrown.

Programatically modifying the process affinity after this method has been invoked will not cause the Resource
Manager to re-evaluate the affinity it is restricted to. Therefore, all changes to process affinity should be made
before calling this method.

Exchanges the elements of two concurrent_vector objects.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

Parameters

Remarks

task_from_exception
template<typename _TaskType, typename _ExType>
task<_TaskType> task_from_exception(
 _ExType _Exception,
 const task_options& _TaskOptions = task_options());

Parameters

Return Value

task_from_result
template<typename T>
task<T> task_from_result(
 T _Param,
 const task_options& _TaskOptions = task_options());

inline task<bool> task_from_result(ool _Param);

inline task<void> task_from_result(
 const task_options& _TaskOptions = task_options());

T
The data type of the elements stored in the concurrent vectors.

_Ax
The allocator type of the concurrent vectors.

_A
The concurrent vector whose elements are to be exchanged with those of the concurrent vector _B .

_B
The concurrent vector providing the elements to be swapped, or the vector whose elements are to be exchanged
with those of the concurrent vector _A .

The template function is an algorithm specialized on the container class concurrent_vector to execute the member
function _A . concurrent_vector ::swap(_B). These are instances of the partial ordering of function templates by
the compiler. When template functions are overloaded in such a way that the match of the template with the
function call is not unique, then the compiler will select the most specialized version of the template function. The
general version of the template function, template <class T> void swap(T&, T&) , in the algorithm class works by
assignment and is a slow operation. The specialized version in each container is much faster as it can work with
the internal representation of the container class.

This method is not concurrency-safe. You must ensure that no other threads are performing operations on either
of the concurrent vectors when you call this method.

_TaskType

_ExType

_Exception

_TaskOptions

Parameters

Return Value

Trace_agents_register_name

template <class T>
void Trace_agents_register_name(
 Inout T* _PObject,
 _In_z_ const wchar_t* _Name);

Parameters

try_receive

template <class T>
bool try_receive(_Inout_ ISource<T>* _Src, T& _value);

template <class T>
bool try_receive(
 Inout ISource<T>* _Src,
 T& _value,
 typename ITarget<T>::filter_method const& _Filter_proc);

template <class T>
bool try_receive(ISource<T>& _Src, T& _value);

template <class T>
bool try_receive(
 ISource<T>& _Src,
 T& _value,
 typename ITarget<T>::filter_method const& _Filter_proc);

Parameters

T

_Param

_TaskOptions

Associates the given name to the message block or agent in the ETW trace.

T
The type of the object. This is typically a message block or an agent.

_PObject
A pointer to the message block or agent that is being named in the trace.

_Name
The name for the given object.

A general try-receive implementation, allowing a context to look for data from exactly one source and filter the
values that are accepted. If the data is not ready, the method will return false.

T
The payload type

_Src
A pointer or reference to the source from which data is expected.

_value

Return Value

Remarks

wait

void __cdecl wait(unsigned int _Milliseconds);

Parameters

Remarks

when_all

template <typename _Iterator>
auto when_all(
 _Iterator _Begin,
 _Iterator _End,
 const task_options& _TaskOptions = task_options()) ->
 decltype (details::_WhenAllImpl<typename std::iterator_traits<_Iterator>::value_type::result_type,
 _Iterator>::_Perform(_TaskOptions, _Begin, _End));

Parameters

Return Value

A reference to a location where the result will be placed.

_Filter_proc
A filter function which determines whether messages should be accepted.

A bool value indicating whether or not a payload was placed in _value .

For more information, see Message Passing Functions.

Pauses the current context for a specified amount of time.

_Milliseconds
The number of milliseconds the current context should be paused for. If the _Milliseconds parameter is set to the
value 0 , the current context should yield execution to other runnable contexts before continuing.

If this method is called on a Concurrency Runtime scheduler context, the scheduler will find a different context to
run on the underlying resource. Because the scheduler is cooperative in nature, this context cannot resume exactly
after the number of milliseconds specified. If the scheduler is busy executing other tasks that do not cooperatively
yield to the scheduler, the wait period could be indefinite.

Creates a task that will complete successfully when all of the tasks supplied as arguments complete successfully.

_Iterator
The type of the input iterator.

_Begin
The position of the first element in the range of elements to be combined into the resulting task.

_End
The position of the first element beyond the range of elements to be combined into the resulting task.

_TaskOptions
The task_options object.

A task that completes sucessfully when all of the input tasks have completed successfully. If the input tasks are of

Remarks

when_any

template<typename _Iterator>
auto when_any(
 _Iterator _Begin,
 _Iterator _End,
 const task_options& _TaskOptions = task_options())
 -> decltype (
 details::_WhenAnyImpl<
 typename std::iterator_traits<_Iterator>::value_type::result_type,
 _Iterator>::_Perform(_TaskOptions, _Begin, _End));

template<typename _Iterator>
auto when_any(
 _Iterator _Begin,
 _Iterator _End,
 cancellation_token _CancellationToken)
 -> decltype (
 details::_WhenAnyImpl<
 typename std::iterator_traits<_Iterator>::value_type::result_type,
 _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End));

Parameters

Return Value

Remarks

type T , the output of this function will be a task<std::vector<T>> . If the input tasks are of type void the output
task will also be a task<void> .

when_all is a non-blocking function that produces a task as its result. Unlike task::wait, it is safe to call this
function in a UWP app on the ASTA (Application STA) thread.

If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state,
and the exception, if one is encoutered, will be thrown if you call task::get or task::wait on that task.

For more information, see Task Parallelism.

Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.

_Iterator
The type of the input iterator.

_Begin
The position of the first element in the range of elements to be combined into the resulting task.

_End
The position of the first element beyond the range of elements to be combined into the resulting task.

_TaskOptions
_CancellationToken
The cancellation token which controls cancellation of the returned task. If you do not provide a cancellation token,
the resulting task will receive the cancellation token of the task that causes it to complete.

A task that completes successfully when any one of the input tasks has completed successfully. If the input tasks
are of type T , the output of this function will be a task<std::pair<T, size_t>>> , where the first element of the
pair is the result of the completing task, and the second element is the index of the task that finished. If the input
tasks are of type void the output is a task<size_t> , where the result is the index of the completing task.

See also

when_any is a non-blocking function that produces a task as its result. Unlike task::wait, it is safe to call this
function in a UWP app on the ASTA (Application STA) thread.

For more information, see Task Parallelism.

concurrency Namespace

concurrency namespace Operators
3/4/2019 • 6 minutes to read • Edit Online

operator!= operator&& operator>

operator>= operator< operator<=

operator== operator||

operator|| Operator

template<typename ReturnType>
task<ReturnType> operator||(
 const task<ReturnType>& lhs,
 const task<ReturnType>& rhs);

template<typename ReturnType>
task<std::vector<ReturnType>> operator||(
 const task<std::vector<ReturnType>>& lhs,
 const task<ReturnType>& rhs);

template<typename ReturnType>
task<std::vector<ReturnType>> operator||(
 const task<ReturnType>& lhs,
 const task<std::vector<ReturnType>>& rhs);

inline task<void> operator||(
 const task<void>& lhs,
 const task<void>& rhs);

Parameters

Return Value

Remarks

Creates a task that will complete successfully when either of the tasks supplied as arguments completes
successfully.

ReturnType
The type of the returned task.

lhs
The first task to combine into the resulting task.

rhs
The second task to combine into the resulting task.

A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of
type T , the output of this function will be a task<std::vector<T> . If the input tasks are of type void the output
task will also be a task<void> .

If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one
of the exceptions, if any are encountered, will be thrown when you call get() or wait() on that task.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrency-namespace-operators.md

operator&& Operator

template<typename ReturnType>
task<std::vector<ReturnType>> operator&&(
 const task<ReturnType>& lhs,
 const task<ReturnType>& rhs);

template<typename ReturnType>
task<std::vector<ReturnType>> operator&&(
 const task<std::vector<ReturnType>>& lhs,
 const task<ReturnType>& rhs);

template<typename ReturnType>
task<std::vector<ReturnType>> operator&&(
 const task<ReturnType>& lhs,
 const task<std::vector<ReturnType>>& rhs);

template<typename ReturnType>
task<std::vector<ReturnType>> operator&&(
 const task<std::vector<ReturnType>>& lhs,
 const task<std::vector<ReturnType>>& rhs);

inline task<void> operator&&(
 const task<void>& lhs,
 const task<void>& rhs);

Parameters

Return Value

Remarks

operator== Operator

template<typename T, class A1, class A2>
inline bool operator== (
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.

ReturnType
The type of the returned task.

lhs
The first task to combine into the resulting task.

rhs
The second task to combine into the resulting task.

A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are
of type T , the output of this function will be a task<std::vector<T>> . If the input tasks are of type void the output
task will also be a task<void> .

If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state,
and the exception, if one is encoutered, will be thrown if you call get() or wait() on that task.

Tests if the concurrent_vector object on the left side of the operator is equal to the concurrent_vector object on
the right side.

Return Value

Remarks

operator!= Operator

template<typename T, class A1, class A2>
inline bool operator!= (
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

Return Value

Remarks

T
The data type of the elements stored in the concurrent vectors.

A1
The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vector on the left side of the operator is equal to the concurrent vector on the right side of
the operator ; otherwise false.

Two concurrent vectors are equal if they have the same number of elements and their respective elements have the
same values. Otherwise, they are unequal.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

Tests if the concurrent_vector object on the left side of the operator is not equal to the concurrent_vector object
on the right side.

T
The data type of the elements stored in the concurrent vectors.

A1
The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vectors are not equal; false if the concurrent vectors are equal.

Two concurrent vectors are equal if they have the same number of elements and their respective elements have the

operator< Operator

template<typename T, class A1, class A2>
inline bool operator<(
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

Return Value

Remarks

operator<= Operator

template<typename T, class A1, class A2>
inline bool operator<= (
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

same values. Otherwise, they are unequal.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

Tests if the concurrent_vector object on the left side of the operator is less than the concurrent_vector object on
the right side.

T
The data type of the elements stored in the concurrent vectors.

A1
The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vector on the left side of the operator is less than the concurrent vector on the right side of
the operator ; otherwise false.

The behavior of this operator is identical to the equivalent operator for the vector class in the std namespace.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

Tests if the concurrent_vector object on the left side of the operator is less than or equal to the concurrent_vector

object on the right side.

T
The data type of the elements stored in the concurrent vectors.

A1

Return Value

Remarks

operator> Operator

template<typename T, class A1, class A2>
inline bool operator>(
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

Return Value

Remarks

The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vector on the left side of the operator is less than or equal to the concurrent vector on the
right side of the operator ; otherwise false.

The behavior of this operator is identical to the equivalent operator for the vector class in the std namespace.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

Tests if the concurrent_vector object on the left side of the operator is greater than the concurrent_vector object
on the right side.

T
The data type of the elements stored in the concurrent vectors.

A1
The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vector on the left side of the operator is greater than the concurrent vector on the right side
of the operator ; otherwise false.

The behavior of this operator is identical to the equivalent operator for the vector class in the std namespace.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

 operator>= Operator

template<typename T, class A1, class A2>
inline bool operator>= (
 const concurrent_vector<T, A1>& _A,
 const concurrent_vector<T, A2>& _B);

Parameters

Return Value

Remarks

See also

Tests if the concurrent_vector object on the left side of the operator is greater than or equal to the
concurrent_vector object on the right side.

T
The data type of the elements stored in the concurrent vectors.

A1
The allocator type of the first concurrent_vector object.

A2
The allocator type of the second concurrent_vector object.

_A
An object of type concurrent_vector .

_B
An object of type concurrent_vector .

true if the concurrent vector on the left side of the operator is greater than or equal to the concurrent vector on the
right side of the operator ; otherwise false.

The behavior of this operator is identical to the equivalent operator for the vector class in the std namespace.

This method is not concurrency-safe with respect to other methods that could modify either of the concurrent
vectors _A or _B .

concurrency Namespace

concurrency namespace constants
3/4/2019 • 3 minutes to read • Edit Online

AgentEventGuid CONCRT_RM_VERSION_1 COOPERATIVE_TIMEOUT_INFINITE

COOPERATIVE_WAIT_TIMEOUT ChoreEventGuid ConcRTEventGuid

ConcRT_ProviderGuid ContextEventGuid INHERIT_THREAD_PRIORITY

LockEventGuid MaxExecutionResources PPLParallelForEventGuid

PPLParallelForeachEventGuid PPLParallelInvokeEventGuid ResourceManagerEventGuid

ScheduleGroupEventGuid SchedulerEventGuid VirtualProcessorEventGuid

AgentEventGuid

const __declspec(selectany) GUID AgentEventGuid = {0xb9b5b78c, 0x713, 0x4898, { 0xa2, 0x1a, 0xc6, 0x79, 0x49,
0xdc, 0xed, 0x7 } };

ChoreEventGuid

const __declspec(selectany) GUID ChoreEventGuid =
 { 0x7E854EC7, 0xCDC4, 0x405a, { 0xB5, 0xB2, 0xAA, 0xF7, 0xC9, 0xE7, 0xD4, 0x0C } };

Remarks

ConcRT_ProviderGuid

const __declspec(selectany) GUID ConcRT_ProviderGuid =
 { 0xF7B697A3, 0x4DB5, 0x4d3b, { 0xBE, 0x71, 0xC4, 0xD2, 0x84, 0xE6, 0x59, 0x2F } };

CONCRT_RM_VERSION_1

A category GUID ({B9B5B78C-0713-4898-A21A-C67949DCED07}) describing ETW events fired by the Agents
library in the Concurrency Runtime.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to chores or
tasks.

This category of events is not currently fired by the Concurrency Runtime.

The ETW provider GUID for the Concurrency Runtime.

Indicates support of the Resource Manager interface defined in Visual Studio 2010.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrency-namespace-constants1.md

const unsigned int CONCRT_RM_VERSION_1 = 0x00010000;

ConcRTEventGuid

const __declspec(selectany) GUID ConcRTEventGuid =
 { 0x72B14A7D, 0x704C, 0x423e, { 0x92, 0xF8, 0x7E, 0x6D, 0x64, 0xBC, 0xB9, 0x2A } };

Remarks

COOPERATIVE_TIMEOUT_INFINITE

const unsigned int COOPERATIVE_TIMEOUT_INFINITE = (unsigned int)-1;

COOPERATIVE_WAIT_TIMEOUT

const size_t COOPERATIVE_WAIT_TIMEOUT = SIZE_MAX;

ContextEventGuid

const __declspec(selectany) GUID ContextEventGuid =
 { 0x5727A00F, 0x50BE, 0x4519, { 0x82, 0x56, 0xF7, 0x69, 0x98, 0x71, 0xFE, 0xCB } };

INHERIT_THREAD_PRIORITY

const unsigned int INHERIT_THREAD_PRIORITY = 0x0000F000;

LockEventGuid

const __declspec(selectany) GUID LockEventGuid =
 { 0x79A60DC6, 0x5FC8, 0x4952, { 0xA4, 0x1C, 0x11, 0x63, 0xAE, 0xEC, 0x5E, 0xB8 } };

Remarks

A category GUID describing ETW events fired by the Concurrency Runtime that are not more specifically
described by another category.

This category of events is not currently fired by the Concurrency Runtime.

Value indicating that a wait should never time out.

Value indicating that a wait timed out.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to contexts.

Special value for the policy key ContextPriority indicating that the thread priority of all contexts in the scheduler
should be the same as that of the thread which created the scheduler.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to locks.

MaxExecutionResources

const unsigned int MaxExecutionResources = 0xFFFFFFFF;

PPLParallelForEventGuid

const __declspec(selectany) GUID PPLParallelForEventGuid =
 { 0x31c8da6b, 0x6165, 0x4042, { 0x8b, 0x92, 0x94, 0x9e, 0x31, 0x5f, 0x4d, 0x84 } };

PPLParallelForeachEventGuid

const __declspec(selectany) GUID PPLParallelForeachEventGuid =
 { 0x5cb7d785, 0x9d66, 0x465d, { 0xba, 0xe1, 0x46, 0x11, 0x6, 0x1b, 0x54, 0x34 } };

PPLParallelInvokeEventGuid

const __declspec(selectany) GUID PPLParallelInvokeEventGuid =
 { 0xd1b5b133, 0xec3d, 0x49f4, { 0x98, 0xa3, 0x46, 0x4d, 0x1a, 0x9e, 0x46, 0x82 } };

ResourceManagerEventGuid

const __declspec(selectany) GUID ResourceManagerEventGuid =
 { 0x2718D25B, 0x5BF5, 0x4479, { 0x8E, 0x88, 0xBA, 0xBC, 0x64, 0xBD, 0xBF, 0xCA } };

Remarks

ScheduleGroupEventGuid

This category of events is not currently fired by the Concurrency Runtime.

Special value for the policy keys MinConcurrency and MaxConcurrency . Defaults to the number of hardware threads
on the machine in the absence of other constraints.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to usage of the
parallel_for function.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to usage of the
parallel_for_each function.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to usage of the
parallel_invoke function.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to the resource
manager.

This category of events is not currently fired by the Concurrency Runtime.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to schedule
groups.

const __declspec(selectany) GUID ScheduleGroupEventGuid =
 { 0xE8A3BF1F, 0xA86B, 0x4390, { 0x9C, 0x60, 0x53, 0x90, 0xB9, 0x69, 0xD2, 0x2C } };

Remarks

SchedulerEventGuid

const __declspec(selectany) GUID SchedulerEventGuid =
 { 0xE2091F8A, 0x1E0A, 0x4731, { 0x84, 0xA2, 0x0D, 0xD5, 0x7C, 0x8A, 0x52, 0x61 } };

VirtualProcessorEventGuid

const __declspec(selectany) GUID VirtualProcessorEventGuid =
 { 0x2f27805f, 0x1676, 0x4ecc, { 0x96, 0xfa, 0x7e, 0xb0, 0x9d, 0x44, 0x30, 0x2f } };

See also

This category of events is not currently fired by the Concurrency Runtime.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to scheduler
activity.

A category GUID describing ETW events fired by the Concurrency Runtime that are directly related to virtual
processors.

concurrency Namespace

concurrency namespace enums
3/4/2019 • 9 minutes to read • Edit Online

Agents_EventType ConcRT_EventType Concrt_TraceFlags

CriticalRegionType DynamicProgressFeedbackType PolicyElementKey

SchedulerType SchedulingProtocolType SwitchingProxyState

WinRTInitializationType agent_status join_type

message_status task_group_status

agent_status Enumeration

enum agent_status;

Values

NAME DESCRIPTION

agent_canceled The agent was canceled.

agent_created The agent has been created but not started.

agent_done The agent finished without being canceled.

agent_runnable The agent has been started, but not entered its run

method.

agent_started The agent has started.

Remarks

Requirements

Agents_EventType Enumeration

enum Agents_EventType;

The valid states for an agent .

For more information, see Asynchronous Agents.

Header: concrt.h

The types of events that can be traced using the tracing functionality offered by the Agents Library

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrency-namespace-enums.md

Values

NAME DESCRIPTION

AGENTS_EVENT_CREATE An event type that represents the creation of an object

AGENTS_EVENT_DESTROY An event type that represents the deletion of an object

AGENTS_EVENT_END An event type that represents the conclusion of some
processing

AGENTS_EVENT_LINK An event type that represents the linking of message blocks

AGENTS_EVENT_NAME An event type that represents the name for an object

AGENTS_EVENT_SCHEDULE An event type that represents the scheduling of a process

AGENTS_EVENT_START An event type that represents the initiation of some
processing

AGENTS_EVENT_UNLINK An event type that represents the unlinking of message
blocks

Requirements

ConcRT_EventType Enumeration

enum ConcRT_EventType;

Values

NAME DESCRIPTION

CONCRT_EVENT_ATTACH An event type that represents the act of a attaching to a
scheduler.

CONCRT_EVENT_BLOCK An event type that represents the act of a context blocking.

CONCRT_EVENT_DETACH An event type that represents the act of a detaching from a
scheduler.

CONCRT_EVENT_END An event type that marks the beginning of a start/end
event pair.

CONCRT_EVENT_GENERIC An event type used for miscellaneous events.

CONCRT_EVENT_IDLE An event type that represents the act of a context
becoming idle.

Header: concrt.h

The types of events that can be traced using the tracing functionality offered by the Concurrency Runtime.

CONCRT_EVENT_START An event type that marks the beginning of a start/end
event pair.

CONCRT_EVENT_UNBLOCK An event type that represents the act of unblocking a
context.

CONCRT_EVENT_YIELD An event type that represents the act of a context yielding.

NAME DESCRIPTION

Requirements

Concrt_TraceFlags Enumeration

enum Concrt_TraceFlags;

Values

NAME DESCRIPTION

AgentEventFlag

AllEventsFlag

ContextEventFlag

PPLEventFlag

ResourceManagerEventFlag

SchedulerEventFlag

VirtualProcessorEventFlag

Requirements

CriticalRegionType Enumeration

enum CriticalRegionType;

Values

NAME DESCRIPTION

Header: concrt.h Namespace: concurrency

Trace flags for the event types

Header: concrt.h

The type of critical region a context is inside.

InsideCriticalRegion Indicates that the context is inside a critical region. When
inside a critical region, asynchronous suspensions are
hidden from the scheduler. Should such a suspension
happen, the Resource Manager will wait for the thread to
become runnable and simply resume it instead of invoking
the scheduler again. Any locks taken inside such a region
must be taken with extreme care.

InsideHyperCriticalRegion Indicates that the context is inside a hyper-critical region.
When inside a hyper-critical region, both synchronous and
asynchronous suspensions are hidden from the scheduler.
Should such a suspension or blocking happen, the resource
manager will wait for the thread to become runnable and
simply resume it instead of invoking the scheduler again.
Locks taken inside such a region must never be shared with
code running outside such a region. Doing so will cause
unpredictable deadlock.

OutsideCriticalRegion Indicates that the context is outside any critical region.

NAME DESCRIPTION

Requirements

DynamicProgressFeedbackType Enumeration

enum DynamicProgressFeedbackType;

Values

NAME DESCRIPTION

ProgressFeedbackDisabled The scheduler does not gather progress information.
Rebalancing is done based solely on the subscription level of
the underlying hardware thread. For more information on
subscription levels, see
IExecutionResource::CurrentSubscriptionLevel.

This value is reserved for use by the runtime.

ProgressFeedbackEnabled The scheduler gathers progress information and passes it to
the resource manager. The resource manager will utilize this
statistical information to rebalance resources on behalf of
the scheduler in addition to the subscription level of the
underlying hardware thread. For more information on
subscription levels, see
IExecutionResource::CurrentSubscriptionLevel.

join_type Enumeration

Header: concrtrm.h

Used by the DynamicProgressFeedback policy to describe whether resources for the scheduler will be
rebalanced according to statistical information gathered from the scheduler or only based on virtual
processors going in and out of the idle state through calls to the Activate and Deactivate methods on the
IVirtualProcessorRoot interface. For more information on available scheduler policies, see PolicyElementKey.

enum join_type;

Values

NAME DESCRIPTION

greedy Greedy join messaging blocks immediately accept a
message upon propagation. This is more efficient, but has
the possibility for live-lock, depending on the network
configuration.

non_greedy Non-greedy join messaging blocks postpone messages
and try and consume them after all have arrived. These are
guaranteed to work, but slower.

Requirements

message_status Enumeration

enum message_status;

Values

NAME DESCRIPTION

accepted The target accepted the message.

declined The target did not accept the message.

missed The target tried to accept the message, but it was no longer
available.

postponed The target postponed the message.

Requirements

PolicyElementKey Enumeration

enum PolicyElementKey;

Values

The type of a join messaging block.

Header: agents.h

The valid responses for an offer of a message object to a block.

Header: agents.h

Policy keys describing aspects of scheduler behavior. Each policy element is described by a key-value pair. For
more information about scheduler policies and their impact on schedulers, see Task Scheduler.

NAME DESCRIPTION

ContextPriority The operating system thread priority of each context in the
scheduler. If this key is set to the value
INHERIT_THREAD_PRIORITY the contexts in the scheduler

will inherit the priority of the thread that created the
scheduler.

Valid values : Any of the valid values for the Windows
SetThreadPriority function and the special value
INHERIT_THREAD_PRIORITY

Default value : THREAD_PRIORITY_NORMAL

ContextStackSize The reserved stack size of each context in the scheduler in
kilobytes.

Valid values : Positive integers

Default value : 0 , indicating that the process' default value
for stack size be used.

DynamicProgressFeedback Determines whether the resources for the scheduler will be
rebalanced according to statistical information gathered
from the scheduler or only based on the subscription level
of underlying hardware threads. For more information, see
DynamicProgressFeedbackType.

Valid values : A member of the
DynamicProgressFeedbackType enumeration, either
ProgressFeedbackEnabled or
ProgressFeedbackDisabled

Default value : ProgressFeedbackEnabled

LocalContextCacheSize When the SchedulingProtocol policy key is set to the
value EnhanceScheduleGroupLocality , this specifies the
maximum number of runnable contexts allowed to be
cached in per virtual processor local queues. Such contexts
will typically run in last-in-first-out (LIFO) order on the
virtual processor that caused them to become runnable.
Note that this policy key has no meaning when the
SchedulingProtocol key is set to the value
EnhanceForwardProgress .

Valid values : Non-negative integers

Default value : 8

MaxConcurrency The maximum concurrency level desired by the scheduler.
The resource manager will try to initially allocate this many
virtual processors. The special value MaxExecutionResources
indicates that the desired concurrency level is same as the
number of hardware threads on the machine. If the value
specified for MinConcurrency is greater than the number
of hardware threads on the machine and MaxConcurrency

is specified as MaxExecutionResources , the value for
MaxConcurrency is raised to match what is set for
MinConcurrency .

Valid values : Positive integers and the special value
MaxExecutionResources

Default value : MaxExecutionResources

MaxPolicyElementKey The maximum policy element key. Not a valid element key.

MinConcurrency The minimum concurrency level that must be provided to
the scheduler by the resource manager. The number of
virtual processors assigned to a scheduler will never go
below the minimum. The special value
MaxExecutionResources indicates that the minimum
concurrency level is same as the number of hardware
threads on the machine. If the value specified for
MaxConcurrency is less than the number of hardware

threads on the machine and MinConcurrency is specified
as MaxExecutionResources , the value for
MinConcurrency is lowered to match what is set for
MaxConcurrency .

Valid values : Non-negative integers and the special value
MaxExecutionResources . Note that for scheduler policies

used for the construction of Concurrency Runtime
schedulers, the value 0 is invalid.

Default value : 1

SchedulerKind The type of threads that the scheduler will utilize for
underlying execution contexts. For more information, see
SchedulerType.

Valid values : A member of the SchedulerType

enumeration, for example, ThreadScheduler

Default value : ThreadScheduler . This translates to Win32
threads on all operating systems.

SchedulingProtocol Describes which scheduling algorithm will be used by the
scheduler. For more information, see
SchedulingProtocolType.

Valid values : A member of the SchedulingProtocolType

enumeration, either EnhanceScheduleGroupLocality or
EnhanceForwardProgress

Default value : EnhanceScheduleGroupLocality

NAME DESCRIPTION

TargetOversubscriptionFactor Tentative number of virtual processors per hardware thread.
The target oversubscription factor can be increased by the
Resource Manager, if necessary, to satisfy MaxConcurrency

with the hardware threads on the machine.

Valid values : Positive integers

Default value : 1

WinRTInitialization

NAME DESCRIPTION

Requirements

SchedulerType Enumeration

enum SchedulerType;

Values

NAME DESCRIPTION

ThreadScheduler Indicates an explicit request of regular Win32 threads.

UmsThreadDefault User-mode schedulable (UMS) threads are not supported in
the Concurrency Runtime in Visual Studio 2013. Using
UmsThreadDefault as a value for the SchedulerType

policy will not result in an error. However, a scheduler
created with that policy will default to using Win32 threads.

Requirements

SchedulingProtocolType Enumeration

enum SchedulingProtocolType;

Values

NAME DESCRIPTION

EnhanceForwardProgress The scheduler prefers to round-robin through schedule
groups after executing each task. Unblocked contexts are
typically scheduled in a first-in-first-out (FIFO) fashion.
Virtual processors do not cache unblocked contexts.

Header: concrt.h

Used by the SchedulerKind policy to describe the type of threads that the scheduler should utilize for
underlying execution contexts. For more information on available scheduler policies, see PolicyElementKey.

Header: concrt.h

Used by the SchedulingProtocol policy to describe which scheduling algorithm will be utilized for the
scheduler. For more information on available scheduler policies, see PolicyElementKey.

EnhanceScheduleGroupLocality The scheduler prefers to continue to work on tasks within
the current schedule group before moving to another
schedule group. Unblocked contexts are cached per virtual-
processor and are typically scheduled in a last-in-first-out
(LIFO) fashion by the virtual processor which unblocked
them.

NAME DESCRIPTION

Requirements

SwitchingProxyState Enumeration

enum SwitchingProxyState;

Values

NAME DESCRIPTION

Blocking Indicates that the calling thread is cooperatively blocking
and should be exclusively owned by the caller until
subsequently running again and performing other action.

Idle Indicates that the calling thread is no longer needed by the
scheduler and is being returned to the Resource Manager.
The context which was being dispatched is no longer able to
be utilized by the Resource Manager.

Nesting Indicates that the calling thread is nesting a child scheduler
and is needed by the caller, in order to attach to a different
scheduler.

Remarks

task_group_status Enumeration

enum task_group_status;

Values

NAME DESCRIPTION

Header: concrt.h

Used to denote the state a thread proxy is in, when it is executing a cooperative context switch to a different
thread proxy.

A parameter of type SwitchingProxyState is passed in to the method IThreadProxy::SwitchTo to instruct the
Resource Manager how to treat the thread proxy that is making the call.

For more information on how this type is used, see IThreadProxy::SwitchTo.

Describes the execution status of a task_group or structured_task_group object. A value of this type is
returned by numerous methods that wait on tasks scheduled to a task group to complete.

canceled The task_group or structured_task_group object was
canceled. One or more tasks may not have executed.

completed The tasks queued to the task_group or
structured_task_group object completed successfully.

not_complete The tasks queued to the task_group object have not
completed. Note that this value is not presently returned by
the Concurrency Runtime.

NAME DESCRIPTION

Requirements

WinRTInitializationType Enumeration

enum WinRTInitializationType;

Values

NAME DESCRIPTION

DoNotInitializeWinRT When the application is run on operating systems with
version Windows 8 or higher, threads within the scheduler
will not initialize the Windows Runtime .

InitializeWinRTAsMTA When the application is run on operating systems with
version Windows 8 or higher, each thread within the
scheduler will initialize the Windows Runtime and declare
that it is part of the multithreaded apartment.

Requirements

See also

Header: pplinterface.h

Used by the WinRTInitialization policy to describe whether and how the Windows Runtime will be initialized
on scheduler threads for an application which runs on operating systems with version Windows 8 or higher.
For more information on available scheduler policies, see PolicyElementKey.

Header: concrt.h

concurrency Namespace

affinity_partitioner Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class affinity_partitioner;

Members
Public Constructors

NAME DESCRIPTION

affinity_partitioner Constructs an affinity_partitioner object.

~affinity_partitioner Destructor Destroys an affinity_partitioner object.

Inheritance Hierarchy

Requirements

~affinity_partitioner

~affinity_partitioner();

affinity_partitioner

affinity_partitioner();

See also

The affinity_partitioner class is similar to the static_partitioner class, but it improves cache affinity by its
choice of mapping subranges to worker threads. It can improve performance significantly when a loop is re-
executed over the same data set, and the data fits in cache. Note that the same affinity_partitioner object must
be used with subsequent iterations of a parallel loop that is executed over a particular data set, to benefit from
data locality.

affinity_partitioner

Header: ppl.h

Namespace: concurrency

Destroys an affinity_partitioner object.

Constructs an affinity_partitioner object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/affinity-partitioner-class.md

concurrency Namespace

agent Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class agent;

Members
Public Constructors

NAME DESCRIPTION

agent Overloaded. Constructs an agent.

~agent Destructor Destroys the agent.

Public Methods

NAME DESCRIPTION

cancel Moves an agent from either the agent_created or
agent_runnable states to the agent_canceled state.

start Moves an agent from the agent_created state to the
agent_runnable state, and schedules it for execution.

status A synchronous source of status information from the agent.

status_port An asynchronous source of status information from the
agent.

wait Waits for an agent to complete its task.

wait_for_all Waits for all of the specified agents to complete their tasks.

wait_for_one Waits for any one of the specified agents to complete its
task.

Protected Methods

NAME DESCRIPTION

done Moves an agent into the agent_done state, indicating that
the agent has completed.

A class intended to be used as a base class for all independent agents. It is used to hide state from other agents
and interact using message-passing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/agent-class.md

run Represents the main task of an agent. run should be
overridden in a derived class, and specifies what the agent
should do after it has been started.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

agent

agent();

agent(Scheduler& _PScheduler);

agent(ScheduleGroup& _PGroup);

Parameters

Remarks

~agent

virtual ~agent();

Remarks

cancel

For more information, see Asynchronous Agents.

agent

Header: agents.h

Namespace: concurrency

Constructs an agent.

_PScheduler
The Scheduler object within which the execution task of the agent is scheduled.

_PGroup
The ScheduleGroup object within which the execution task of the agent is scheduled. The Scheduler object used
is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PGroup parameters.

Destroys the agent.

It is an error to destroy an agent that is not in a terminal state (either agent_done or agent_canceled). This can
be avoided by waiting for the agent to reach a terminal state in the destructor of a class that inherits from the
agent class.

bool cancel();

Return Value

done

bool done();

Return Value

Remarks

run

virtual void run() = 0;

Remarks

start

bool start();

Return Value

status

agent_status status();

Return Value

Moves an agent from either the agent_created or agent_runnable states to the agent_canceled state.

true if the agent was canceled, false otherwise. An agent cannot be canceled if it has already started running or
has already completed.

Moves an agent into the agent_done state, indicating that the agent has completed.

true if the agent is moved to the agent_done state, false otherwise. An agent that has been canceled cannot be
moved to the agent_done state.

This method should be called at the end of the run method, when you know the execution of your agent has
completed.

Represents the main task of an agent. run should be overridden in a derived class, and specifies what the agent
should do after it has been started.

The agent status is changed to agent_started right before this method is invoked. The method should invoke
done on the agent with an appropriate status before returning, and may not throw any exceptions.

Moves an agent from the agent_created state to the agent_runnable state, and schedules it for execution.

true if the agent started correctly, false otherwise. An agent that has been canceled cannot be started.

A synchronous source of status information from the agent.

status_port

ISource<agent_status>* status_port();

Return Value

wait

static agent_status __cdecl wait(
 Inout agent* _PAgent,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Return Value

Remarks

wait_for_all

static void __cdecl wait_for_all(
 size_t count,
 _In_reads_(count) agent** _PAgents,
 _Out_writes_opt_(count) agent_status* _PStatus = NULL,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Returns the current state of the agent. Note that this returned state could change immediately after being
returned.

An asynchronous source of status information from the agent.

Returns a message source that can send messages about the current state of the agent.

Waits for an agent to complete its task.

_PAgent
A pointer to the agent to wait for.

_Timeout
The maximum time for which to wait, in milliseconds.

The agent_status of the agent when the wait completes. This can either be agent_canceled or agent_done .

An agent task is completed when the agent enters the agent_canceled or agent_done states.

If the parameter _Timeout has a value other than the constant COOPERATIVE_TIMEOUT_INFINITE , the exception
operation_timed_out is thrown if the specified amount of time expires before the agent has completed its task.

Waits for all of the specified agents to complete their tasks.

count
The number of agent pointers present in the array _PAgents .

_PAgents
An array of pointers to the agents to wait for.

_PStatus

Remarks

wait_for_one

static void __cdecl wait_for_one(
 size_t count,
 _In_reads_(count) agent** _PAgents,
 agent_status& _Status,
 size_t& _Index,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Remarks

See also

A pointer to an array of agent statuses. Each status value will represent the status of the corresponding agent
when the method returns.

_Timeout
The maximum time for which to wait, in milliseconds.

An agent task is completed when the agent enters the agent_canceled or agent_done states.

If the parameter _Timeout has a value other than the constant COOPERATIVE_TIMEOUT_INFINITE , the exception
operation_timed_out is thrown if the specified amount of time expires before the agent has completed its task.

Waits for any one of the specified agents to complete its task.

count
The number of agent pointers present in the array _PAgents .

_PAgents
An array of pointers to the agents to wait for.

_Status
A reference to a variable where the agent status will be placed.

_Index
A reference to a variable where the agent index will be placed.

_Timeout
The maximum time for which to wait, in milliseconds.

An agent task is completed when the agent enters the agent_canceled or agent_done states.

If the parameter _Timeout has a value other than the constant COOPERATIVE_TIMEOUT_INFINITE , the exception
operation_timed_out is thrown if the specified amount of time expires before the agent has completed its task.

concurrency Namespace

auto_partitioner Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class auto_partitioner;

Members
Public Constructors

NAME DESCRIPTION

auto_partitioner Constructs a auto_partitioner object.

~auto_partitioner Destructor Destroys a auto_partitioner object.

Inheritance Hierarchy

Requirements

~auto_partitioner

~auto_partitioner();

auto_partitioner

auto_partitioner();

See also

The auto_partitioner class represents the default method parallel_for , parallel_for_each and
parallel_transform use to partition the range they iterates over. This method of partitioning employes range

stealing for load balancing as well as per-iterate cancellation.

auto_partitioner

Header: ppl.h

Namespace: concurrency

Destroys a auto_partitioner object.

Constructs a auto_partitioner object.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/auto-partitioner-class.md

bad_target Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class bad_target : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

bad_target Overloaded. Constructs a bad_target object.

Remarks

Inheritance Hierarchy

Requirements

bad_target

explicit _CRTIMP bad_target(_In_z_ const char* _Message) throw();

bad_target() throw();

Parameters

See also

This class describes an exception thrown when a messaging block is given a pointer to a target which is invalid for
the operation being performed.

This exception is typically thrown for reasons such as a target attempting to consume a message which is reserved
for a different target or releasing a reservation that it does not hold.

exception

bad_target

Header: concrt.h

Namespace: concurrency

Constructs a bad_target object.

_Message
A descriptive message of the error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/bad-target-class.md

concurrency Namespace
Asynchronous Message Blocks

call Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class T, class _FunctorType = std::function<void(T const&)>>
class call : public target_block<multi_link_registry<ISource<T>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

call Overloaded. Constructs a call messaging block.

~call Destructor Destroys the call messaging block.

Protected Methods

NAME DESCRIPTION

process_input_messages Executes the call function on the input messages.

process_message Processes a message that was accepted by this call

messaging block.

propagate_message Asynchronously passes a message from an ISource block
to this call messaging block. It is invoked by the
propagate method, when called by a source block.

send_message Synchronously passes a message from an ISource block
to this call messaging block. It is invoked by the send

method, when called by a source block.

supports_anonymous_source Overrides the supports_anonymous_source method to
indicate that this block can accept messages offered to it by
a source that is not linked. (Overrides
ITarget::supports_anonymous_source.)

A call messaging block is a multi-source, ordered target_block that invokes a specified function when
receiving a message.

T
The payload type of the messages propagated to this block.

_FunctorType
The signature of functions that this block can accept.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/call-class.md

Remarks

Inheritance Hierarchy

Requirements

call

call(
 _Call_method const& _Func);

call(
 _Call_method const& _Func,
 filter_method const& _Filter);

call(
 Scheduler& _PScheduler,
 _Call_method const& _Func);

call(
 Scheduler& _PScheduler,
 _Call_method const& _Func,
 filter_method const& _Filter);

call(
 ScheduleGroup& _PScheduleGroup,
 _Call_method const& _Func);

call(
 ScheduleGroup& _PScheduleGroup,
 _Call_method const& _Func,
 filter_method const& _Filter);

Parameters

For more information, see Asynchronous Message Blocks.

ITarget

target_block

call

Header: agents.h

Namespace: concurrency

Constructs a call messaging block.

_Func
A function that will be invoked for each accepted message.

_Filter
A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the call messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the call messaging block is scheduled. The
Scheduler object used is implied by the schedule group.

Remarks

~call

~call();

process_input_messages

virtual void process_input_messages(_Inout_ message<T>* _PMessage);

Parameters

process_message

virtual void process_message(_Inout_ message<T>* _PMessage);

Parameters

propagate_message

virtual message_status propagate_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

The type _Call_method is a functor with signature void (T const &) which is invoked by this call messaging
block to process a message.

The type filter_method is a functor with signature bool (T const &) which is invoked by this call

messaging block to determine whether or not it should accept an offered message.

Destroys the call messaging block.

Executes the call function on the input messages.

_PMessage
A pointer to the message that is to be handled.

Processes a message that was accepted by this call messaging block.

_PMessage
A pointer to the message that is to be handled.

Asynchronously passes a message from an ISource block to this call messaging block. It is invoked by the
propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

send_message

virtual message_status send_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

supports_anonymous_source

virtual bool supports_anonymous_source();

Return Value

See also

A message_status indication of what the target decided to do with the message.

Synchronously passes a message from an ISource block to this call messaging block. It is invoked by the
send method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Overrides the supports_anonymous_source method to indicate that this block can accept messages offered to it
by a source that is not linked.

true because the block does not postpone offered messages.

concurrency Namespace
transformer Class

cancellation_token Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class cancellation_token;

Members
Public Constructors

NAME DESCRIPTION

cancellation_token

~cancellation_token Destructor

Public Methods

NAME DESCRIPTION

deregister_callback Removes a callback previously registered via the register

method based on the cancellation_token_registration

object returned at the time of registration.

is_cancelable Returns an indication of whether this token can be canceled
or not.

is_canceled Returns true if the token has been canceled.

none Returns a cancellation token which can never be subject to
cancellation.

register_callback Registers a callback function with the token. If and when the
token is canceled, the callback will be made. Note that if the
token is already canceled at the point where this method is
called, the callback will be made immediately and
synchronously.

Public Operators

NAME DESCRIPTION

operator!=

The cancellation_token class represents the ability to determine whether some operation has been requested to
cancel. A given token can be associated with a task_group , structured_task_group , or task to provide implicit
cancellation. It can also be polled for cancellation or have a callback registered for if and when the associated
cancellation_token_source is canceled.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/cancellation-token-class.md

operator=

operator==

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

~cancellation_token
~cancellation_token();

cancellation_token
cancellation_token(const cancellation_token& _Src);

cancellation_token(cancellation_token&& _Src);

Parameters

deregister_callback

void deregister_callback(const cancellation_token_registration& _Registration) const;

Parameters

is_cancelable

bool is_cancelable() const;

Return Value

cancellation_token

Header: pplcancellation_token.h

Namespace: concurrency

_Src
The cancellation_token to be copied or moved.

Removes a callback previously registered via the register method based on the
cancellation_token_registration object returned at the time of registration.

_Registration
The cancellation_token_registration object corresponding to the callback to be deregistered. This token must
have been previously returned from a call to the register method.

Returns an indication of whether this token can be canceled or not.

is_canceled

bool is_canceled() const;

Return Value

none

static cancellation_token none();

Return Value

operator!=
bool operator!= (const cancellation_token& _Src) const;

Parameters

Return Value

operator=
cancellation_token& operator= (const cancellation_token& _Src);

cancellation_token& operator= (cancellation_token&& _Src);

Parameters

Return Value

operator==
bool operator== (const cancellation_token& _Src) const;

Parameters

An indication of whether this token can be canceled or not.

Returns true if the token has been canceled.

The value true if the token has been canceled; otherwise, the value false.

Returns a cancellation token which can never be subject to cancellation.

A cancellation token that cannot be canceled.

_Src
The cancellation_token to compare.

_Src
The cancellation_token to assign.

_Src
The cancellation_token to compare.

Return Value

register_callback

template<typename _Function>
::Concurrency::cancellation_token_registration register_callback(const _Function& _Func) const;

Parameters

Return Value

See also

Registers a callback function with the token. If and when the token is canceled, the callback will be made. Note
that if the token is already canceled at the point where this method is called, the callback will be made
immediately and synchronously.

_Function
The type of the function object that will be called back when this cancellation_token is canceled.

_Func
The function object that will be called back when this cancellation_token is canceled.

A cancellation_token_registration object which can be utilized in the deregister method to deregister a
previously registered callback and prevent it from being made. The method will throw an invalid_operation
exception if it is called on a cancellation_token object that was created using the cancellation_token::none
method.

concurrency Namespace

cancellation_token_registration Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class cancellation_token_registration;

Members
Public Constructors

NAME DESCRIPTION

cancellation_token_registration

~cancellation_token_registration Destructor

Public Operators

NAME DESCRIPTION

operator!=

operator=

operator==

Inheritance Hierarchy

Requirements

~cancellation_token_registration
~cancellation_token_registration();

cancellation_token_registration

The cancellation_token_registration class represents a callback notification from a cancellation_token . When the
register method on a cancellation_token is used to receive notification of when cancellation occurs, a
cancellation_token_registration object is returned as a handle to the callback so that the caller can request a

specific callback no longer be made through use of the deregister method.

cancellation_token_registration

Header: pplcancellation_token.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/cancellation-token-registration-class.md

cancellation_token_registration();

cancellation_token_registration(const cancellation_token_registration& _Src);

cancellation_token_registration(cancellation_token_registration&& _Src);

Parameters

operator!=
bool operator!= (const cancellation_token_registration& _Rhs) const;

Parameters

Return Value

operator=
cancellation_token_registration& operator= (const cancellation_token_registration& _Src);

cancellation_token_registration& operator= (cancellation_token_registration&& _Src);

Parameters

Return Value

operator==
bool operator== (const cancellation_token_registration& _Rhs) const;

Parameters

Return Value

See also

_Src
The cancellation_token_registration to copy or move.

_Rhs
The cancellation_token_registration to compare.

_Src
The cancellation_token_registration to assign.

_Rhs
The cancellation_token_registration to compare.

concurrency Namespace

cancellation_token_source Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class cancellation_token_source;

Members
Public Constructors

NAME DESCRIPTION

cancellation_token_source Overloaded. Constructs a new cancellation_token_source .
The source can be used to flag cancellation of some
cancelable operation.

~cancellation_token_source Destructor

Public Methods

NAME DESCRIPTION

cancel Cancels the token. Any task_group ,
structured_task_group , or task which utilizes the token

will be canceled upon this call and throw an exception at the
next interruption point.

create_linked_source Overloaded. Creates a cancellation_token_source which is
canceled when the provided token is canceled.

get_token Returns a cancellation token associated with this source. The
returned token can be polled for cancellation or provide a
callback if and when cancellation occurs.

Public Operators

NAME DESCRIPTION

operator!=

operator=

operator==

Inheritance Hierarchy

The cancellation_token_source class represents the ability to cancel some cancelable operation.

cancellation_token_source

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/cancellation-token-source-class.md

Requirements

~cancellation_token_source
~cancellation_token_source();

cancel

void cancel() const;

cancellation_token_source

cancellation_token_source();

cancellation_token_source(const cancellation_token_source& _Src);

cancellation_token_source(cancellation_token_source&& _Src);

Parameters

create_linked_source

static cancellation_token_source create_linked_source(
 cancellation_token& _Src);

template<typename _Iter>
static cancellation_token_source create_linked_source(_Iter _Begin, _Iter _End);

Parameters

Header: pplcancellation_token.h

Namespace: concurrency

Cancels the token. Any task_group , structured_task_group , or task which utilizes the token will be canceled
upon this call and throw an exception at the next interruption point.

Constructs a new cancellation_token_source . The source can be used to flag cancellation of some cancelable
operation.

_Src
Object to copy or move.

Creates a cancellation_token_source which is canceled when the provided token is canceled.

_Iter
Iterator type.

_Src
A token whose cancellation will cause cancellation of the returned token source. Note that the returned token
source can also be canceled independently of the source contained in this parameter.

_Begin
The C++ Standard Library iterator corresponding to the beginning of the range of tokens to listen for

Return Value

get_token

cancellation_token get_token() const;

Return Value

operator!=
bool operator!= (const cancellation_token_source& _Src) const;

Parameters

Return Value

operator=
cancellation_token_source& operator= (const cancellation_token_source& _Src);

cancellation_token_source& operator= (cancellation_token_source&& _Src);

Parameters

Return Value

operator==
bool operator== (const cancellation_token_source& _Src) const;

Parameters

Return Value

See also

cancellation of.

_End
The C++ Standard Library iterator corresponding to the ending of the range of tokens to listen for cancellation of.

A cancellation_token_source which is canceled when the token provided by the _Src parameter is canceled.

Returns a cancellation token associated with this source. The returned token can be polled for cancellation or
provide a callback if and when cancellation occurs.

A cancellation token associated with this source.

_Src
Operand.

_Src
Operand.

_Src
Operand.

concurrency Namespace

choice Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<
 class T
>
class choice: public ISource<size_t>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type A type alias for T .

Public Constructors

NAME DESCRIPTION

choice Overloaded. Constructs a choice messaging block.

~choice Destructor Destroys the choice messaging block.

Public Methods

NAME DESCRIPTION

accept Accepts a message that was offered by this choice block,
transferring ownership to the caller.

acquire_ref Acquires a reference count on this choice messaging block,
to prevent deletion.

consume Consumes a message previously offered by this choice

messaging block and successfully reserved by the target,
transferring ownership to the caller.

has_value Checks whether this choice messaging block has been
initialized with a value yet.

A choice messaging block is a multi-source, single-target block that represents a control-flow interaction with a
set of sources. The choice block will wait for any one of multiple sources to produce a message and will propagate
the index of the source that produced the message.

T
A tuple -based type representing the payloads of the input sources.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/choice-class.md

index Returns an index into the tuple representing the element
selected by the choice messaging block.

link_target Links a target block to this choice messaging block.

release Releases a previous successful message reservation.

release_ref Releases a reference count on this choice messaging block.

reserve Reserves a message previously offered by this choice

messaging block.

unlink_target Unlinks a target block from this choice messaging block.

unlink_targets Unlinks all targets from this choice messaging block.
(Overrides ISource::unlink_targets.)

value Gets the message whose index was selected by the choice

messaging block.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept

virtual message<size_t>* accept(
 runtime_object_identity _MsgId,
 Inout ITarget<size_t>* _PTarget);

Parameters

The choice block ensures that only one of the incoming messages is consumed.

For more information, see Asynchronous Message Blocks.

ISource

choice

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this choice block, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the accept method.

Return Value

acquire_ref

virtual void acquire_ref(_Inout_ ITarget<size_t>* _PTarget);

Parameters

Remarks

choice

explicit choice(
 T _Tuple);

choice(
 Scheduler& _PScheduler,
 T _Tuple);

choice(
 ScheduleGroup& _PScheduleGroup,
 T _Tuple);

choice(
 choice&& _Choice);

Parameters

Remarks

A pointer to the message that the caller now has ownership of.

Acquires a reference count on this choice messaging block, to prevent deletion.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being linked to this source during the link_target method.

Constructs a choice messaging block.

_Tuple
A tuple of sources for the choice.

_PScheduler
The Scheduler object within which the propagation task for the choice messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the choice messaging block is scheduled. The
Scheduler object used is implied by the schedule group.

_Choice
A choice messaging block to copy from. Note that the original object is orphaned, making this a move
constructor.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

Move construction is not performed under a lock, which means that it is up to the user to make sure that there
are no light-weight tasks in flight at the time of moving. Otherwise, numerous races can occur, leading to
exceptions or inconsistent state.

~choice

~choice();

consume

virtual message<size_t>* consume(
 runtime_object_identity _MsgId,
 Inout ITarget<size_t>* _PTarget);

Parameters

Return Value

Remarks

has_value

bool has_value() const;

Return Value

index

size_t index();

Return Value

Remarks

link_target

Destroys the choice messaging block.

Consumes a message previously offered by this choice messaging block and successfully reserved by the target,
transferring ownership to the caller.

_MsgId
The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the consume method.

A pointer to the message object that the caller now has ownership of.

The consume method is similar to accept , but must always be preceded by a call to reserve that returned true.

Checks whether this choice messaging block has been initialized with a value yet.

true if the block has received a value, false otherwise.

Returns an index into the tuple representing the element selected by the choice messaging block.

The message index.

The message payload can be extracted using the get method.

virtual void link_target(_Inout_ ITarget<size_t>* _PTarget);

Parameters

release

virtual void release(
 runtime_object_identity _MsgId,
 Inout ITarget<size_t>* _PTarget);

Parameters

release_ref

virtual void release_ref(_Inout_ ITarget<size_t>* _PTarget);

Parameters

Remarks

reserve

virtual bool reserve(
 runtime_object_identity _MsgId,
 Inout ITarget<size_t>* _PTarget);

Parameters

Links a target block to this choice messaging block.

_PTarget
A pointer to an ITarget block to link to this choice messaging block.

Releases a previous successful message reservation.

_MsgId
The runtime_object_identity of the message object being released.

_PTarget
A pointer to the target block that is calling the release method.

Releases a reference count on this choice messaging block.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being unlinked from this source. The source block is allowed to
release any resources reserved for the target block.

Reserves a message previously offered by this choice messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

_PTarget
A pointer to the target block that is calling the reserve method.

Return Value

Remarks

unlink_target

virtual void unlink_target(_Inout_ ITarget<size_t>* _PTarget);

Parameters

unlink_targets

virtual void unlink_targets();

Remarks

value

template <
 typename _Payload_type
>
_Payload_type const& value();

Parameters

Return Value

Remarks

See also

true if the message was successfully reserved, false otherwise. Reservations can fail for many reasons, including:
the message was already reserved or accepted by another target, the source could deny reservations, and so
forth.

After you call reserve , if it succeeds, you must call either consume or release in order to take or give up
possession of the message, respectively.

Unlinks a target block from this choice messaging block.

_PTarget
A pointer to an ITarget block to unlink from this choice messaging block.

Unlinks all targets from this choice messaging block.

This method does not need to be called from the destructor because destructor for the internal
single_assignment block will unlink properly.

Gets the message whose index was selected by the choice messaging block.

_Payload_type
The type of the message payload.

The payload of the message.

Because a choice messaging block can take inputs with different payload types, you must specify the type of the
payload at the point of retrieval. You can determine the type based on the result of the index method.

concurrency Namespace

join Class
single_assignment Class

combinable Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class combinable;

Parameters

Members
Public Constructors

NAME DESCRIPTION

combinable Overloaded. Constructs a new combinable object.

~combinable Destructor Destroys a combinable object.

Public Methods

NAME DESCRIPTION

clear Clears any intermediate computational results from a
previous usage.

combine Computes a final value from the set of thread-local sub-
computations by calling the supplied combine functor.

combine_each Computes a final value from the set of thread-local sub-
computations by calling the supplied combine functor once
per thread-local sub-computation. The final result is
accumulated by the function object.

local Overloaded. Returns a reference to the thread-private sub-
computation.

Public Operators

The combinable<T> object is intended to provide thread-private copies of data, to perform lock-free thread-
local sub-computations during parallel algorithms. At the end of the parallel operation, the thread-private sub-
computations can then be merged into a final result. This class can be used instead of a shared variable, and
can result in a performance improvement if there would otherwise be a lot of contention on that shared
variable.

T
The data type of the final merged result. The type must have a copy constructor and a default constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/combinable-class.md

NAME DESCRIPTION

operator= Assigns to a combinable object from another
combinable object.

Remarks

Inheritance Hierarchy

Requirements

clear

void clear();

combinable

combinable();

template <typename _Function>
explicit combinable(_Function _FnInitialize);

combinable(const combinable& _Copy);

Parameters

Remarks

For more information, see Parallel Containers and Objects.

combinable

Header: ppl.h

Namespace: concurrency

Clears any intermediate computational results from a previous usage.

Constructs a new combinable object.

_Function
The type of the initialization functor object.

_FnInitialize
A function which will be called to initialize each new thread-private value of the type T . It must support a
function call operator with the signature T () .

_Copy
An existing combinable object to be copied into this one.

The first constructor initializes new elements with the default constructor for the type T .

The second constructor initializes new elements using the initialization functor supplied as the _FnInitialize

parameter.

The third constructor is the copy constructor.

~combinable

~combinable();

combine

template<typename _Function>
T combine(_Function _FnCombine) const;

Parameters

Return Value

combine_each

template<typename _Function>
void combine_each(_Function _FnCombine) const;

Parameters

local

T& local();

T& local(bool& _Exists);

Parameters

Destroys a combinable object.

Computes a final value from the set of thread-local sub-computations by calling the supplied combine functor.

_Function
The type of the function object that will be invoked to combine two thread-local sub-computations.

_FnCombine
The functor that is used to combine the sub-computations. Its signature is T (T, T) or
T (const T&, const T&) , and it must be associative and commutative.

The final result of combining all the thread-private sub-computations.

Computes a final value from the set of thread-local sub-computations by calling the supplied combine functor
once per thread-local sub-computation. The final result is accumulated by the function object.

_Function
The type of the function object that will be invoked to combine a single thread-local sub-computation.

_FnCombine
The functor that is used to combine one sub-computation. Its signature is void (T) or void (const T&) , and
must be associative and commutative.

Returns a reference to the thread-private sub-computation.

_Exists
A reference to a boolean. The boolean value referenced by this argument will be set to true if the sub-
computation already existed on this thread, and set to false if this was the first sub-computation on this thread.

Return Value

operator=

combinable& operator= (const combinable& _Copy);

Parameters

Return Value

See also

A reference to the thread-private sub-computation.

Assigns to a combinable object from another combinable object.

_Copy
An existing combinable object to be copied into this one.

A reference to this combinable object.

concurrency Namespace

concurrent_priority_queue Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template <typename T,
 typename _Compare= std::less<T>,
 typename _Ax = std::allocator<T>
>,
 typename _Ax = std::allocator<T>> class concurrent_priority_queue;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type A type that represents the allocator class for the concurrent
priority queue.

const_reference A type that represents a const reference to an element of the
type stored in a concurrent priority queue.

reference A type that represents a reference to an element of the type
stored in a concurrent priority queue.

size_type A type that counts the number of elements in a concurrent
priority queue.

value_type A type that represents the data type stored in a concurrent
priority queue.

Public Constructors

The concurrent_priority_queue class is a container that allows multiple threads to concurrently push and pop
items. Items are popped in priority order where priority is determined by a functor supplied as a template
argument.

T
The data type of the elements to be stored in the priority queue.

_Compare
The type of the function object that can compare two element values as sort keys to determine their relative order
in the priority queue. This argument is optional and the binary predicate less<T> is the default value.

_Ax
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for the concurrent priority queue. This argument is optional and the default value is allocator<T> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-priority-queue-class.md

NAME DESCRIPTION

concurrent_priority_queue Overloaded. Constructs a concurrent priority queue.

Public Methods

NAME DESCRIPTION

clear Erases all elements in the concurrent priority. This method is
not concurrency-safe.

empty Tests if the concurrent priority queue is empty at the time this
method is called. This method is concurrency-safe.

get_allocator Returns a copy of the allocator used to construct the
concurrent priority queue. This method is concurrency-safe.

push Overloaded. Adds an element to the concurrent priority
queue. This method is concurrency-safe.

size Returns the number of elements in the concurrent priority
queue. This method is concurrency-safe.

swap Swaps the contents of two concurrent priority queues. This
method is not concurrency-safe.

try_pop Removes and returns the highest priority element from the
queue if the queue is non-empty. This method is concurrency-
safe.

Public Operators

NAME DESCRIPTION

operator= Overloaded. Assigns the contents of another
concurrent_priority_queue object to this one. This method

is not concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

clear

For detailed information on the concurrent_priority_queue class, see Parallel Containers and Objects.

concurrent_priority_queue

Header: concurrent_priority_queue.h

Namespace: concurrency

Erases all elements in the concurrent priority. This method is not concurrency-safe.

void clear();

Remarks

concurrent_priority_queue

explicit concurrent_priority_queue(
 const allocator_type& _Al = allocator_type());

explicit concurrent_priority_queue(
 size_type _Init_capacity,
 const allocator_type& _Al = allocator_type());

template<typename _InputIterator>
concurrent_priority_queue(_InputIterator _Begin,
 _InputIterator _End,
 const allocator_type& _Al = allocator_type());

concurrent_priority_queue(
 const concurrent_priority_queue& _Src);

concurrent_priority_queue(
 const concurrent_priority_queue& _Src,
 const allocator_type& _Al);

concurrent_priority_queue(
 concurrent_priority_queue&& _Src);

concurrent_priority_queue(
 concurrent_priority_queue&& _Src,
 const allocator_type& _Al);

Parameters

Remarks

clear is not concurrency-safe. You must ensure that no other threads are invoking methods on the concurrent
priority queue when you call this method. clear does not free memory.

Constructs a concurrent priority queue.

_InputIterator
The type of the input iterator.

_Al
The allocator class to use with this object.

_Init_capacity
The initial capacity of the concurrent_priority_queue object.

_Begin
The position of the first element in the range of elements to be copied.

_End
The position of the first element beyond the range of elements to be copied.

_Src
The source concurrent_priority_queue object to copy or move elements from.

All constructors store an allocator object _Al and initialize the priority queue.

The first constructor specifies an empty initial priority queue and optionally specifies an allocator.

empty

bool empty() const;

Return Value

get_allocator

allocator_type get_allocator() const;

Return Value

operator=

concurrent_priority_queue& operator= (const concurrent_priority_queue& _Src);

concurrent_priority_queue& operator= (concurrent_priority_queue&& _Src);

Parameters

Return Value

push

void push(const value_type& _Elem);

void push(value_type&& _Elem);

Parameters

The second constructor specifies a priority queue with an initial capacity _Init_capacity and optionally specifies
an allocator.

The third constructor specifies values supplied by the iterator range [_Begin , _End) and optionally specifies an
allocator.

The fourth and fifth constructors specify a copy of the priority queue _Src .

The sixth and seventh constructors specify a move of the priority queue _Src .

Tests if the concurrent priority queue is empty at the time this method is called. This method is concurrency-safe.

true if the priority queue was empty at the moment the function was called, false otherwise.

Returns a copy of the allocator used to construct the concurrent priority queue. This method is concurrency-safe.

A copy of the allocator used to construct the concurrent_priority_queue object.

Assigns the contents of another concurrent_priority_queue object to this one. This method is not concurrency-safe.

_Src
The source concurrent_priority_queue object.

A reference to this concurrent_priority_queue object.

Adds an element to the concurrent priority queue. This method is concurrency-safe.

size

size_type size() const;

Return Value

Remarks

swap

void swap(concurrent_priority_queue& _Queue);

Parameters

try_pop

bool try_pop(reference _Elem);

Parameters

Return Value

See also

_Elem
The element to be added to the concurrent priority queue.

Returns the number of elements in the concurrent priority queue. This method is concurrency-safe.

The number of elements in this concurrent_priority_queue object.

The returned size is guaranteed to include all elements added by calls to the function push . However, it may not
reflect results of pending concurrent operations.

Swaps the contents of two concurrent priority queues. This method is not concurrency-safe.

_Queue
The concurrent_priority_queue object to swap contents with.

Removes and returns the highest priority element from the queue if the queue is non-empty. This method is
concurrency-safe.

_Elem
A reference to a variable that will be populated with the highest priority element, if the queue is non-empty.

true if a value was popped, false otherwise.

concurrency Namespace
Parallel Containers and Objects

concurrent_queue Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<typename T, class _Ax>
class concurrent_queue: public ::Concurrency::details::_Concurrent_queue_base_v4;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type A type that represents the allocator class for the concurrent
queue.

const_iterator A type that represents a non-thread-safe const iterator
over elements in a concurrent queue.

const_reference A type that provides a reference to a const element stored
in a concurrent queue for reading and performing const

operations.

difference_type A type that provides the signed distance between two
elements in a concurrent queue.

iterator A type that represents a non-thread-safe iterator over the
elements in a concurrent queue.

reference A type that provides a reference to an element stored in a
concurrent queue.

size_type A type that counts the number of elements in a concurrent
queue.

value_type A type that represents the data type stored in a concurrent
queue.

Public Constructors

The concurrent_queue class is a sequence container class that allows first-in, first-out access to its elements. It
enables a limited set of concurrency-safe operations, such as push and try_pop .

T
The data type of the elements to be stored in the queue.

_Ax
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for this concurrent queue. This argument is optional and the default value is allocator<T> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-queue-class.md

NAME DESCRIPTION

concurrent_queue Overloaded. Constructs a concurrent queue.

~concurrent_queue Destructor Destroys the concurrent queue.

Public Methods

NAME DESCRIPTION

clear Clears the concurrent queue, destroying any currently
enqueued elements. This method is not concurrency-safe.

empty Tests if the concurrent queue is empty at the moment this
method is called. This method is concurrency-safe.

get_allocator Returns a copy of the allocator used to construct the
concurrent queue. This method is concurrency-safe.

push Overloaded. Enqueues an item at tail end of the concurrent
queue. This method is concurrency-safe.

try_pop Dequeues an item from the queue if one is available. This
method is concurrency-safe.

unsafe_begin Overloaded. Returns an iterator of type iterator or
const_iterator to the beginning of the concurrent queue.

This method is not concurrency-safe.

unsafe_end Overloaded. Returns an iterator of type iterator or
const_iterator to the end of the concurrent queue. This

method is not concurrency-safe.

unsafe_size Returns the number of items in the queue. This method is not
concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

clear

For more information, see Parallel Containers and Objects.

concurrent_queue

Header: concurrent_queue.h

Namespace: concurrency

Clears the concurrent queue, destroying any currently enqueued elements. This method is not concurrency-safe.

void clear();

concurrent_queue

explicit concurrent_queue(
 const allocator_type& _Al = allocator_type());

concurrent_queue(
 const concurrent_queue& _OtherQ,
 const allocator_type& _Al = allocator_type());

concurrent_queue(
 concurrent_queue&& _OtherQ,
 const allocator_type& _Al = allocator_type());

template<typename _InputIterator>
concurrent_queue(_InputIterator _Begin,
 _InputIterator _End);

Parameters

Remarks

~concurrent_queue

~concurrent_queue();

empty

Constructs a concurrent queue.

_InputIterator
The type of the input iterator that specifies a range of values.

_Al
The allocator class to use with this object.

_OtherQ
The source concurrent_queue object to copy or move elements from.

_Begin
Position of the first element in the range of elements to be copied.

_End
Position of the first element beyond the range of elements to be copied.

All constructors store an allocator object _Al and initialize the queue.

The first constructor specifies an empty initial queue and explicitly specifies the allocator type to be used.

The second constructor specifies a copy of the concurrent queue _OtherQ .

The third constructor specifies a move of the concurrent queue _OtherQ .

The fourth constructor specifies values supplied by the iterator range [_Begin , _End).

Destroys the concurrent queue.

bool empty() const;

Return Value

Remarks

get_allocator

allocator_type get_allocator() const;

Return Value

push

void push(const T& _Src);

void push(T&& _Src);

Parameters

Remarks

try_pop

bool try_pop(T& _Dest);

Parameters

Return Value

Remarks

Tests if the concurrent queue is empty at the moment this method is called. This method is concurrency-safe.

true if the concurrent queue was empty at the moment we looked, false otherwise.

While this method is concurrency-safe with respect to calls to the methods push , try_pop , and empty , the value
returned might be incorrect by the time it is inspected by the calling thread.

Returns a copy of the allocator used to construct the concurrent queue. This method is concurrency-safe.

A copy of the allocator used to construct the concurrent queue.

Enqueues an item at tail end of the concurrent queue. This method is concurrency-safe.

_Src
The item to be added to the queue.

push is concurrency-safe with respect to calls to the methods push , try_pop , and empty .

Dequeues an item from the queue if one is available. This method is concurrency-safe.

_Dest
A reference to a location to store the dequeued item.

true if an item was successfully dequeued, false otherwise.

If an item was successfully dequeued, the parameter _Dest receives the dequeued value, the original value held
in the queue is destroyed, and this function returns true. If there was no item to dequeue, this function returns

unsafe_begin

iterator unsafe_begin();

const_iterator unsafe_begin() const;

Return Value

Remarks

unsafe_end

iterator unsafe_end();

const_iterator unsafe_end() const;

Return Value

Remarks

unsafe_size

size_type unsafe_size() const;

Return Value

Remarks

See also

false without blocking, and the contents of the _Dest parameter are undefined.

try_pop is concurrency-safe with respect to calls to the methods push , try_pop , and empty .

Returns an iterator of type iterator or const_iterator to the beginning of the concurrent queue. This method is
not concurrency-safe.

An iterator of type iterator or const_iterator to the beginning of the concurrent queue object.

The iterators for the concurrent_queue class are primarily intended for debugging, as they are slow, and iteration
is not concurrency-safe with respect to other queue operations.

Returns an iterator of type iterator or const_iterator to the end of the concurrent queue. This method is not
concurrency-safe.

An iterator of type iterator or const_iterator to the end of the concurrent queue.

The iterators for the concurrent_queue class are primarily intended for debugging, as they are slow, and iteration
is not concurrency-safe with respect to other queue operations.

Returns the number of items in the queue. This method is not concurrency-safe.

The size of the concurrent queue.

unsafe_size is not concurrency-safe and can produce incorrect results if called concurrently with calls to the
methods push , try_pop , and empty .

concurrency Namespace

concurrent_unordered_map Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
template <typename K,
 typename _Element_type,
 typename _Hasher = std::hash<K>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<std::pair<const K,
 _Element_type>>
>,
typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<std::pair<const K,
 _Element_type>>> class concurrent_unordered_map : public
details::_Concurrent_hash<details::_Concurrent_unordered_map_traits<K,
 _Element_type,
details::_Hash_compare<K,
 _Hasher,
key_equality>,
 _Allocator_type,
false>>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type The type of an allocator for managing storage.

The concurrent_unordered_map class is a concurrency-safe container that controls a varying-length sequence of
elements of type std::pair<const K, _Element_type> . The sequence is represented in a way that enables
concurrency-safe append, element access, iterator access, and iterator traversal operations.

K
The key type.

_Element_type
The mapped type.

_Hasher
The hash function object type. This argument is optional and the default value is std::hash<K> .

key_equality
The equality comparison function object type. This argument is optional and the default value is std::equal_to<K>

.

_Allocator_type
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for the concurrent unordered map. This argument is optional and the default value is
std::allocator<std::pair<K , _Element_type>> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-unordered-map-class.md

const_iterator The type of a constant iterator for the controlled sequence.

const_local_iterator The type of a constant bucket iterator for the controlled
sequence.

const_pointer The type of a constant pointer to an element.

const_reference The type of a constant reference to an element.

difference_type The type of a signed distance between two elements.

hasher The type of the hash function.

iterator The type of an iterator for the controlled sequence.

key_equal The type of the comparison function.

key_type The type of an ordering key.

local_iterator The type of a bucket iterator for the controlled sequence.

mapped_type The type of a mapped value associated with each key.

pointer The type of a pointer to an element.

reference The type of a reference to an element.

size_type The type of an unsigned distance between two elements.

value_type The type of an element.

NAME DESCRIPTION

Public Constructors

NAME DESCRIPTION

concurrent_unordered_map Overloaded. Constructs a concurrent unordered map.

Public Methods

NAME DESCRIPTION

at Overloaded. Finds an element in a
concurrent_unordered_map with a specified key value.. This

method is concurrency-safe.

hash_function Gets the stored hash function object.

insert Overloaded. Adds elements to the
concurrent_unordered_map object.

key_eq Gets the stored equality comparison function object.

swap Swaps the contents of two concurrent_unordered_map

objects. This method is not concurrency-safe.

unsafe_erase Overloaded. Removes elements from the
concurrent_unordered_map at specified positions. This

method is not concurrency-safe.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator[] Overloaded. Finds or inserts an element with the specified
key. This method is concurrency-safe.

operator= Overloaded. Assigns the contents of another
concurrent_unordered_map object to this one. This method

is not concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

at

mapped_type& at(const key_type& KVal);

const mapped_type& at(const key_type& KVal) const;

Parameters

Return Value

For detailed information on the concurrent_unordered_map class, see Parallel Containers and Objects.

_Traits

_Concurrent_hash

concurrent_unordered_map

Header: concurrent_unordered_map.h

Namespace: concurrency

Finds an element in a concurrent_unordered_map with a specified key value.. This method is concurrency-safe.

KVal
The key value to find.

A reference to the data value of the element found.

Remarks

begin

iterator begin();

const_iterator begin() const;

Return Value

cbegin

const_iterator cbegin() const;

Return Value

cend

const_iterator cend() const;

Return Value

clear

void clear();

concurrent_unordered_map

If the argument key value is not found, the function throws an object of class out_of_range .

Returns an iterator pointing to the first element in the concurrent container. This method is concurrency safe.

An iterator to the first element in the concurrent container.

Returns a const iterator pointing to the first element in the concurrent container. This method is concurrency safe.

A const iterator to the first element in the concurrent container.

Returns a const iterator pointing to the location succeeding the last element in the concurrent container. This
method is concurrency safe.

A const iterator to the location succeeding the last element in the concurrent container.

Erases all the elements in the concurrent container. This function is not concurrency safe.

Constructs a concurrent unordered map.

explicit concurrent_unordered_map(
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_map(
 const allocator_type& _Allocator);

template <typename _Iterator>
concurrent_unordered_map(_Iterator _Begin,
 _Iterator _End,
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_map(
 const concurrent_unordered_map& _Umap);

concurrent_unordered_map(
 const concurrent_unordered_map& _Umap,
 const allocator_type& _Allocator);

concurrent_unordered_map(
 concurrent_unordered_map&& _Umap);

Parameters

Remarks

_Iterator
The type of the input iterator.

_Number_of_buckets
The initial number of buckets for this unordered map.

_Hasher
The hash function for this unordered map.

key_equality
The equality comparison function for this unordered map.

_Allocator
The allocator for this unordered map.

_Begin
The position of the first element in the range of elements to be copied.

_End
The position of the first element beyond the range of elements to be copied.

_Umap
The source concurrent_unordered_map object to copy or move elements from.

All constructors store an allocator object _Allocator and initialize the unordered map.

The first constructor specifies an empty initial map and explicitly specifies the number of buckets, hash function,
equality function and allocator type to be used.

The second constructor specifies an allocator for the unordered map.

The third constructor specifies values supplied by the iterator range [_Begin , _End).

count

size_type count(const key_type& KVal) const;

Parameters

Return Value

empty

bool empty() const;

Return Value

Remarks

end

iterator end();

const_iterator end() const;

Return Value

equal_range

The fourth and fifth constructors specify a copy of the concurrent unordered map _Umap .

The last constructor specifies a move of the concurrent unordered map _Umap .

Counts the number of elements matching a specified key. This function is concurrency safe.

KVal
The key to search for.

The number of times number of times the key appears in the container.

Tests whether no elements are present. This method is concurrency safe.

true if the concurrent container is empty, false otherwise.

In the presence of concurrent inserts, whether or not the concurrent container is empty may change immediately
after calling this function, before the return value is even read.

Returns an iterator pointing to the location succeeding the last element in the concurrent container. This method is
concurrency safe.

An iterator to the location succeeding the last element in the concurrent container.

Finds a range that matches a specified key. This function is concurrency safe.

std::pair<iterator,
 iterator> equal_range(
 const key_type& KVal);

std::pair<const_iterator,
 const_iterator> equal_range(
 const key_type& KVal) const;

Parameters

Return Value

Remarks

find

iterator find(const key_type& KVal);

const_iterator find(const key_type& KVal) const;

Parameters

Return Value

get_allocator

allocator_type get_allocator() const;

Return Value

hash_function

hasher hash_function() const;

Return Value

KVal
The key value to search for.

A pair where the first element is an iterator to the beginning and the second element is an iterator to the end of
the range.

It is possible for concurrent inserts to cause additional keys to be inserted after the begin iterator and before the
end iterator.

Finds an element that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

An iterator pointing to the location of the first element that matched the key provided, or the iterator end() if no
such element exists.

Returns the stored allocator object for this concurrent container. This method is concurrency safe.

The stored allocator object for this concurrent container.

Gets the stored hash function object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

 insert

std::pair<iterator,
 bool> insert(
 const value_type& value);

iterator insert(
 const_iterator _Where,
 const value_type& value);

template<class _Iterator>
void insert(_Iterator first,
 _Iterator last);

template<class V>
std::pair<iterator,
 bool> insert(
 V&& value);

template<class V>
typename std::enable_if<!std::is_same<const_iterator,
 typename std::remove_reference<V>::type>::value,
 iterator>::type insert(
 const_iterator _Where,
 V&& value);

Parameters

Return Value

Remarks

The stored hash function object.

Adds elements to the concurrent_unordered_map object.

_Iterator
The iterator type used for insertion.

V
The type of the value inserted into the map.

value
The value to be inserted.

_Where
The starting location to search for an insertion point.

first
The beginning of the range to insert.

last
The end of the range to insert.

A pair that contains an iterator and a boolean value. See the Remarks section for more details.

The first member function determines whether an element X exists in the sequence whose key has equivalent
ordering to that of value . If not, it creates such an element X and initializes it with value . The function then
determines the iterator where that designates X. If an insertion occurred, the function returns
std::pair(where, true) . Otherwise, it returns std::pair(where, false) .

The second member function returns insert(value), using _Where as a starting place within the controlled
sequence to search for the insertion point.

 key_eq

key_equal key_eq() const;

Return Value

load_factor

float load_factor() const;

Return Value

max_load_factor

float max_load_factor() const;

void max_load_factor(float _Newmax);

Parameters

Return Value

max_size

size_type max_size() const;

Return Value

Remarks

The third member function inserts the sequence of element values from the range [first , last).

The last two member functions behave the same as the first two, except that value is used to construct the
inserted value.

Gets the stored equality comparison function object.

The stored equality comparison function object.

Computes and returns the current load factor of the container. The load factor is the number of elements in the
container divided by the number of buckets.

The load factor for the container.

Gets or sets the maximum load factor of the container. The maximum load factor is the largest number of
elements than can be in any bucket before the container grows its internal table.

_Newmax

The first member function returns the stored maximum load factor. The second member function does not return
a value but throws an out_of_range exception if the supplied load factor is invalid..

Returns the maximum size of the concurrent container, determined by the allocator. This method is concurrency
safe.

The maximum number of elements that can be inserted into this concurrent container.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

operator[]

mapped_type& operator[](const key_type& kval);

mapped_type& operator[](key_type&& kval);

Parameters

Return Value

Remarks

operator=

concurrent_unordered_map& operator= (const concurrent_unordered_map& _Umap);

concurrent_unordered_map& operator= (concurrent_unordered_map&& _Umap);

Parameters

Return Value

Remarks

rehash

void rehash(size_type _Buckets);

This upper bound value may actually be higher than what the container can actually hold.

Finds or inserts an element with the specified key. This method is concurrency-safe.

KVal
The key value to

find or insert.

A reference to the data value of the found or inserted element.

If the argument key value is not found, then it is inserted along with the default value of the data type.

operator[] may be used to insert elements into a map m using m[key] = DataValue; , where DataValue is the
value of the mapped_type of the element with a key value of key .

When using operator[] to insert elements, the returned reference does not indicate whether an insertion is
changing a pre-existing element or creating a new one. The member functions find and insert can be used to
determine whether an element with a specified key is already present before an insertion.

Assigns the contents of another concurrent_unordered_map object to this one. This method is not concurrency-safe.

_Umap
The source concurrent_unordered_map object.

A reference to this concurrent_unordered_map object.

After erasing any existing elements a concurrent vector, operator= either copies or moves the contents of _Umap

into the concurrent vector.

Rebuilds the hash table.

Parameters

Remarks

size

size_type size() const;

Return Value

Remarks

swap

void swap(concurrent_unordered_map& _Umap);

Parameters

unsafe_begin

local_iterator unsafe_begin(size_type _Bucket);

const_local_iterator unsafe_begin(size_type _Bucket) const;

Parameters

Return Value

unsafe_bucket

_Buckets
The desired number of buckets.

The member function alters the number of buckets to be at least _Buckets and rebuilds the hash table as needed.
The number of buckets must be a power of 2. If not a power of 2, it will be rounded up to the next largest power
of 2.

It throws an out_of_range exception if the number of buckets is invalid (either 0 or greater than the maximum
number of buckets).

Returns the number of elements in this concurrent container. This method is concurrency safe.

The number of items in the container.

In the presence of concurrent inserts, the number of elements in the concurrent container may change
immediately after calling this function, before the return value is even read.

Swaps the contents of two concurrent_unordered_map objects. This method is not concurrency-safe.

_Umap
The concurrent_unordered_map object to swap with.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

size_type unsafe_bucket(const key_type& KVal) const;

Parameters

Return Value

unsafe_bucket_count

size_type unsafe_bucket_count() const;

Return Value

unsafe_bucket_size

size_type unsafe_bucket_size(size_type _Bucket);

Parameters

Return Value

unsafe_cbegin

const_local_iterator unsafe_cbegin(size_type _Bucket) const;

Parameters

Return Value

unsafe_cend

Returns the bucket index that a specific key maps to in this container.

KVal
The element key being searched for.

The bucket index for the key in this container.

Returns the current number of buckets in this container.

The current number of buckets in this container.

Returns the number of items in a specific bucket of this container.

_Bucket
The bucket to search for.

The current number of buckets in this container.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the location succeeding the last element in a specific bucket.

const_local_iterator unsafe_cend(size_type _Bucket) const;

Parameters

Return Value

unsafe_end

local_iterator unsafe_end(size_type _Bucket);

const_local_iterator unsafe_end(size_type _Bucket) const;

Parameters

Return Value

unsafe_erase

iterator unsafe_erase(
 const_iterator _Where);

iterator unsafe_erase(
 const_iterator _Begin,
 const_iterator _End);

size_type unsafe_erase(
 const key_type& KVal);

Parameters

Return Value

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the last element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the end of the bucket.

Removes elements from the concurrent_unordered_map at specified positions. This method is not concurrency-
safe.

_Where
The iterator position to erase from.

_Begin
The position of the first element in the range of elements to be erased.

_End
The position of the first element beyond the range of elements to be erased.

KVal
The key value to erase.

The first two member functions return an iterator that designates the first element remaining beyond any

Remarks

unsafe_max_bucket_count

size_type unsafe_max_bucket_count() const;

Return Value

See also

elements removed, or concurrent_unordered_map::end () if no such element exists. The third member function
returns the number of elements it removes.

The first member function removes the element of the controlled sequence pointed to by _Where . The second
member function removes the elements in the range [_Begin , _End).

The third member function removes the elements in the range delimited by
concurrent_unordered_map::equal_range (KVal).

Returns the maximum number of buckets in this container.

The maximum number of buckets in this container.

concurrency Namespace
Parallel Containers and Objects

concurrent_unordered_multimap Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
template <typename K,
 typename _Element_type,
 typename _Hasher = std::hash<K>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<std::pair<const K,
 _Element_type>>
>,
typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<std::pair<const K,
 _Element_type>>> class concurrent_unordered_multimap : public
details::_Concurrent_hash<details::_Concurrent_unordered_map_traits<K,
 _Element_type,
details::_Hash_compare<K,
 _Hasher,
key_equality>,
 _Allocator_type,
true>>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type The type of an allocator for managing storage.

The concurrent_unordered_multimap class is an concurrency-safe container that controls a varying-length sequence
of elements of type std::pair<const K, _Element_type> . The sequence is represented in a way that enables
concurrency-safe append, element access, iterator access and iterator traversal operations.

K
The key type.

_Element_type
The mapped type.

_Hasher
The hash function object type. This argument is optional and the default value is std::hash<K> .

key_equality
The equality comparison function object type. This argument is optional and the default value is std::equal_to<K> .

_Allocator_type
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for the concurrent vector. This argument is optional and the default value is
std::allocator<std::pair<K , _Element_type>> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-unordered-multimap-class.md

const_iterator The type of a constant iterator for the controlled sequence.

const_local_iterator The type of a constant bucket iterator for the controlled
sequence.

const_pointer The type of a constant pointer to an element.

const_reference The type of a constant reference to an element.

difference_type The type of a signed distance between two elements.

hasher The type of the hash function.

iterator The type of an iterator for the controlled sequence.

key_equal The type of the comparison function.

key_type The type of an ordering key.

local_iterator The type of a bucket iterator for the controlled sequence.

mapped_type The type of a mapped value associated with each key.

pointer The type of a pointer to an element.

reference The type of a reference to an element.

size_type The type of an unsigned distance between two elements.

value_type The type of an element.

NAME DESCRIPTION

Public Constructors

NAME DESCRIPTION

concurrent_unordered_multimap Overloaded. Constructs a concurrent unordered multimap.

Public Methods

NAME DESCRIPTION

hash_function Returns the stored hash function object.

insert Overloaded. Adds elements to the
concurrent_unordered_multimap object.

key_eq Returns the stored equality comparison function object.

swap Swaps the contents of two
concurrent_unordered_multimap objects. This method is

not concurrency-safe.

unsafe_erase Overloaded. Removes elements from the
concurrent_unordered_multimap at specified positions. This

method is not concurrency-safe.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator= Overloaded. Assigns the contents of another
concurrent_unordered_multimap object to this one. This

method is not concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

begin

iterator begin();

const_iterator begin() const;

Return Value

cbegin

const_iterator cbegin() const;

Return Value

For detailed information on the concurrent_unordered_multimap class, see Parallel Containers and Objects.

_Traits

_Concurrent_hash

concurrent_unordered_multimap

Header: concurrent_unordered_map.h

Namespace: concurrency

Returns an iterator pointing to the first element in the concurrent container. This method is concurrency safe.

An iterator to the first element in the concurrent container.

Returns a const iterator pointing to the first element in the concurrent container. This method is concurrency safe.

cend

const_iterator cend() const;

Return Value

clear

void clear();

concurrent_unordered_multimap

explicit concurrent_unordered_multimap(
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_multimap(
 const allocator_type& _Allocator);

template <typename _Iterator>
concurrent_unordered_multimap(_Iterator _Begin,
 _Iterator _End,
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_multimap(
 const concurrent_unordered_multimap& _Umap);

concurrent_unordered_multimap(
 const concurrent_unordered_multimap& _Umap,
 const allocator_type& _Allocator);

concurrent_unordered_multimap(
 concurrent_unordered_multimap&& _Umap);

Parameters

A const iterator to the first element in the concurrent container.

Returns a const iterator pointing to the location succeeding the last element in the concurrent container. This
method is concurrency safe.

A const iterator to the location succeeding the last element in the concurrent container.

Erases all the elements in the concurrent container. This function is not concurrency safe.

Constructs a concurrent unordered multimap.

_Iterator
The type of the input iterator.

_Number_of_buckets
The initial number of buckets for this unordered multimap.

_Hasher

Remarks

count

size_type count(const key_type& KVal) const;

Parameters

Return Value

empty

bool empty() const;

Return Value

Remarks

The hash function for this unordered multimap.

key_equality
The equality comparison function for this unordered multimap.

_Allocator
The allocator for this unordered multimap.

_Begin
The position of the first element in the range of elements to be copied.

_End
The position of the first element beyond the range of elements to be copied.

_Umap
The source concurrent_unordered_multimap object to copy elements from.

All constructors store an allocator object _Allocator and initialize the unordered multimap.

The first constructor specifies an empty initial multimap and explicitly specifies the number of buckets, hash
function, equality function and allocator type to be used.

The second constructor specifies an allocator for the unordered multimap.

The third constructor specifies values supplied by the iterator range [_Begin , _End).

The fourth and fifth constructors specify a copy of the concurrent unordered multimap _Umap .

The last constructor specifies a move of the concurrent unordered multimap _Umap .

Counts the number of elements matching a specified key. This function is concurrency safe.

KVal
The key to search for.

The number of times number of times the key appears in the container.

Tests whether no elements are present. This method is concurrency safe.

true if the concurrent container is empty, false otherwise.

In the presence of concurrent inserts, whether or not the concurrent container is empty may change immediately
after calling this function, before the return value is even read.

end

iterator end();

const_iterator end() const;

Return Value

equal_range

std::pair<iterator,
 iterator> equal_range(
 const key_type& KVal);

std::pair<const_iterator,
 const_iterator> equal_range(
 const key_type& KVal) const;

Parameters

Return Value

Remarks

find

iterator find(const key_type& KVal);

const_iterator find(const key_type& KVal) const;

Parameters

Return Value

get_allocator

Returns an iterator pointing to the location succeeding the last element in the concurrent container. This method is
concurrency safe.

An iterator to the location succeeding the last element in the concurrent container.

Finds a range that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

A pair where the first element is an iterator to the beginning and the second element is an iterator to the end of
the range.

It is possible for concurrent inserts to cause additional keys to be inserted after the begin iterator and before the
end iterator.

Finds an element that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

An iterator pointing to the location of the first element that matched the key provided, or the iterator end() if no
such element exists.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

allocator_type get_allocator() const;

Return Value

hash_function

hasher hash_function() const;

Return Value

insert

iterator insert(
 const value_type& value);

iterator insert(
 const_iterator _Where,
 const value_type& value);

template<class _Iterator>
void insert(_Iterator first,
 _Iterator last);

template<class V>
iterator insert(
 V&& value);

template<class V>
typename std::enable_if<!std::is_same<const_iterator,
 typename std::remove_reference<V>::type>::value,
 iterator>::type insert(
 const_iterator _Where,
 V&& value);

Parameters

Returns the stored allocator object for this concurrent container. This method is concurrency safe.

The stored allocator object for this concurrent container.

Returns the stored hash function object.

The stored hash function object.

Adds elements to the concurrent_unordered_multimap object.

_Iterator
The iterator type used for insertion.

V
The type of the value inserted into the map.

value
The value to be inserted.

_Where
The starting location to search for an insertion point.

first
The beginning of the range to insert.

Return Value

Remarks

key_eq

key_equal key_eq() const;

Return Value

load_factor

float load_factor() const;

Return Value

max_load_factor

float max_load_factor() const;

void max_load_factor(float _Newmax);

Parameters

Return Value

last
The end of the range to insert.

An iterator pointing to the insertion location.

The first member function inserts the element value in the controlled sequence, then returns the iterator that
designates the inserted element.

The second member function returns insert(value), using _Where as a starting place within the controlled
sequence to search for the insertion point.

The third member function inserts the sequence of element values from the range [first , last).

The last two member functions behave the same as the first two, except that value is used to construct the
inserted value.

Returns the stored equality comparison function object.

The stored equality comparison function object.

Computes and returns the current load factor of the container. The load factor is the number of elements in the
container divided by the number of buckets.

The load factor for the container.

Gets or sets the maximum load factor of the container. The maximum load factor is the largest number of
elements than can be in any bucket before the container grows its internal table.

_Newmax

The first member function returns the stored maximum load factor. The second member function does not return
a value but throws an out_of_range exception if the supplied load factor is invalid..

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

max_size

size_type max_size() const;

Return Value

Remarks

operator=

concurrent_unordered_multimap& operator= (const concurrent_unordered_multimap& _Umap);

concurrent_unordered_multimap& operator= (concurrent_unordered_multimap&& _Umap);

Parameters

Return Value

Remarks

rehash

void rehash(size_type _Buckets);

Parameters

Remarks

size

Returns the maximum size of the concurrent container, determined by the allocator. This method is concurrency
safe.

The maximum number of elements that can be inserted into this concurrent container.

This upper bound value may actually be higher than what the container can actually hold.

Assigns the contents of another concurrent_unordered_multimap object to this one. This method is not
concurrency-safe.

_Umap
The source concurrent_unordered_multimap object.

A reference to this concurrent_unordered_multimap object.

After erasing any existing elements in a concurrent unordered multimap, operator= either copies or moves the
contents of _Umap into the concurrent unordered multimap.

Rebuilds the hash table.

_Buckets
The desired number of buckets.

The member function alters the number of buckets to be at least _Buckets and rebuilds the hash table as needed.
The number of buckets must be a power of 2. If not a power of 2, it will be rounded up to the next largest power of
2.

It throws an out_of_range exception if the number of buckets is invalid (either 0 or greater than the maximum
number of buckets).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

size_type size() const;

Return Value

Remarks

swap

void swap(concurrent_unordered_multimap& _Umap);

Parameters

unsafe_begin

local_iterator unsafe_begin(size_type _Bucket);

const_local_iterator unsafe_begin(size_type _Bucket) const;

Parameters

Return Value

unsafe_bucket

size_type unsafe_bucket(const key_type& KVal) const;

Parameters

Return Value

unsafe_bucket_count

Returns the number of elements in this concurrent container. This method is concurrency safe.

The number of items in the container.

In the presence of concurrent inserts, the number of elements in the concurrent container may change
immediately after calling this function, before the return value is even read.

Swaps the contents of two concurrent_unordered_multimap objects. This method is not concurrency-safe.

_Umap
The concurrent_unordered_multimap object to swap with.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns the bucket index that a specific key maps to in this container.

KVal
The element key being searched for.

The bucket index for the key in this container.

size_type unsafe_bucket_count() const;

Return Value

unsafe_bucket_size

size_type unsafe_bucket_size(size_type _Bucket);

Parameters

Return Value

unsafe_cbegin

const_local_iterator unsafe_cbegin(size_type _Bucket) const;

Parameters

Return Value

unsafe_cend

const_local_iterator unsafe_cend(size_type _Bucket) const;

Parameters

Return Value

unsafe_end

Returns the current number of buckets in this container.

The current number of buckets in this container.

Returns the number of items in a specific bucket of this container.

_Bucket
The bucket to search for.

The current number of buckets in this container.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the location succeeding the last element in a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the last element in this container for a specific bucket.

local_iterator unsafe_end(size_type _Bucket);

const_local_iterator unsafe_end(size_type _Bucket) const;

Parameters

Return Value

unsafe_erase

iterator unsafe_erase(
 const_iterator _Where);

size_type unsafe_erase(
 const key_type& KVal);

iterator unsafe_erase(
 const_iterator first,
 const_iterator last);

Parameters

Return Value

Remarks

unsafe_max_bucket_count

size_type unsafe_max_bucket_count() const;

_Bucket
The bucket index.

An iterator pointing to the end of the bucket.

Removes elements from the concurrent_unordered_multimap at specified positions. This method is not
concurrency-safe.

_Where
The iterator position to erase from.

KVal
The key value to erase.

first
last
Iterators.

The first two member functions return an iterator that designates the first element remaining beyond any
elements removed, or concurrent_unordered_multimap::end () if no such element exists. The third member function
returns the number of elements it removes.

The first member function removes the element of the controlled sequence pointed to by _Where . The second
member function removes the elements in the range [_Begin , _End).

The third member function removes the elements in the range delimited by
concurrent_unordered_multimap::equal_range (KVal).

Returns the maximum number of buckets in this container.

Return Value

See also

The maximum number of buckets in this container.

concurrency Namespace
Parallel Containers and Objects

concurrent_unordered_multiset Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
template <typename K,
 typename _Hasher = std::hash<K>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<K>
>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<K>> class concurrent_unordered_multiset : public
details::_Concurrent_hash<details::_Concurrent_unordered_set_traits<K,
 details::_Hash_compare<K,
_Hasher,
 key_equality>,
_Allocator_type,
 true>>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type The type of an allocator for managing storage.

const_iterator The type of a constant iterator for the controlled sequence.

const_local_iterator The type of a constant bucket iterator for the controlled
sequence.

const_pointer The type of a constant pointer to an element.

The concurrent_unordered_multiset class is an concurrency-safe container that controls a varying-length sequence
of elements of type K. The sequence is represented in a way that enables concurrency-safe append, element
access, iterator access and iterator traversal operations.

K
The key type.

_Hasher
The hash function object type. This argument is optional and the default value is std::hash<K> .

key_equality
The equality comparison function object type. This argument is optional and the default value is std::equal_to<K> .

_Allocator_type
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for the concurrent vector. This argument is optional and the default value is std::allocator<K> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-unordered-multiset-class.md

const_reference The type of a constant reference to an element.

difference_type The type of a signed distance between two elements.

hasher The type of the hash function.

iterator The type of an iterator for the controlled sequence.

key_equal The type of the comparison function.

key_type The type of an ordering key.

local_iterator The type of a bucket iterator for the controlled sequence.

pointer The type of a pointer to an element.

reference The type of a reference to an element.

size_type The type of an unsigned distance between two elements.

value_type The type of an element.

NAME DESCRIPTION

Public Constructors

NAME DESCRIPTION

concurrent_unordered_multiset Overloaded. Constructs a concurrent unordered multiset.

Public Methods

NAME DESCRIPTION

hash_function Returns the stored hash function object.

insert Overloaded. Adds elements to the
concurrent_unordered_multiset object.

key_eq The stored equality comparison function object.

swap Swaps the contents of two
concurrent_unordered_multiset objects. This method is

not concurrency-safe.

unsafe_erase Overloaded. Removes elements from the
concurrent_unordered_multiset at specified positions. This

method is not concurrency-safe.

Public Operators

NAME DESCRIPTION

operator= Overloaded. Assigns the contents of another
concurrent_unordered_multiset object to this one. This

method is not concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

begin

iterator begin();

const_iterator begin() const;

Return Value

cbegin

const_iterator cbegin() const;

Return Value

cend

const_iterator cend() const;

Return Value

For detailed information on the concurrent_unordered_multiset class, see Parallel Containers and Objects.

_Traits

_Concurrent_hash

concurrent_unordered_multiset

Header: concurrent_unordered_set.h

Namespace: concurrency

Returns an iterator pointing to the first element in the concurrent container. This method is concurrency safe.

An iterator to the first element in the concurrent container.

Returns a const iterator pointing to the first element in the concurrent container. This method is concurrency safe.

A const iterator to the first element in the concurrent container.

Returns a const iterator pointing to the location succeeding the last element in the concurrent container. This
method is concurrency safe.

clear

void clear();

concurrent_unordered_multiset

explicit concurrent_unordered_multiset(
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_multiset(
 const allocator_type& _Allocator);

template <typename _Iterator>
concurrent_unordered_multiset(_Iterator first,
 _Iterator last,
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_multiset(
 const concurrent_unordered_multiset& _Uset);

concurrent_unordered_multiset(
 const concurrent_unordered_multiset& _Uset,
 const allocator_type& _Allocator);

concurrent_unordered_multiset(
 concurrent_unordered_multiset&& _Uset);

Parameters

A const iterator to the location succeeding the last element in the concurrent container.

Erases all the elements in the concurrent container. This function is not concurrency safe.

Constructs a concurrent unordered multiset.

_Iterator
The type of the input iterator.

_Number_of_buckets
The initial number of buckets for this unordered multiset.

_Hasher
The hash function for this unordered multiset.

key_equality
The equality comparison function for this unordered multiset.

_Allocator
The allocator for this unordered multiset.

first
last
_Uset
The source concurrent_unordered_multiset object to move elements from.

Remarks

count

size_type count(const key_type& KVal) const;

Parameters

Return Value

empty

bool empty() const;

Return Value

Remarks

end

iterator end();

const_iterator end() const;

Return Value

equal_range

All constructors store an allocator object _Allocator and initialize the unordered multiset.

The first constructor specifies an empty initial multiset and explicitly specifies the number of buckets, hash
function, equality function and allocator type to be used.

The second constructor specifies an allocator for the unordered multiset.

The third constructor specifies values supplied by the iterator range [_Begin , _End).

The fourth and fifth constructors specify a copy of the concurrent unordered multiset _Uset .

The last constructor specifies a move of the concurrent unordered multiset _Uset .

Counts the number of elements matching a specified key. This function is concurrency safe.

KVal
The key to search for.

The number of times number of times the key appears in the container.

Tests whether no elements are present. This method is concurrency safe.

true if the concurrent container is empty, false otherwise.

In the presence of concurrent inserts, whether or not the concurrent container is empty may change immediately
after calling this function, before the return value is even read.

Returns an iterator pointing to the location succeeding the last element in the concurrent container. This method is
concurrency safe.

An iterator to the location succeeding the last element in the concurrent container.

std::pair<iterator,
 iterator> equal_range(
 const key_type& KVal);

std::pair<const_iterator,
 const_iterator> equal_range(
 const key_type& KVal) const;

Parameters

Return Value

Remarks

find

iterator find(const key_type& KVal);

const_iterator find(const key_type& KVal) const;

Parameters

Return Value

get_allocator

allocator_type get_allocator() const;

Return Value

hash_function

hasher hash_function() const;

Finds a range that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

A pair where the first element is an iterator to the beginning and the second element is an iterator to the end of
the range.

It is possible for concurrent inserts to cause additional keys to be inserted after the begin iterator and before the
end iterator.

Finds an element that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

An iterator pointing to the location of the first element that matched the key provided, or the iterator end() if no
such element exists.

Returns the stored allocator object for this concurrent container. This method is concurrency safe.

The stored allocator object for this concurrent container.

Returns the stored hash function object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

Return Value

insert

iterator insert(
 const value_type& value);

iterator insert(
 const_iterator _Where,
 const value_type& value);

template<class _Iterator>
void insert(_Iterator first,
 _Iterator last);

template<class V>
iterator insert(
 V&& value);

template<class V>
typename std::enable_if<!std::is_same<const_iterator,
 typename std::remove_reference<V>::type>::value,
 iterator>::type insert(
 const_iterator _Where,
 V&& value);

Parameters

Return Value

Remarks

The stored hash function object.

Adds elements to the concurrent_unordered_multiset object.

_Iterator
The iterator type used for insertion.

V
The type of the value inserted.

value
The value to be inserted.

_Where
The starting location to search for an insertion point.

first
The beginning of the range to insert.

last
The end of the range to insert.

An iterator pointing to the insertion location.

The first member function inserts the element value in the controlled sequence, then returns the iterator that
designates the inserted element.

The second member function returns insert(value), using _Where as a starting place within the controlled
sequence to search for the insertion point.

The third member function inserts the sequence of element values from the range [first , last).

 key_eq

key_equal key_eq() const;

Return Value

load_factor

float load_factor() const;

Return Value

max_load_factor

float max_load_factor() const;

void max_load_factor(float _Newmax);

Parameters

Return Value

max_size

size_type max_size() const;

Return Value

Remarks

The last two member functions behave the same as the first two, except that value is used to construct the
inserted value.

The stored equality comparison function object.

The stored equality comparison function object.

Computes and returns the current load factor of the container. The load factor is the number of elements in the
container divided by the number of buckets.

The load factor for the container.

Gets or sets the maximum load factor of the container. The maximum load factor is the largest number of
elements than can be in any bucket before the container grows its internal table.

_Newmax

The first member function returns the stored maximum load factor. The second member function does not return
a value but throws an out_of_range exception if the supplied load factor is invalid..

Returns the maximum size of the concurrent container, determined by the allocator. This method is concurrency
safe.

The maximum number of elements that can be inserted into this concurrent container.

This upper bound value may actually be higher than what the container can actually hold.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

operator=

concurrent_unordered_multiset& operator= (const concurrent_unordered_multiset& _Uset);

concurrent_unordered_multiset& operator= (concurrent_unordered_multiset&& _Uset);

Parameters

Return Value

Remarks

rehash

void rehash(size_type _Buckets);

Parameters

Remarks

size

size_type size() const;

Return Value

Remarks

swap

Assigns the contents of another concurrent_unordered_multiset object to this one. This method is not
concurrency-safe.

_Uset
The source concurrent_unordered_multiset object.

A reference to this concurrent_unordered_multiset object.

After erasing any existing elements in a concurrent unordered multiset, operator= either copies or moves the
contents of _Uset into the concurrent unordered multiset.

Rebuilds the hash table.

_Buckets
The desired number of buckets.

The member function alters the number of buckets to be at least _Buckets and rebuilds the hash table as needed.
The number of buckets must be a power of 2. If not a power of 2, it will be rounded up to the next largest power of
2.

It throws an out_of_range exception if the number of buckets is invalid (either 0 or greater than the maximum
number of buckets).

Returns the number of elements in this concurrent container. This method is concurrency safe.

The number of items in the container.

In the presence of concurrent inserts, the number of elements in the concurrent container may change
immediately after calling this function, before the return value is even read.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

void swap(concurrent_unordered_multiset& _Uset);

Parameters

unsafe_begin

local_iterator unsafe_begin(size_type _Bucket);

const_local_iterator unsafe_begin(size_type _Bucket) const;

Parameters

Return Value

unsafe_bucket

size_type unsafe_bucket(const key_type& KVal) const;

Parameters

Return Value

unsafe_bucket_count

size_type unsafe_bucket_count() const;

Return Value

unsafe_bucket_size

size_type unsafe_bucket_size(size_type _Bucket);

Swaps the contents of two concurrent_unordered_multiset objects. This method is not concurrency-safe.

_Uset
The concurrent_unordered_multiset object to swap with.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns the bucket index that a specific key maps to in this container.

KVal
The element key being searched for.

The bucket index for the key in this container.

Returns the current number of buckets in this container.

The current number of buckets in this container.

Returns the number of items in a specific bucket of this container.

Parameters

Return Value

unsafe_cbegin

const_local_iterator unsafe_cbegin(size_type _Bucket) const;

Parameters

Return Value

unsafe_cend

const_local_iterator unsafe_cend(size_type _Bucket) const;

Parameters

Return Value

unsafe_end

local_iterator unsafe_end(size_type _Bucket);

const_local_iterator unsafe_end(size_type _Bucket) const;

Parameters

Return Value

unsafe_erase

_Bucket
The bucket to search for.

The current number of buckets in this container.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the location succeeding the last element in a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the last element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the end of the bucket.

Removes elements from the concurrent_unordered_multiset at specified positions. This method is not
concurrency-safe.

iterator unsafe_erase(
 const_iterator _Where);

iterator unsafe_erase(
 const_iterator first,
 const_iterator last);

size_type unsafe_erase(
 const key_type& KVal);

Parameters

Return Value

Remarks

unsafe_max_bucket_count

size_type unsafe_max_bucket_count() const;

Return Value

See also

_Where
The iterator position to erase from.

first
last
KVal
The key value to erase.

The first two member functions return an iterator that designates the first element remaining beyond any
elements removed, or end() if no such element exists. The third member function returns the number of elements
it removes.

The first member function removes the element pointed to by _Where . The second member function removes the
elements in the range [_Begin , _End).

The third member function removes the elements in the range delimited by equal_range(KVal).

Returns the maximum number of buckets in this container.

The maximum number of buckets in this container.

concurrency Namespace
Parallel Containers and Objects

concurrent_unordered_set Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
template <typename K,
 typename _Hasher = std::hash<K>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<K>
>,
 typename key_equality = std::equal_to<K>,
 typename _Allocator_type = std::allocator<K>> class concurrent_unordered_set : public
details::_Concurrent_hash<details::_Concurrent_unordered_set_traits<K,
 details::_Hash_compare<K,
_Hasher,
 key_equality>,
_Allocator_type,
 false>>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type The type of an allocator for managing storage.

const_iterator The type of a constant iterator for the controlled sequence.

const_local_iterator The type of a constant bucket iterator for the controlled
sequence.

const_pointer The type of a constant pointer to an element.

The concurrent_unordered_set class is an concurrency-safe container that controls a varying-length sequence of
elements of type K. The sequence is represented in a way that enables concurrency-safe append, element access,
iterator access and iterator traversal operations.

K
The key type.

_Hasher
The hash function object type. This argument is optional and the default value is std::hash<K> .

key_equality
The equality comparison function object type. This argument is optional and the default value is std::equal_to<K> .

_Allocator_type
The type that represents the stored allocator object that encapsulates details about the allocation and deallocation
of memory for the concurrent unordered set. This argument is optional and the default value is std::allocator<K>

.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-unordered-set-class.md

const_reference The type of a constant reference to an element.

difference_type The type of a signed distance between two elements.

hasher The type of the hash function.

iterator The type of an iterator for the controlled sequence.

key_equal The type of the comparison function.

key_type The type of an ordering key.

local_iterator The type of a bucket iterator for the controlled sequence.

pointer The type of a pointer to an element.

reference The type of a reference to an element.

size_type The type of an unsigned distance between two elements.

value_type The type of an element.

NAME DESCRIPTION

Public Constructors

NAME DESCRIPTION

concurrent_unordered_set Overloaded. Constructs a concurrent unordered set.

Public Methods

NAME DESCRIPTION

hash_function Returns the stored hash function object.

insert Overloaded. Adds elements to the
concurrent_unordered_set object.

key_eq Returns the stored equality comparison function object.

swap Swaps the contents of two concurrent_unordered_set

objects. This method is not concurrency-safe.

unsafe_erase Overloaded. Removes elements from the
concurrent_unordered_set at specified positions. This

method is not concurrency-safe.

Public Operators

NAME DESCRIPTION

operator= Overloaded. Assigns the contents of another
concurrent_unordered_set object to this one. This method

is not concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

begin

iterator begin();

const_iterator begin() const;

Return Value

cbegin

const_iterator cbegin() const;

Return Value

cend

const_iterator cend() const;

Return Value

For detailed information on the concurrent_unordered_set class, see Parallel Containers and Objects.

_Traits

_Concurrent_hash

concurrent_unordered_set

Header: concurrent_unordered_set.h

Namespace: concurrency

Returns an iterator pointing to the first element in the concurrent container. This method is concurrency safe.

An iterator to the first element in the concurrent container.

Returns a const iterator pointing to the first element in the concurrent container. This method is concurrency safe.

A const iterator to the first element in the concurrent container.

Returns a const iterator pointing to the location succeeding the last element in the concurrent container. This
method is concurrency safe.

clear

void clear();

concurrent_unordered_set

explicit concurrent_unordered_set(
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_set(
 const allocator_type& _Allocator);

template <typename _Iterator>
concurrent_unordered_set(_Iterator first,
 _Iterator last,
 size_type _Number_of_buckets = 8,
 const hasher& _Hasher = hasher(),
 const key_equal& key_equality = key_equal(),
 const allocator_type& _Allocator = allocator_type());

concurrent_unordered_set(
 const concurrent_unordered_set& _Uset);

concurrent_unordered_set(
 const concurrent_unordered_set& _Uset,
 const allocator_type& _Allocator);

concurrent_unordered_set(
 concurrent_unordered_set&& _Uset);

Parameters

A const iterator to the location succeeding the last element in the concurrent container.

Erases all the elements in the concurrent container. This function is not concurrency safe.

Constructs a concurrent unordered set.

_Iterator
The type of the input iterator.

_Number_of_buckets
The initial number of buckets for this unordered set.

_Hasher
The hash function for this unordered set.

key_equality
The equality comparison function for this unordered set.

_Allocator
The allocator for this unordered set.

first
last
_Uset
The source concurrent_unordered_set object to copy or move elements from.

Remarks

count

size_type count(const key_type& KVal) const;

Parameters

Return Value

empty

bool empty() const;

Return Value

Remarks

end

iterator end();

const_iterator end() const;

Return Value

equal_range

All constructors store an allocator object _Allocator and initialize the unordered set.

The first constructor specifies an empty initial set and explicitly specifies the number of buckets, hash function,
equality function and allocator type to be used.

The second constructor specifies an allocator for the unordered set.

The third constructor specifies values supplied by the iterator range [_Begin , _End).

The fourth and fifth constructors specify a copy of the concurrent unordered set _Uset .

The last constructor specifies a move of the concurrent unordered set _Uset .

Counts the number of elements matching a specified key. This function is concurrency safe.

KVal
The key to search for.

The number of times number of times the key appears in the container.

Tests whether no elements are present. This method is concurrency safe.

true if the concurrent container is empty, false otherwise.

In the presence of concurrent inserts, whether or not the concurrent container is empty may change immediately
after calling this function, before the return value is even read.

Returns an iterator pointing to the location succeeding the last element in the concurrent container. This method is
concurrency safe.

An iterator to the location succeeding the last element in the concurrent container.

std::pair<iterator,
 iterator> equal_range(
 const key_type& KVal);

std::pair<const_iterator,
 const_iterator> equal_range(
 const key_type& KVal) const;

Parameters

Return Value

Remarks

find

iterator find(const key_type& KVal);

const_iterator find(const key_type& KVal) const;

Parameters

Return Value

get_allocator

allocator_type get_allocator() const;

Return Value

hash_function

hasher hash_function() const;

Finds a range that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

A pair where the first element is an iterator to the beginning and the second element is an iterator to the end of
the range.

It is possible for concurrent inserts to cause additional keys to be inserted after the begin iterator and before the
end iterator.

Finds an element that matches a specified key. This function is concurrency safe.

KVal
The key value to search for.

An iterator pointing to the location of the first element that matched the key provided, or the iterator end() if no
such element exists.

Returns the stored allocator object for this concurrent container. This method is concurrency safe.

The stored allocator object for this concurrent container.

Returns the stored hash function object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure

Return Value

insert

std::pair<iterator,
 bool> insert(
 const value_type& value);

iterator insert(
 const_iterator _Where,
 const value_type& value);

template<class _Iterator>
void insert(_Iterator first,
 _Iterator last);

template<class V>
std::pair<iterator,
 bool> insert(
 V&& value);

template<class V>
typename std::enable_if<!std::is_same<const_iterator,
 typename std::remove_reference<V>::type>::value,
 iterator>::type insert(
 const_iterator _Where,
 V&& value);

Parameters

Return Value

Remarks

The stored hash function object.

Adds elements to the concurrent_unordered_set object.

_Iterator
The iterator type used for insertion.

V
The type of the value inserted into the set.

value
The value to be inserted.

_Where
The starting location to search for an insertion point.

first
The beginning of the range to insert.

last
The end of the range to insert.

A pair that contains an iterator and a boolean value. See the Remarks section for more details.

The first member function determines whether an element X exists in the sequence whose key has equivalent
ordering to that of value . If not, it creates such an element X and initializes it with value . The function then
determines the iterator where that designates X. If an insertion occurred, the function returns
std::pair(where, true) . Otherwise, it returns std::pair(where, false) .

 key_eq

key_equal key_eq() const;

Return Value

load_factor

float load_factor() const;

Return Value

max_load_factor

float max_load_factor() const;

void max_load_factor(float _Newmax);

Parameters

Return Value

max_size

size_type max_size() const;

Return Value

The second member function returns insert(value), using _Where as a starting place within the controlled
sequence to search for the insertion point.

The third member function inserts the sequence of element values from the range [first , last).

The last two member functions behave the same as the first two, except that value is used to construct the
inserted value.

Returns the stored equality comparison function object.

The stored equality comparison function object.

Computes and returns the current load factor of the container. The load factor is the number of elements in the
container divided by the number of buckets.

The load factor for the container.

Gets or sets the maximum load factor of the container. The maximum load factor is the largest number of
elements than can be in any bucket before the container grows its internal table.

_Newmax

The first member function returns the stored maximum load factor. The second member function does not return
a value but throws an out_of_range exception if the supplied load factor is invalid..

Returns the maximum size of the concurrent container, determined by the allocator. This method is concurrency
safe.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

Remarks

operator=

concurrent_unordered_set& operator= (const concurrent_unordered_set& _Uset);

concurrent_unordered_set& operator= (concurrent_unordered_set&& _Uset);

Parameters

Return Value

Remarks

rehash

void rehash(size_type _Buckets);

Parameters

Remarks

size

size_type size() const;

Return Value

Remarks

The maximum number of elements that can be inserted into this concurrent container.

This upper bound value may actually be higher than what the container can actually hold.

Assigns the contents of another concurrent_unordered_set object to this one. This method is not concurrency-safe.

_Uset
The source concurrent_unordered_set object.

A reference to this concurrent_unordered_set object.

After erasing any existing elements in a concurrent unordered set, operator= either copies or moves the contents
of _Uset into the concurrent unordered set.

Rebuilds the hash table.

_Buckets
The desired number of buckets.

The member function alters the number of buckets to be at least _Buckets and rebuilds the hash table as needed.
The number of buckets must be a power of 2. If not a power of 2, it will be rounded up to the next largest power of
2.

It throws an out_of_range exception if the number of buckets is invalid (either 0 or greater than the maximum
number of buckets).

Returns the number of elements in this concurrent container. This method is concurrency safe.

The number of items in the container.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/out-of-range-class

 swap

void swap(concurrent_unordered_set& _Uset);

Parameters

unsafe_begin

local_iterator unsafe_begin(size_type _Bucket);

const_local_iterator unsafe_begin(size_type _Bucket) const;

Parameters

Return Value

unsafe_bucket

size_type unsafe_bucket(const key_type& KVal) const;

Parameters

Return Value

unsafe_bucket_count

size_type unsafe_bucket_count() const;

Return Value

In the presence of concurrent inserts, the number of elements in the concurrent container may change
immediately after calling this function, before the return value is even read.

Swaps the contents of two concurrent_unordered_set objects. This method is not concurrency-safe.

_Uset
The concurrent_unordered_set object to swap with.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns the bucket index that a specific key maps to in this container.

KVal
The element key being searched for.

The bucket index for the key in this container.

Returns the current number of buckets in this container.

The current number of buckets in this container.

unsafe_bucket_size

size_type unsafe_bucket_size(size_type _Bucket);

Parameters

Return Value

unsafe_cbegin

const_local_iterator unsafe_cbegin(size_type _Bucket) const;

Parameters

Return Value

unsafe_cend

const_local_iterator unsafe_cend(size_type _Bucket) const;

Parameters

Return Value

unsafe_end

local_iterator unsafe_end(size_type _Bucket);

const_local_iterator unsafe_end(size_type _Bucket) const;

Parameters

Return Value

Returns the number of items in a specific bucket of this container.

_Bucket
The bucket to search for.

The current number of buckets in this container.

Returns an iterator to the first element in this container for a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the location succeeding the last element in a specific bucket.

_Bucket
The bucket index.

An iterator pointing to the beginning of the bucket.

Returns an iterator to the last element in this container for a specific bucket.

_Bucket
The bucket index.

 unsafe_erase

iterator unsafe_erase(
 const_iterator _Where);

size_type unsafe_erase(
 const key_type& KVal);

iterator unsafe_erase(
 const_iterator first,
 const_iterator last);

Parameters

Return Value

Remarks

unsafe_max_bucket_count

size_type unsafe_max_bucket_count() const;

Return Value

See also

An iterator pointing to the end of the bucket.

Removes elements from the concurrent_unordered_set at specified positions. This method is not concurrency-safe.

_Where
The iterator position to erase from.

KVal
The key value to erase.

first
last
Iterators.

The first two member functions return an iterator that designates the first element remaining beyond any
elements removed, or end() if no such element exists. The third member function returns the number of elements
it removes.

The first member function removes the element pointed to by _Where . The second member function removes the
elements in the range [_Begin , _End).

The third member function removes the elements in the range delimited by equal_range(KVal).

Returns the maximum number of buckets in this container.

The maximum number of buckets in this container.

concurrency Namespace
Parallel Containers and Objects

concurrent_vector Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
template<typename T, class _Ax>
class concurrent_vector: protected details::_Allocator_base<T,
 _Ax>,
private details::_Concurrent_vector_base_v4;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

allocator_type A type that represents the allocator class for the concurrent
vector.

const_iterator A type that provides a random-access iterator that can read
a const element in a concurrent vector.

const_pointer A type that provides a pointer to a const element in a
concurrent vector.

const_reference A type that provides a reference to a const element stored
in a concurrent vector for reading and performing const

operations.

const_reverse_iterator A type that provides a random-access iterator that can read
any const element in the concurrent vector.

difference_type A type that provides the signed distance between two
elements in a concurrent vector.

iterator A type that provides a random-access iterator that can read
any element in a concurrent vector. Modification of an
element using the iterator is not concurrency-safe.

The concurrent_vector class is a sequence container class that allows random access to any element. It enables
concurrency-safe append, element access, iterator access, and iterator traversal operations.

T
The data type of the elements to be stored in the vector.

_Ax
The type that represents the stored allocator object that encapsulates details about the allocation and
deallocation of memory for the concurrent vector. This argument is optional and the default value is
allocator<T> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/concurrent-vector-class.md

pointer A type that provides a pointer to an element in a concurrent
vector.

reference A type that provides a reference to an element stored in a
concurrent vector.

reverse_iterator A type that provides a random-access iterator that can read
any element in a reversed concurrent vector. Modification of
an element using the iterator is not concurrency-safe.

size_type A type that counts the number of elements in a concurrent
vector.

value_type A type that represents the data type stored in a concurrent
vector.

NAME DESCRIPTION

Public Constructors

NAME DESCRIPTION

concurrent_vector Overloaded. Constructs a concurrent vector.

~concurrent_vector Destructor Erases all elements and destroys this concurrent vector.

Public Methods

NAME DESCRIPTION

assign Overloaded. Erases the elements of the concurrent vector
and assigns to it either _N copies of _Item , or values
specified by the iterator range [_Begin , _End). This
method is not concurrency-safe.

at Overloaded. Provides access to the element at the given
index in the concurrent vector. This method is concurrency-
safe for read operations, and also while growing the vector,
as long as you have ensured that the value _Index is less
than the size of the concurrent vector.

back Overloaded. Returns a reference or a const reference to the
last element in the concurrent vector. If the concurrent vector
is empty, the return value is undefined. This method is
concurrency-safe.

begin Overloaded. Returns an iterator of type iterator or
const_iterator to the beginning of the concurrent vector.

This method is concurrency-safe.

capacity Returns the maximum size to which the concurrent vector
can grow without having to allocate more memory. This
method is concurrency-safe.

cbegin Returns an iterator of type const_iterator to the
beginning of the concurrent vector. This method is
concurrency-safe.

cend Returns an iterator of type const_iterator to the end of
the concurrent vector. This method is concurrency-safe.

clear Erases all elements in the concurrent vector. This method is
not concurrency-safe.

crbegin Returns an iterator of type const_reverse_iterator to the
beginning of the concurrent vector. This method is
concurrency-safe.

crend Returns an iterator of type const_reverse_iterator to the
end of the concurrent vector. This method is concurrency-
safe.

empty Tests if the concurrent vector is empty at the time this
method is called. This method is concurrency-safe.

end Overloaded. Returns an iterator of type iterator or
const_iterator to the end of the concurrent vector. This

method is concurrency-safe.

front Overloaded. Returns a reference or a const reference to the
first element in the concurrent vector. If the concurrent vector
is empty, the return value is undefined. This method is
concurrency-safe.

get_allocator Returns a copy of the allocator used to construct the
concurrent vector. This method is concurrency-safe.

grow_by Overloaded. Grows this concurrent vector by _Delta

elements. This method is concurrency-safe.

grow_to_at_least Grows this concurrent vector until it has at least _N

elements. This method is concurrency-safe.

max_size Returns the maximum number of elements the concurrent
vector can hold. This method is concurrency-safe.

push_back Overloaded. Appends the given item to the end of the
concurrent vector. This method is concurrency-safe.

rbegin Overloaded. Returns an iterator of type reverse_iterator

or const_reverse_iterator to the beginning of the
concurrent vector. This method is concurrency-safe.

rend Overloaded. Returns an iterator of type reverse_iterator

or const_reverse_iterator to the end of the concurrent
vector. This method is concurrency-safe.

NAME DESCRIPTION

reserve Allocates enough space to grow the concurrent vector to size
_N without having to allocate more memory later. This

method is not concurrency-safe.

resize Overloaded. Changes the size of the concurrent vector to the
requested size, deleting or adding elements as necessary. This
method is not concurrency-safe.

shrink_to_fit Compacts the internal representation of the concurrent
vector to reduce fragmentation and optimize memory usage.
This method is not concurrency-safe.

size Returns the number of elements in the concurrent vector.
This method is concurrency-safe.

swap Swaps the contents of two concurrent vectors. This method is
not concurrency-safe.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator[] Overloaded. Provides access to the element at the given
index in the concurrent vector. This method is concurrency-
safe for read operations, and also while growing the vector,
as long as the you have ensured that the value _Index is
less than the size of the concurrent vector.

operator= Overloaded. Assigns the contents of another
concurrent_vector object to this one. This method is not

concurrency-safe.

Remarks

Inheritance Hierarchy

Requirements

assign

For detailed information on the concurrent_vector class, see Parallel Containers and Objects.

_Concurrent_vector_base_v4

_Allocator_base

concurrent_vector

Header: concurrent_vector.h

Namespace: concurrency

Erases the elements of the concurrent vector and assigns to it either _N copies of _Item , or values specified by
the iterator range [_Begin , _End). This method is not concurrency-safe.

void assign(
 size_type _N,
 const_reference _Item);

template<class _InputIterator>
void assign(_InputIterator _Begin,
 _InputIterator _End);

Parameters

Remarks

at

reference at(size_type _Index);

const_reference at(size_type _Index) const;

Parameters

Return Value

Remarks

_InputIterator
The type of the specified iterator.

_N
The number of items to copy into the concurrent vector.

_Item
Reference to a value used to fill the concurrent vector.

_Begin
An iterator to the first element of the source range.

_End
An iterator to one past the last element of the source range.

assign is not concurrency-safe. You must ensure that no other threads are invoking methods on the concurrent
vector when you call this method.

Provides access to the element at the given index in the concurrent vector. This method is concurrency-safe for
read operations, and also while growing the vector, as long as you have ensured that the value _Index is less
than the size of the concurrent vector.

_Index
The index of the element to be retrieved.

A reference to the item at the given index.

The version of the function at that returns a non- const reference cannot be used to concurrently write to the
element from different threads. A different synchronization object should be used to synchronize concurrent read
and write operations to the same data element.

The method throws out_of_range if _Index is greater than or equal to the size of the concurrent vector, and
range_error if the index is for a broken portion of the vector. For details on how a vector can become broken,

see Parallel Containers and Objects.

back

reference back();

const_reference back() const;

Return Value

begin

iterator begin();

const_iterator begin() const;

Return Value

capacity

size_type capacity() const;

Return Value

Remarks

cbegin

const_iterator cbegin() const;

Return Value

cend

Returns a reference or a const reference to the last element in the concurrent vector. If the concurrent vector is
empty, the return value is undefined. This method is concurrency-safe.

A reference or a const reference to the last element in the concurrent vector.

Returns an iterator of type iterator or const_iterator to the beginning of the concurrent vector. This method is
concurrency-safe.

An iterator of type iterator or const_iterator to the beginning of the concurrent vector.

Returns the maximum size to which the concurrent vector can grow without having to allocate more memory.
This method is concurrency-safe.

The maximum size to which the concurrent vector can grow without having to allocate more memory.

Unlike a C++ Standard Library vector , a concurrent_vector object does not move existing elements if it
allocates more memory.

Returns an iterator of type const_iterator to the beginning of the concurrent vector. This method is
concurrency-safe.

An iterator of type const_iterator to the beginning of the concurrent vector.

Returns an iterator of type const_iterator to the end of the concurrent vector. This method is concurrency-safe.

const_iterator cend() const;

Return Value

clear

void clear();

Remarks

concurrent_vector

explicit concurrent_vector(
 const allocator_type& _Al = allocator_type());

concurrent_vector(
 const concurrent_vector& _Vector);

template<class M>
concurrent_vector(
 const concurrent_vector<T,
 M>& _Vector,
 const allocator_type& _Al = allocator_type());

concurrent_vector(
 concurrent_vector&& _Vector);

explicit concurrent_vector(
 size_type _N);

concurrent_vector(
 size_type _N,
 const_reference _Item,
 const allocator_type& _Al = allocator_type());

template<class _InputIterator>
concurrent_vector(_InputIterator _Begin,
 _InputIterator _End,
 const allocator_type& _Al = allocator_type());

Parameters

An iterator of type const_iterator to the end of the concurrent vector.

Erases all elements in the concurrent vector. This method is not concurrency-safe.

clear is not concurrency-safe. You must ensure that no other threads are invoking methods on the concurrent
vector when you call this method. clear does not free internal arrays. To free internal arrays, call the function
shrink_to_fit after clear .

Constructs a concurrent vector.

M
The allocator type of the source vector.

_InputIterator
The type of the input iterator.

_Al
The allocator class to use with this object.

Remarks

~concurrent_vector

~concurrent_vector();

crbegin

const_reverse_iterator crbegin() const;

Return Value

crend

const_reverse_iterator crend() const;

Return Value

_Vector
The source concurrent_vector object to copy or move elements from.

_N
The initial capacity of the concurrent_vector object.

_Item
The value of elements in the constructed object.

_Begin
Position of the first element in the range of elements to be copied.

_End
Position of the first element beyond the range of elements to be copied.

All constructors store an allocator object _Al and initialize the vector.

The first constructor specify an empty initial vector and explicitly specifies the allocator type. to be used.

The second and third constructors specify a copy of the concurrent vector _Vector .

The fourth constructor specifies a move of the concurrent vector _Vector .

The fifth constructor specifies a repetition of a specified number (_N) of elements of the default value for class
T .

The sixth constructor specifies a repetition of (_N) elements of value _Item .

The last constructor specifies values supplied by the iterator range [_Begin , _End).

Erases all elements and destroys this concurrent vector.

Returns an iterator of type const_reverse_iterator to the beginning of the concurrent vector. This method is
concurrency-safe.

An iterator of type const_reverse_iterator to the beginning of the concurrent vector.

Returns an iterator of type const_reverse_iterator to the end of the concurrent vector. This method is
concurrency-safe.

empty

bool empty() const;

Return Value

end

iterator end();

const_iterator end() const;

Return Value

front

reference front();

const_reference front() const;

Return Value

get_allocator

allocator_type get_allocator() const;

Return Value

grow_by

An iterator of type const_reverse_iterator to the end of the concurrent vector.

Tests if the concurrent vector is empty at the time this method is called. This method is concurrency-safe.

true if the vector was empty at the moment the function was called, false otherwise.

Returns an iterator of type iterator or const_iterator to the end of the concurrent vector. This method is
concurrency-safe.

An iterator of type iterator or const_iterator to the end of the concurrent vector.

Returns a reference or a const reference to the first element in the concurrent vector. If the concurrent vector is
empty, the return value is undefined. This method is concurrency-safe.

A reference or a const reference to the first element in the concurrent vector.

Returns a copy of the allocator used to construct the concurrent vector. This method is concurrency-safe.

A copy of the allocator used to construct the concurrent_vector object.

Grows this concurrent vector by _Delta elements. This method is concurrency-safe.

iterator grow_by(
 size_type _Delta);

iterator grow_by(
 size_type _Delta,
 const_reference _Item);

Parameters

Return Value

Remarks

grow_to_at_least

iterator grow_to_at_least(size_type _N);

Parameters

Return Value

max_size

size_type max_size() const;

Return Value

operator=

_Delta
The number of elements to append to the object.

_Item
The value to initialize the new elements with.

An iterator to first item appended.

If _Item is not specified, the new elements are default constructed.

Grows this concurrent vector until it has at least _N elements. This method is concurrency-safe.

_N
The new minimum size for the concurrent_vector object.

An iterator that points to beginning of appended sequence, or to the element at index _N if no elements were
appended.

Returns the maximum number of elements the concurrent vector can hold. This method is concurrency-safe.

The maximum number of elements the concurrent_vector object can hold.

Assigns the contents of another concurrent_vector object to this one. This method is not concurrency-safe.

concurrent_vector& operator= (
 const concurrent_vector& _Vector);

template<class M>
concurrent_vector& operator= (
 const concurrent_vector<T, M>& _Vector);

concurrent_vector& operator= (
 concurrent_vector&& _Vector);

Parameters

Return Value

operator[]

reference operator[](size_type _index);

const_reference operator[](size_type _index) const;

Parameters

Return Value

Remarks

push_back

iterator push_back(const_reference _Item);

iterator push_back(T&& _Item);

Parameters

M
The allocator type of the source vector.

_Vector
The source concurrent_vector object.

A reference to this concurrent_vector object.

Provides access to the element at the given index in the concurrent vector. This method is concurrency-safe for
read operations, and also while growing the vector, as long as the you have ensured that the value _Index is less
than the size of the concurrent vector.

_Index
The index of the element to be retrieved.

A reference to the item at the given index.

The version of operator [] that returns a non- const reference cannot be used to concurrently write to the
element from different threads. A different synchronization object should be used to synchronize concurrent read
and write operations to the same data element.

No bounds checking is performed to ensure that _Index is a valid index into the concurrent vector.

Appends the given item to the end of the concurrent vector. This method is concurrency-safe.

_Item

Return Value

rbegin

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

Return Value

rend

reverse_iterator rend();

const_reverse_iterator rend() const;

Return Value

reserve

void reserve(size_type _N);

Parameters

Remarks

resize

The value to be appended.

An iterator to item appended.

Returns an iterator of type reverse_iterator or const_reverse_iterator to the beginning of the concurrent
vector. This method is concurrency-safe.

An iterator of type reverse_iterator or const_reverse_iterator to the beginning of the concurrent vector.

Returns an iterator of type reverse_iterator or const_reverse_iterator to the end of the concurrent vector. This
method is concurrency-safe.

An iterator of type reverse_iterator or const_reverse_iterator to the end of the concurrent vector.

Allocates enough space to grow the concurrent vector to size _N without having to allocate more memory later.
This method is not concurrency-safe.

_N
The number of elements to reserve space for.

reserve is not concurrency-safe. You must ensure that no other threads are invoking methods on the concurrent
vector when you call this method. The capacity of the concurrent vector after the method returns may be bigger
than the requested reservation.

Changes the size of the concurrent vector to the requested size, deleting or adding elements as necessary. This
method is not concurrency-safe.

void resize(
 size_type _N);

void resize(
 size_type _N,
 const T& val);

Parameters

Remarks

shrink_to_fit

void shrink_to_fit();

Remarks

size

size_type size() const;

Return Value

Remarks

swap

_N
The new size of the concurrent_vector.

val
The value of new elements added to the vector if the new size is larger than the original size. If the value is
omitted, the new objects are assigned the default value for their type.

If the size of the container is less than the requested size, elements are added to the vector until it reaches the
requested size. If the size of the container is larger than the requested size, the elements closest to the end of the
container are deleted until the container reaches the size _N . If the present size of the container is the same as
the requested size, no action is taken.

resize is not concurrency safe. You must ensure that no other threads are invoking methods on the concurrent
vector when you call this method.

Compacts the internal representation of the concurrent vector to reduce fragmentation and optimize memory
usage. This method is not concurrency-safe.

This method will internally re-allocate memory move elements around, invalidating all the iterators.
shrink_to_fit is not concurrency-safe. You must ensure that no other threads are invoking methods on the

concurrent vector when you call this function.

Returns the number of elements in the concurrent vector. This method is concurrency-safe.

The number of elements in this concurrent_vector object.

The returned size is guaranteed to include all elements appended by calls to the function push_back , or grow
operations that have completed prior to invoking this method. However, it may also include elements that are
allocated but still under construction by concurrent calls to any of the growth methods.

void swap(concurrent_vector& _Vector);

Parameters

See also

Swaps the contents of two concurrent vectors. This method is not concurrency-safe.

_Vector
The concurrent_vector object to swap contents with.

concurrency Namespace
Parallel Containers and Objects

Context Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class Context;

Members
Protected Constructors

NAME DESCRIPTION

~Context Destructor

Public Methods

NAME DESCRIPTION

Block Blocks the current context.

CurrentContext Returns a pointer to the current context.

GetId Returns an identifier for the context that is unique within the
scheduler to which the context belongs.

GetScheduleGroupId Returns an identifier for the schedule group that the context
is currently working on.

GetVirtualProcessorId Returns an identifier for the virtual processor that the context
is currently executing on.

Id Returns an identifier for the current context that is unique
within the scheduler to which the current context belongs.

IsCurrentTaskCollectionCanceling Returns an indication of whether the task collection which is
currently executing inline on the current context is in the
midst of an active cancellation (or will be shortly).

IsSynchronouslyBlocked Determines whether or not the context is synchronously
blocked. A context is considered to be synchronously blocked
if it explicitly performed an action which led to blocking.

Oversubscribe Injects an additional virtual processor into a scheduler for the
duration of a block of code when invoked on a context
executing on one of the virtual processors in that scheduler.

Represents an abstraction for an execution context.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/context-class.md

ScheduleGroupId Returns an identifier for the schedule group that the current
context is working on.

Unblock Unblocks the context and causes it to become runnable.

VirtualProcessorId Returns an identifier for the virtual processor that the current
context is executing on.

Yield Yields execution so that another context can execute. If no
other context is available to yield to, the scheduler can yield to
another operating system thread.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

Block

static void __cdecl Block();

Remarks

The Concurrency Runtime scheduler (see Scheduler) uses execution contexts to execute the work queued to it by
your application. A Win32 thread is an example of an execution context on a Windows operating system.

At any time, the concurrency level of a scheduler is equal to the number of virtual processors granted to it by the
Resource Manager. A virtual processor is an abstraction for a processing resource and maps to a hardware thread
on the underlying system. Only a single scheduler context can execute on a virtual processor at a given time.

The scheduler is cooperative in nature and an executing context can yield its virtual processor to a different context
at any time if it wishes to enter a wait state. When its wait it satisfied, it cannot resume until an available virtual
processor from the scheduler begins executing it.

Context

Header: concrt.h

Namespace: concurrency

Blocks the current context.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

If the calling context is running on a virtual processor, the virtual processor will find another runnable context to
execute or can potentially create a new one.

After the Block method has been called or will be called, you must pair it with a call to the Unblock method from
another execution context in order for it to run again. Be aware that there is a critical period between the point
where your code publishes its context for another thread to be able to call the Unblock method and the point
where the actual method call to Block is made. During this period, you must not call any method which can in

~Context
virtual ~Context();

CurrentContext

static Context* __cdecl CurrentContext();

Return Value

Remarks

GetId

virtual unsigned int GetId() const = 0;

Return Value

GetScheduleGroupId

virtual unsigned int GetScheduleGroupId() const = 0;

Return Value

Remarks

GetVirtualProcessorId

turn block and unblock for its own reasons (for example, acquiring a lock). Calls to the Block and Unblock

method do not track the reason for the blocking and unblocking. Only one object should have ownership of a
Block - Unblock pair.

This method can throw a variety of exceptions, including scheduler_resource_allocation_error.

Returns a pointer to the current context.

A pointer to the current context.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

Returns an identifier for the context that is unique within the scheduler to which the context belongs.

An identifier for the context that is unique within the scheduler to which the context belongs.

Returns an identifier for the schedule group that the context is currently working on.

An identifier for the schedule group the context is currently working on.

The return value from this method is an instantaneous sampling of the schedule group that the context is
executing on. If this method is called on a context other than the current context, the value can be stale the
moment it is returned and cannot be relied upon. Typically, this method is used for debugging or tracing purposes
only.

Returns an identifier for the virtual processor that the context is currently executing on.

virtual unsigned int GetVirtualProcessorId() const = 0;

Return Value

Remarks

Id

static unsigned int __cdecl Id();

Return Value

IsCurrentTaskCollectionCanceling

static bool __cdecl IsCurrentTaskCollectionCanceling();

Return Value

IsSynchronouslyBlocked

virtual bool IsSynchronouslyBlocked() const = 0;

Return Value

Remarks

If the context is currently executing on a virtual processor, an identifier for the virtual processor that the context is
currently executing on; otherwise, the value -1 .

The return value from this method is an instantaneous sampling of the virtual processor that the context is
executing on. This value can be stale the moment it is returned and cannot be relied upon. Typically, this method is
used for debugging or tracing purposes only.

Returns an identifier for the current context that is unique within the scheduler to which the current context
belongs.

If the current context is attached to a scheduler, an identifier for the current context that is unique within the
scheduler to which the current context belongs; otherwise, the value -1 .

Returns an indication of whether the task collection which is currently executing inline on the current context is in
the midst of an active cancellation (or will be shortly).

If a scheduler is attached to the calling context and a task group is executing a task inline on that context, an
indication of whether that task group is in the midst of an active cancellation (or will be shortly); otherwise, the
value false .

Determines whether or not the context is synchronously blocked. A context is considered to be synchronously
blocked if it explicitly performed an action which led to blocking.

Whether the context is synchronously blocked.

A context is considered to be synchronously blocked if it explicitly performed an action which led to blocking. On
the thread scheduler, this would indicate a direct call to the Context::Block method or a synchronization object
which was built using the Context::Block method.

The return value from this method is an instantaneous sample of whether the context is synchronously blocked.

operator delete

void operator delete(void* _PObject);

Parameters

Oversubscribe

static void __cdecl Oversubscribe(bool _BeginOversubscription);

Parameters

ScheduleGroupId

static unsigned int __cdecl ScheduleGroupId();

Return Value

Unblock

virtual void Unblock() = 0;

Remarks

This value may be stale the moment it is returned and can only be used under very specific circumstances.

A Context object is destroyed internally by the runtime. It can not be explicitly deleted.

_PObject
A pointer to the object to be deleted.

Injects an additional virtual processor into a scheduler for the duration of a block of code when invoked on a
context executing on one of the virtual processors in that scheduler.

_BeginOversubscription
If true, an indication that an extra virtual processor should be added for the duration of the oversubscription. If
false, an indication that the oversubscription should end and the previously added virtual processor should be
removed.

Returns an identifier for the schedule group that the current context is working on.

If the current context is attached to a scheduler and working on a schedule group, an identifier for the scheduler
group that the current context is working on; otherwise, the value -1 .

Unblocks the context and causes it to become runnable.

It is perfectly legal for a call to the Unblock method to come before a corresponding call to the Block method. As
long as calls to the Block and Unblock methods are properly paired, the runtime properly handles the natural
race of either ordering. An Unblock call coming before a Block call simply negates the effect of the Block call.

There are several exceptions which can be thrown from this method. If a context attempts to call the Unblock

method on itself, a context_self_unblock exception will be thrown. If calls to Block and Unblock are not properly
paired (for example, two calls to Unblock are made for a context which is currently running), a
context_unblock_unbalanced exception will be thrown.

VirtualProcessorId

static unsigned int __cdecl VirtualProcessorId();

Return Value

Remarks

Yield

static void __cdecl Yield();

Remarks

YieldExecution

static void __cdecl YieldExecution();

Remarks

See also

Be aware that there is a critical period between the point where your code publishes its context for another thread
to be able to call the Unblock method and the point where the actual method call to Block is made. During this
period, you must not call any method which can in turn block and unblock for its own reasons (for example,
acquiring a lock). Calls to the Block and Unblock method do not track the reason for the blocking and
unblocking. Only one object should have ownership of a Block and Unblock pair.

Returns an identifier for the virtual processor that the current context is executing on.

If the current context is attached to a scheduler, an identifier for the virtual processor that the current context is
executing on; otherwise, the value -1 .

The return value from this method is an instantaneous sampling of the virtual processor that the current context is
executing on. This value can be stale the moment it is returned and cannot be relied upon. Typically, this method is
used for debugging or tracing purposes only.

Yields execution so that another context can execute. If no other context is available to yield to, the scheduler can
yield to another operating system thread.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

Yields execution so that another context can execute. If no other context is available to yield to, the scheduler can
yield to another operating system thread.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

This function is new in Visual Studio 2015 and is identical to the Yield function but does not conflict with the Yield
macro in Windows.h.

concurrency Namespace
Scheduler Class
Task Scheduler

context_self_unblock Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class context_self_unblock : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

context_self_unblock Overloaded. Constructs a context_self_unblock object.

Inheritance Hierarchy

Requirements

context_self_unblock

explicit _CRTIMP context_self_unblock(_In_z_ const char* _Message) throw();

context_self_unblock() throw();

Parameters

See also

This class describes an exception thrown when the Unblock method of a Context object is called from the same
context. This would indicate an attempt by a given context to unblock itself.

exception

context_self_unblock

Header: concrt.h

Namespace: concurrency

Constructs a context_self_unblock object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/context-self-unblock-class.md

context_unblock_unbalanced Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class context_unblock_unbalanced : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

context_unblock_unbalanced Overloaded. Constructs a context_unblock_unbalanced

object.

Remarks

Inheritance Hierarchy

Requirements

context_unblock_unbalanced

explicit _CRTIMP context_unblock_unbalanced(_In_z_ const char* _Message) throw();

context_unblock_unbalanced() throw();

Parameters

This class describes an exception thrown when calls to the Block and Unblock methods of a Context object are
not properly paired.

Calls to the Block and Unblock methods of a Context object must always be properly paired. The Concurrency
Runtime allows the operations to happen in either order. For example, a call to Block can be followed by a call to
Unblock , or vice-versa. This exception would be thrown if, for instance, two calls to the Unblock method were

made in a row, on a Context object which was not blocked.

exception

context_unblock_unbalanced

Header: concrt.h

Namespace: concurrency

Constructs a context_unblock_unbalanced object.

_Message
A descriptive message of the error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/context-unblock-unbalanced-class.md

See also
concurrency Namespace

critical_section Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class critical_section;

Members
Public Typedefs

NAME DESCRIPTION

native_handle_type A reference to a critical_section object.

Public Classes

NAME DESCRIPTION

critical_section::scoped_lock Class An exception safe RAII wrapper for a critical_section

object.

Public Constructors

NAME DESCRIPTION

critical_section Constructs a new critical section.

~critical_section Destructor Destroys a critical section.

Public Methods

NAME DESCRIPTION

lock Acquires this critical section.

native_handle Returns a platform specific native handle, if one exists.

try_lock Tries to acquire the lock without blocking.

try_lock_for Tries to acquire the lock without blocking for a specific
number of milliseconds.

unlock Unlocks the critical section.

Remarks

A non-reentrant mutex which is explicitly aware of the Concurrency Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/critical-section-class.md

Inheritance Hierarchy

Requirements

critical_section

critical_section();

~critical_section

~critical_section();

Remarks

lock

void lock();

Remarks

native_handle

native_handle_type native_handle();

Return Value

Remarks

For more information, see Synchronization Data Structures.

critical_section

Header: concrt.h

Namespace: concurrency

Constructs a new critical section.

Destroys a critical section.

It is expected that the lock is no longer held when the destructor runs. Allowing the critical section to destruct
with the lock still held results in undefined behavior.

Acquires this critical section.

It is often safer to utilize the scoped_lock construct to acquire and release a critical_section object in an
exception safe way.

If the lock is already held by the calling context, an improper_lock exception will be thrown.

Returns a platform specific native handle, if one exists.

A reference to the critical section.

A critical_section object is not associated with a platform specific native handle for the Windows operating

critical_section::scoped_lock Class

class scoped_lock;

scoped_lock::scoped_lock

explicit _CRTIMP scoped_lock(critical_section& _Critical_section);

Parameters

scoped_lock::~scoped_lock

~scoped_lock();

try_lock

bool try_lock();

Return Value

try_lock_for

bool try_lock_for(unsigned int _Timeout);

Parameters

Return Value

unlock

system. The method simply returns a reference to the object itself.

An exception safe RAII wrapper for a critical_section object.

Constructs a scoped_lock object and acquires the critical_section object passed in the _Critical_section

parameter. If the critical section is held by another thread, this call will block.

_Critical_section
The critical section to lock.

Destroys a scoped_lock object and releases the critical section supplied in its constructor.

Tries to acquire the lock without blocking.

If the lock was acquired, the value true; otherwise, the value false.

Tries to acquire the lock without blocking for a specific number of milliseconds.

_Timeout
The number of milliseconds to wait before timing out.

If the lock was acquired, the value true; otherwise, the value false.

void unlock();

See also

Unlocks the critical section.

concurrency Namespace
reader_writer_lock Class

CurrentScheduler Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CurrentScheduler;

Members
Public Methods

NAME DESCRIPTION

Create Creates a new scheduler whose behavior is described by the
_Policy parameter and attaches it to the calling context.

The newly created scheduler will become the current
scheduler for the calling context.

CreateScheduleGroup Overloaded. Creates a new schedule group within the
scheduler associated with the calling context. The version that
takes the parameter _Placement causes tasks within the
newly created schedule group to be biased towards executing
at the location specified by that parameter.

Detach Detaches the current scheduler from the calling context and
restores the previously attached scheduler as the current
scheduler, if one exists. After this method returns, the calling
context is then managed by the scheduler that was previously
attached to the context using either the
CurrentScheduler::Create or Scheduler::Attach

method.

Get Returns a pointer to the scheduler associated with the calling
context, also referred to as the current scheduler.

GetNumberOfVirtualProcessors Returns the current number of virtual processors for the
scheduler associated with the calling context.

GetPolicy Returns a copy of the policy that the current scheduler was
created with.

Id Returns a unique identifier for the current scheduler.

IsAvailableLocation Determines whether a given location is available on the
current scheduler.

Represents an abstraction for the current scheduler associated with the calling context.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/currentscheduler-class.md

RegisterShutdownEvent Causes the Windows event handle passed in the
_ShutdownEvent parameter to be signaled when the

scheduler associated with the current context shuts down and
destroys itself. At the time the event is signaled, all work that
had been scheduled to the scheduler is complete. Multiple
shutdown events can be registered through this method.

ScheduleTask Overloaded. Schedules a light-weight task within the
scheduler associated with the calling context. The light-weight
task will be placed in a schedule group determined by the
runtime. The version that takes the parameter _Placement

causes the task to be biased towards executing at the
specified location.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

Create

static void __cdecl Create(const SchedulerPolicy& _Policy);

Parameters

Remarks

If there is no scheduler (see Scheduler) associated with the calling context, many methods within the
CurrentScheduler class will result in attachment of the process' default scheduler. This may also imply that the

process' default scheduler is created during such a call.

CurrentScheduler

Header: concrt.h

Namespace: concurrency

Creates a new scheduler whose behavior is described by the _Policy parameter and attaches it to the calling
context. The newly created scheduler will become the current scheduler for the calling context.

_Policy
The scheduler policy that describes the behavior of the newly created scheduler.

The attachment of the scheduler to the calling context implicitly places a reference count on the scheduler.

After a scheduler is created with the Create method, you must call the CurrentScheduler::Detach method at
some point in the future in order to allow the scheduler to shut down.

If this method is called from a context that is already attached to a different scheduler, the existing scheduler is
remembered as the previous scheduler, and the newly created scheduler becomes the current scheduler. When
you call the CurrentScheduler::Detach method at a later point, the previous scheduler is restored as the current
scheduler.

This method can throw a variety of exceptions, including scheduler_resource_allocation_error and

CreateScheduleGroup

static ScheduleGroup* __cdecl CreateScheduleGroup();

static ScheduleGroup* __cdecl CreateScheduleGroup(location& _Placement);

Parameters

Return Value

Remarks

Detach

static void __cdecl Detach();

Remarks

Get

invalid_scheduler_policy_value.

Creates a new schedule group within the scheduler associated with the calling context. The version that takes the
parameter _Placement causes tasks within the newly created schedule group to be biased towards executing at
the location specified by that parameter.

_Placement
A reference to a location where the tasks within the schedule group will be biased towards executing at.

A pointer to the newly created schedule group. This ScheduleGroup object has an initial reference count placed on
it.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

You must invoke the Release method on a schedule group when you are done scheduling work to it. The
scheduler will destroy the schedule group when all work queued to it has completed.

Note that if you explicitly created this scheduler, you must release all references to schedule groups within it,
before you release your reference on the scheduler, by detaching the current context from it.

Detaches the current scheduler from the calling context and restores the previously attached scheduler as the
current scheduler, if one exists. After this method returns, the calling context is then managed by the scheduler
that was previously attached to the context using either the CurrentScheduler::Create or Scheduler::Attach

method.

The Detach method implicitly removes a reference count from the scheduler.

If there is no scheduler attached to the calling context, calling this method will result in a scheduler_not_attached
exception being thrown.

Calling this method from a context that is internal to and managed by a scheduler, or a context that was attached
using a method other than the Scheduler::Attach or CurrentScheduler::Create methods, will result in an
improper_scheduler_detach exception being thrown.

Returns a pointer to the scheduler associated with the calling context, also referred to as the current scheduler.

static Scheduler* __cdecl Get();

Return Value

Remarks

GetNumberOfVirtualProcessors

static unsigned int __cdecl GetNumberOfVirtualProcessors();

Return Value

Remarks

GetPolicy

static SchedulerPolicy __cdecl GetPolicy();

Return Value

Remarks

Id

static unsigned int __cdecl Id();

Return Value

Remarks

A pointer to the scheduler associated with the calling context (the current scheduler).

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context. No additional reference is placed on the
Scheduler object returned by this method.

Returns the current number of virtual processors for the scheduler associated with the calling context.

If a scheduler is associated with the calling context, the current number of virtual processors for that scheduler;
otherwise, the value -1 .

This method will not result in scheduler attachment if the calling context is not already associated with a scheduler.

The return value from this method is an instantaneous sampling of the number of virtual processors for the
scheduler associated with the calling context. This value can be stale the moment it is returned.

Returns a copy of the policy that the current scheduler was created with.

A copy of the policy that the current scheduler was created with.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

Returns a unique identifier for the current scheduler.

If a scheduler is associated with the calling context, a unique identifier for that scheduler; otherwise, the value -1 .

This method will not result in scheduler attachment if the calling context is not already associated with a scheduler.

IsAvailableLocation

static bool __cdecl IsAvailableLocation(const location& _Placement);

Parameters

Return Value

Remarks

RegisterShutdownEvent

static void __cdecl RegisterShutdownEvent(HANDLE _ShutdownEvent);

Parameters

Remarks

ScheduleTask

static void __cdecl ScheduleTask(
 TaskProc _Proc,
 _Inout_opt_ void* _Data);

static void __cdecl ScheduleTask(
 TaskProc _Proc,
 _Inout_opt_ void* _Data,
 location& _Placement);

Determines whether a given location is available on the current scheduler.

_Placement
A reference to the location to query the current scheduler about.

An indication of whether or not the location specified by the _Placement argument is available on the current
scheduler.

This method will not result in scheduler attachment if the calling context is not already associated with a scheduler.

Note that the return value is an instantaneous sampling of whether the given location is available. In the presence
of multiple schedulers, dynamic resource management can add or take away resources from schedulers at any
point. Should this happen, the given location can change availability.

Causes the Windows event handle passed in the _ShutdownEvent parameter to be signaled when the scheduler
associated with the current context shuts down and destroys itself. At the time the event is signaled, all work that
had been scheduled to the scheduler is complete. Multiple shutdown events can be registered through this
method.

_ShutdownEvent
A handle to a Windows event object which will be signaled by the runtime when the scheduler associated with the
current context shuts down and destroys itself.

If there is no scheduler attached to the calling context, calling this method will result in a scheduler_not_attached
exception being thrown.

Schedules a light-weight task within the scheduler associated with the calling context. The light-weight task will be
placed in a schedule group determined by the runtime. The version that takes the parameter _Placement causes
the task to be biased towards executing at the specified location.

Parameters

Remarks

See also

_Proc
A pointer to the function to execute to perform the body of the light-weight task.

_Data
A void pointer to the data that will be passed as a parameter to the body of the task.

_Placement
A reference to a location where the light-weight task will be biased towards executing at.

This method will result in the process' default scheduler being created and/or attached to the calling context if
there is no scheduler currently associated with the calling context.

concurrency Namespace
Scheduler Class
PolicyElementKey
Task Scheduler

default_scheduler_exists Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class default_scheduler_exists : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

default_scheduler_exists Overloaded. Constructs a default_scheduler_exists

object.

Inheritance Hierarchy

Requirements

default_scheduler_exists

explicit _CRTIMP default_scheduler_exists(_In_z_ const char* _Message) throw();

default_scheduler_exists() throw();

Parameters

See also

This class describes an exception thrown when the Scheduler::SetDefaultSchedulerPolicy method is called when a
default scheduler already exists within the process.

exception

default_scheduler_exists

Header: concrt.h

Namespace: concurrency

Constructs a default_scheduler_exists object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/default-scheduler-exists-class.md

DispatchState Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct DispatchState;

Members
Public Constructors

NAME DESCRIPTION

DispatchState::DispatchState Constructs a new DispatchState object.

Public Data Members

NAME DESCRIPTION

DispatchState::m_dispatchStateSize Size of this structure, which is used for versioning.

DispatchState::m_fIsPreviousContextAsynchronouslyBlocked Tells whether this context has entered the Dispatch method
because the previous context asynchronously blocked. This is
used only on the UMS scheduling context, and is set to the
value 0 for all other execution contexts.

DispatchState::m_reserved Bits reserved for future information passing.

Inheritance Hierarchy

Requirements

DispatchState::DispatchState Constructor

DispatchState();

DispatchState::m_dispatchStateSize Data Member

The DispatchState structure is used to transfer state to the IExecutionContext::Dispatch method. It describes the
circumstances under which the Dispatch method is invoked on an IExecutionContext interface.

DispatchState

Header: concrtrm.h

Namespace: concurrency

Constructs a new DispatchState object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/dispatchstate-structure.md

unsigned long m_dispatchStateSize;

DispatchState::m_fIsPreviousContextAsynchronouslyBlocked Data
Member

unsigned int m_fIsPreviousContextAsynchronouslyBlocked : 1;

DispatchState::m_reserved Data Member

unsigned int m_reserved : 31;

See also

Size of this structure, which is used for versioning.

Tells whether this context has entered the Dispatch method because the previous context asynchronously blocked.
This is used only on the UMS scheduling context, and is set to the value 0 for all other execution contexts.

Bits reserved for future information passing.

concurrency Namespace

event Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class event;

Members
Public Constructors

NAME DESCRIPTION

~event Destructor Destroys an event.

Public Methods

NAME DESCRIPTION

reset Resets the event to a non-signaled state.

set Signals the event.

wait Waits for the event to become signaled.

wait_for_multiple Waits for multiple events to become signaled.

Public Constants

NAME DESCRIPTION

timeout_infinite Value indicating that a wait should never time out.

Remarks

Inheritance Hierarchy

Requirements

A manual reset event which is explicitly aware of the Concurrency Runtime.

For more information, see Synchronization Data Structures.

event

Header: concrt.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/event-class.md

event

_CRTIMP event();

Remarks

~event

~event();

Remarks

reset

void reset();

set

void set();

Remarks

timeout_infinite

static const unsigned int timeout_infinite = COOPERATIVE_TIMEOUT_INFINITE;

wait

size_t wait(unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Constructs a new event.

Destroys an event.

It is expected that there are no threads waiting on the event when the destructor runs. Allowing the event to
destruct with threads still waiting on it results in undefined behavior.

Resets the event to a non-signaled state.

Signals the event.

Signaling the event can cause an arbitrary number of contexts waiting on the event to become runnable.

Value indicating that a wait should never time out.

Waits for the event to become signaled.

_Timeout
Indicates the number of milliseconds before the wait times out. The value COOPERATIVE_TIMEOUT_INFINITE

signifies that there is no timeout.

Return Value

IMPORTANT

wait_for_multiple

static size_t __cdecl wait_for_multiple(
 _In_reads_(count) event** _PPEvents,
 size_t count,
 bool _FWaitAll,
 unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

Parameters

Return Value

Remarks

IMPORTANT

See also

If the wait was satisfied, the value 0 is returned; otherwise, the value COOPERATIVE_WAIT_TIMEOUT to indicate that
the wait timed out without the event becoming signaled.

In a Universal Windows Platform (UWP) app, do not call wait on the ASTA thread because this call can block the current
thread and can cause the app to become unresponsive.

Waits for multiple events to become signaled.

_PPEvents
An array of events to wait on. The number of events within the array is indicated by the count parameter.

count
The count of events within the array supplied in the _PPEvents parameter.

_FWaitAll
If set to the value true, the parameter specifies that all events within the array supplied in the _PPEvents

parameter must become signaled in order to satisfy the wait. If set to the value false, it specifies that any event
within the array supplied in the _PPEvents parameter becoming signaled will satisfy the wait.

_Timeout
Indicates the number of milliseconds before the wait times out. The value COOPERATIVE_TIMEOUT_INFINITE

signifies that there is no timeout.

If the wait was satisfied, the index within the array supplied in the _PPEvents parameter which satisfied the wait
condition; otherwise, the value COOPERATIVE_WAIT_TIMEOUT to indicate that the wait timed out without the
condition being satisfied.

If the parameter _FWaitAll is set to the value true to indicate that all events must become signaled to satisfy
the wait, the index returned by the function carries no special significance other than the fact that it is not the
value COOPERATIVE_WAIT_TIMEOUT .

In a Universal Windows Platform (UWP) app, do not call wait_for_multiple on the ASTA thread because this call can
block the current thread and can cause the app to become unresponsive.

concurrency Namespace

IExecutionContext Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct IExecutionContext;

Members
Public Methods

NAME DESCRIPTION

IExecutionContext::Dispatch The method that is called when a thread proxy starts
executing a particular execution context. This should be the
main worker routine for your scheduler.

IExecutionContext::GetId Returns a unique identifier for the execution context.

IExecutionContext::GetProxy Returns an interface to the thread proxy that is executing this
context.

IExecutionContext::GetScheduler Returns an interface to the scheduler this execution context
belongs to.

IExecutionContext::SetProxy Associates a thread proxy with this execution context. The
associated thread proxy invokes this method right before it
starts executing the context's Dispatch method.

Remarks

Inheritance Hierarchy

Requirements

IExecutionContext::Dispatch Method

An interface to an execution context which can run on a given virtual processor and be cooperatively context
switched.

If you are implementing a custom scheduler that interfaces with the Concurrency Runtime's Resource Manager,
you will need to implement the IExecutionContext interface. The threads created by the Resource Manager
perform work on behalf of your scheduler by executing the IExecutionContext::Dispatch method.

IExecutionContext

Header: concrtrm.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iexecutioncontext-structure.md

virtual void Dispatch(_Inout_ DispatchState* pDispatchState) = 0;

Parameters

IExecutionContext::GetId Method

virtual unsigned int GetId() const = 0;

Return Value

Remarks

IExecutionContext::GetProxy Method

virtual IThreadProxy* GetProxy() = 0;

Return Value

Remarks

IExecutionContext::GetScheduler Method

virtual IScheduler* GetScheduler() = 0;

Return Value

Remarks

The method that is called when a thread proxy starts executing a particular execution context. This should be the
main worker routine for your scheduler.

pDispatchState
A pointer to the state under which this execution context is being dispatched. For more information on dispatch
state, see DispatchState.

Returns a unique identifier for the execution context.

A unique integer identifier.

You should use the method GetExecutionContextId to obtain a unique identifier for the object that implements the
IExecutionContext interface, before you use the interface as a parameter to methods supplied by the Resource

Manager. You are expected to return the same identifier when the GetId function is invoked.

An identifier obtained from a different source could result in undefined behavior.

Returns an interface to the thread proxy that is executing this context.

An IThreadProxy interface. If the execution context's thread proxy has not been initialized with a call to SetProxy ,
the function must return NULL .

The Resource Manager will invoke the SetProxy method on an execution context, with an IThreadProxy interface
as a parameter, prior to entering the Dispatch method on the on the context. You are expected to store this
argument and return it on calls to GetProxy() .

Returns an interface to the scheduler this execution context belongs to.

An IScheduler interface.

 IExecutionContext::SetProxy Method

virtual void SetProxy(_Inout_ IThreadProxy* pThreadProxy) = 0;

Parameters

Remarks

See also

You are required to initialize the execution context with a valid IScheduler interface before you use it as a
parameter to methods supplied by the Resource Manager.

Associates a thread proxy with this execution context. The associated thread proxy invokes this method right
before it starts executing the context's Dispatch method.

pThreadProxy
An interface to the thread proxy that is about to enter the Dispatch method on this execution context.

You are expected to save the parameter pThreadProxy and return it on a call to the GetProxy method. The
Resource Manager guarantees that the thread proxy associated with the execution context will not change while
the thread proxy is executing the Dispatch method.

concurrency Namespace
IScheduler Structure
IThreadProxy Structure

IExecutionResource Structure
3/4/2019 • 4 minutes to read • Edit Online

Syntax
struct IExecutionResource;

Members
Public Methods

NAME DESCRIPTION

IExecutionResource::CurrentSubscriptionLevel Returns the number of activated virtual processor roots and
subscribed external threads currently associated with the
underlying hardware thread this execution resource
represents.

IExecutionResource::GetExecutionResourceId Returns a unique identifier for the hardware thread that this
execution resource represents.

IExecutionResource::GetNodeId Returns a unique identifier for the processor node that this
execution resource belongs to.

IExecutionResource::Remove Returns this execution resource to the Resource Manager.

Remarks

Inheritance Hierarchy

Requirements

IExecutionResource::CurrentSubscriptionLevel Method

An abstraction for a hardware thread.

Execution resources can be standalone or associated with virtual processor roots. A standalone execution resource
is created when a thread in your application creates a thread subscription. The methods
ISchedulerProxy::SubscribeThread and ISchedulerProxy::RequestInitialVirtualProcessors create thread
subscriptions, and return an IExecutionResource interface representing the subscription. Creating a thread
subscription is a way to inform the Resource Manager that a given thread will participate in the work queued to a
scheduler, along with the virtual processor roots Resource Manager assigns to the scheduler. The Resource
Manager uses the information to avoid oversubscribing hardware threads where it can.

IExecutionResource

Header: concrtrm.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iexecutionresource-structure.md

virtual unsigned int CurrentSubscriptionLevel() const = 0;

Return Value

Remarks

IExecutionResource::GetExecutionResourceId Method

virtual unsigned int GetExecutionResourceId() const = 0;

Return Value

Remarks

IExecutionResource::GetNodeId Method

virtual unsigned int GetNodeId() const = 0;

Return Value

Remarks

Returns the number of activated virtual processor roots and subscribed external threads currently associated with
the underlying hardware thread this execution resource represents.

The current subscription level.

The subscription level tells you how many running threads are associated with the hardware thread. This only
includes threads the Resource Manager is aware of in the form of subscribed threads, and virtual processor roots
that are actively executing thread proxies.

Calling the method ISchedulerProxy::SubscribeCurrentThread, or the method
ISchedulerProxy::RequestInitialVirtualProcessors with the parameter doSubscribeCurrentThread set to the value
true increments the subscription level of a hardware thread by one. They also return an IExecutionResource

interface representing the subscription. A corresponding call to the IExecutionResource::Remove decrements the
hardware thread's subscription level by one.

The act of activating a virtual processor root using the method IVirtualProcessorRoot::Activate increments the
subscription level of a hardware thread by one. The methods IVirtualProcessorRoot::Deactivate, or
IExecutionResource::Remove decrement the subscription level by one when invoked on an activated virtual
processor root.

The Resource Manager uses subscription level information as one of the ways in which to determine when to
move resources between schedulers.

Returns a unique identifier for the hardware thread that this execution resource represents.

A unique identifier for the hardware thread underlying this execution resource.

Each hardware thread is assigned a unique identifier by the Concurrency Runtime. If multiple execution resources
are associated hardware thread, they will all have the same execution resource identifier.

Returns a unique identifier for the processor node that this execution resource belongs to.

A unique identifier for a processor node.

The Concurrency Runtime represents hardware threads on the system in groups of processor nodes. Nodes are
usually derived from the hardware topology of the system. For example, all processors on a specific socket or a

 IExecutionResource::Remove Method

virtual void Remove(_Inout_ IScheduler* pScheduler) = 0;

Parameters

Remarks

See also

specific NUMA node may belong to the same processor node. The Resource Manager assigns unique identifiers
to these nodes starting with 0 up to and including nodeCount - 1 , where nodeCount represents the total number
of processor nodes on the system.

The count of nodes can be obtained from the function GetProcessorNodeCount.

Returns this execution resource to the Resource Manager.

pScheduler
An interface to the scheduler making the request to remove this execution resource.

Use this method to return standalone execution resources as well as execution resources associated with virtual
processor roots to the Resource Manager.

If this is a standalone execution resource you received from either of the methods
ISchedulerProxy::SubscribeCurrentThread or ISchedulerProxy::RequestInitialVirtualProcessors, calling the
method Remove will end the thread subscription that the resource was created to represent. You are required to
end all thread subscriptions before shutting down a scheduler proxy, and must call Remove from the thread that
created the subscription.

Virtual processor roots, too, can be returned to the Resource Manager by invoking the Remove method, because
the interface IVirtualProcessorRoot inherits from the IExecutionResource interface. You may need to return a
virtual processor root either in response to a call to the IScheduler::RemoveVirtualProcessors method, or when
you are done with an oversubscribed virtual processor root you obtained from the
ISchedulerProxy::CreateOversubscriber method. For virtual processor roots, there are no restrictions on which
thread can invoke the Remove method.

invalid_argument is thrown if the parameter pScheduler is set to NULL .

invalid_operation is thrown if the parameter pScheduler is different from the scheduler that this execution
resource was created for, or, with a standalone execution resource, if the current thread is different from the thread
that created the thread subscription.

concurrency Namespace
IVirtualProcessorRoot Structure

improper_lock Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class improper_lock : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

improper_lock Overloaded. Constructs an improper_lock exception .

Remarks

Inheritance Hierarchy

Requirements

improper_lock

explicit _CRTIMP improper_lock(_In_z_ const char* _Message) throw();

improper_lock() throw();

Parameters

See also

This class describes an exception thrown when a lock is acquired improperly.

Typically, this exception is thrown when an attempt is made to acquire a non-reentrant lock recursively on the
same context.

exception

improper_lock

Header: concrt.h

Namespace: concurrency

Constructs an improper_lock exception .

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/improper-lock-class.md

critical_section Class
reader_writer_lock Class

improper_scheduler_attach Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class improper_scheduler_attach : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

improper_scheduler_attach Overloaded. Constructs an improper_scheduler_attach

object.

Inheritance Hierarchy

Requirements

improper_scheduler_attach

explicit _CRTIMP improper_scheduler_attach(_In_z_ const char* _Message) throw();

improper_scheduler_attach() throw();

Parameters

See also

This class describes an exception thrown when the Attach method is called on a Scheduler object which is
already attached to the current context.

exception

improper_scheduler_attach

Header: concrt.h

Namespace: concurrency

Constructs an improper_scheduler_attach object.

_Message
A descriptive message of the error.

concurrency Namespace
Scheduler Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/improper-scheduler-attach-class.md

improper_scheduler_detach Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class improper_scheduler_detach : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

improper_scheduler_detach Overloaded. Constructs an improper_scheduler_detach

object.

Inheritance Hierarchy

Requirements

improper_scheduler_detach

explicit _CRTIMP improper_scheduler_detach(_In_z_ const char* _Message) throw();

improper_scheduler_detach() throw();

Parameters

See also

This class describes an exception thrown when the CurrentScheduler::Detach method is called on a context which
has not been attached to any scheduler using the Attach method of a Scheduler object.

exception

improper_scheduler_detach

Header: concrt.h

Namespace: concurrency

Constructs an improper_scheduler_detach object.

_Message
A descriptive message of the error.

concurrency Namespace
Scheduler Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/improper-scheduler-detach-class.md

improper_scheduler_reference Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class improper_scheduler_reference : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

improper_scheduler_reference Overloaded. Constructs an improper_scheduler_reference

object.

Inheritance Hierarchy

Requirements

improper_scheduler_reference

explicit _CRTIMP improper_scheduler_reference(_In_z_ const char* _Message) throw();

improper_scheduler_reference() throw();

Parameters

See also

This class describes an exception thrown when the Reference method is called on a Scheduler object that is
shutting down, from a context that is not part of that scheduler.

exception

improper_scheduler_reference

Header: concrt.h

Namespace: concurrency

Constructs an improper_scheduler_reference object.

_Message
A descriptive message of the error.

concurrency Namespace
Scheduler Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/improper-scheduler-reference-class.md

invalid_link_target Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_link_target : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_link_target Overloaded. Constructs an invalid_link_target object.

Inheritance Hierarchy

Requirements

invalid_link_target

explicit _CRTIMP invalid_link_target(_In_z_ const char* _Message) throw();

invalid_link_target() throw();

Parameters

See also

This class describes an exception thrown when the link_target method of a messaging block is called and the
messaging block is unable to link to the target. This can be the result of exceeding the number of links the
messaging block is allowed or attempting to link a specific target twice to the same source.

exception

invalid_link_target

Header: concrt.h

Namespace: concurrency

Constructs an invalid_link_target object.

_Message
A descriptive message of the error.

concurrency Namespace
Asynchronous Message Blocks

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-link-target-class.md

invalid_multiple_scheduling Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_multiple_scheduling : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_multiple_scheduling Overloaded. Constructs an invalid_multiple_scheduling

object.

Inheritance Hierarchy

Requirements

invalid_multiple_scheduling

explicit _CRTIMP invalid_multiple_scheduling(_In_z_ const char* _Message) throw();

invalid_multiple_scheduling() throw();

Parameters

See also

This class describes an exception thrown when a task_handle object is scheduled multiple times using the run

method of a task_group or structured_task_group object without an intervening call to either the wait or
run_and_wait methods.

exception

invalid_multiple_scheduling

Header: concrt.h

Namespace: concurrency

Constructs an invalid_multiple_scheduling object.

_Message
A descriptive message of the error.

concurrency Namespace
task_handle Class
task_group Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-multiple-scheduling-class.md

run
wait
run_and_wait
structured_task_group Class

invalid_operation Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_operation : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_operation Overloaded. Constructs an invalid_operation object.

Remarks

Inheritance Hierarchy

Requirements

invalid_operation

explicit _CRTIMP invalid_operation(_In_z_ const char* _Message) throw();

invalid_operation() throw();

Parameters

See also

This class describes an exception thrown when an invalid operation is performed that is not more accurately
described by another exception type thrown by the Concurrency Runtime.

The various methods which throw this exception will generally document under what circumstances they will
throw it.

exception

invalid_operation

Header: concrt.h

Namespace: concurrency

Constructs an invalid_operation object.

_Message
A descriptive message of the error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-operation-class.md

concurrency Namespace

invalid_oversubscribe_operation Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_oversubscribe_operation : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_oversubscribe_operation Overloaded. Constructs an
invalid_oversubscribe_operation object.

Inheritance Hierarchy

Requirements

invalid_oversubscribe_operation

explicit _CRTIMP invalid_oversubscribe_operation(_In_z_ const char* _Message) throw();

invalid_oversubscribe_operation() throw();

Parameters

See also

This class describes an exception thrown when the Context::Oversubscribe method is called with the
_BeginOversubscription parameter set to false without a prior call to the Context::Oversubscribe method with the
_BeginOversubscription parameter set to true.

exception

invalid_oversubscribe_operation

Header: concrt.h

Namespace: concurrency

Constructs an invalid_oversubscribe_operation object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-oversubscribe-operation-class.md

invalid_scheduler_policy_key Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_scheduler_policy_key : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

invalid_scheduler_policy_key Overloaded. Constructs an invalid_scheduler_policy_key

object.

Inheritance Hierarchy

Requirements

invalid_scheduler_policy_key

explicit _CRTIMP invalid_scheduler_policy_key(_In_z_ const char* _Message) throw();

invalid_scheduler_policy_key() throw();

Parameters

See also

This class describes an exception thrown when an invalid or unknown key is passed to a SchedulerPolicy object
constructor, or the SetPolicyValue method of a SchedulerPolicy object is passed a key that must be changed
using other means such as the SetConcurrencyLimits method.

exception

invalid_scheduler_policy_key

Header: concrt.h

Namespace: concurrency

Constructs an invalid_scheduler_policy_key object.

_Message
A descriptive message of the error.

concurrency Namespace
SchedulerPolicy Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-scheduler-policy-key-class.md

invalid_scheduler_policy_thread_specification Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_scheduler_policy_thread_specification : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

[invalid_scheduler_policy_thread_specification](invalid-
scheduler-policy-value-class.md#ctor

Overloaded. Constructs an
invalid_scheduler_policy_value object.

Inheritance Hierarchy

Requirements

invalid_scheduler_policy_thread_specification

explicit _CRTIMP invalid_scheduler_policy_thread_specification(_In_z_ const char* _Message) throw();

invalid_scheduler_policy_thread_specification() throw();

Parameters

See also

This class describes an exception thrown when an attempt is made to set the concurrency limits of a
SchedulerPolicy object such that the value of the MinConcurrency key is less than the value of the MaxConcurrency

key.

exception

invalid_scheduler_policy_thread_specification

Header: concrt.h

Namespace: concurrency

Constructs an invalid_scheduler_policy_value object.

_Message
A descriptive message of the error.

concurrency Namespace
SchedulerPolicy Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-scheduler-policy-thread-specification-class.md

invalid_scheduler_policy_value Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class invalid_scheduler_policy_value : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

[invalid_scheduler_policy_value](invalid-scheduler-policy-
thread-specification-class.md#ctor

Overloaded. Constructs an
invalid_scheduler_policy_value object.

Inheritance Hierarchy

Requirements

invalid_scheduler_policy_value

explicit _CRTIMP invalid_scheduler_policy_value(_In_z_ const char* _Message) throw();

invalid_scheduler_policy_value() throw();

Parameters

See also

This class describes an exception thrown when a policy key of a SchedulerPolicy object is set to an invalid value
for that key.

exception

invalid_scheduler_policy_value

Header: concrt.h

Namespace: concurrency

Constructs an invalid_scheduler_policy_value object.

_Message
A descriptive message of the error.

concurrency Namespace
SchedulerPolicy Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/invalid-scheduler-policy-value-class.md

IResourceManager Structure
3/28/2019 • 4 minutes to read • Edit Online

Syntax
struct IResourceManager;

Members
Public Enumerations

NAME DESCRIPTION

IResourceManager::OSVersion An enumerated type that represents the operating system
version.

Public Methods

NAME DESCRIPTION

IResourceManager::CreateNodeTopology Present only in debug builds of the runtime, this method is a
test hook designed to facilitate testing of the Resource
Manager on varying hardware topologies, without requiring
actual hardware matching the configuration. With retail builds
of the runtime, this method will return without performing
any action.

IResourceManager::GetAvailableNodeCount Returns the number of nodes available to the Resource
Manager.

IResourceManager::GetFirstNode Returns the first node in enumeration order as defined by the
Resource Manager.

IResourceManager::Reference Increments the reference count on the Resource Manager
instance.

IResourceManager::RegisterScheduler Registers a scheduler with the Resource Manager. Once the
scheduler is registered, it should communicate with the
Resource Manager using the ISchedulerProxy interface
that is returned.

IResourceManager::Release Decrements the reference count on the Resource Manager
instance. The Resource Manager is destroyed when its
reference count goes to 0 .

Remarks

An interface to the Concurrency Runtime's Resource Manager. This is the interface by which schedulers
communicate with the Resource Manager.

Use the CreateResourceManager function to obtain an interface to the singleton Resource Manager instance. The

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iresourcemanager-structure.md

Inheritance Hierarchy

Requirements

IResourceManager::CreateNodeTopology Method

virtual void CreateNodeTopology(
 unsigned int nodeCount,
 _In_reads_(nodeCount) unsigned int* pCoreCount,
 _In_reads_opt_(nodeCount) unsigned int** pNodeDistance,
 _In_reads_(nodeCount) unsigned int* pProcessorGroups) = 0;

Parameters

Remarks

IResourceManager::GetAvailableNodeCount Method

virtual unsigned int GetAvailableNodeCount() const = 0;

Return Value

method increments a reference count on the Resource Manager, and you should invoke the
IResourceManager::Release method to release the reference when you are done with Resource Manager. Typically,
each scheduler you create will invoke this method during creation, and release the reference to the Resource
Manager after it shuts down.

IResourceManager

Header: concrtrm.h

Namespace: concurrency

Present only in debug builds of the runtime, this method is a test hook designed to facilitate testing of the
Resource Manager on varying hardware topologies, without requiring actual hardware matching the
configuration. With retail builds of the runtime, this method will return without performing any action.

nodeCount
The number of processor nodes being simulated.

pCoreCount
An array that specifies the number of cores on each node.

pNodeDistance
A matrix specifying the node distance between any two nodes. This parameter can have the value NULL .

pProcessorGroups
An array that specifies the processor group each node belongs to.

invalid_argument is thrown if the parameter nodeCount has the value 0 was passed in, or if the parameter
pCoreCount has the value NULL .

invalid_operation is thrown if this method is called while other schedulers exist in the process.

Returns the number of nodes available to the Resource Manager.

The number of nodes available to the Resource Manager.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

IResourceManager::GetFirstNode Method

virtual ITopologyNode* GetFirstNode() const = 0;

Return Value

IResourceManager::OSVersion Enumeration

enum OSVersion;

IResourceManager::Reference Method

virtual unsigned int Reference() = 0;

Return Value

IResourceManager::RegisterScheduler Method

virtual ISchedulerProxy *RegisterScheduler(
 Inout IScheduler* pScheduler,
 unsigned int version) = 0;

Parameters

Return Value

Remarks

Returns the first node in enumeration order as defined by the Resource Manager.

The first node in enumeration order as defined by the Resource Manager.

An enumerated type that represents the operating system version.

Increments the reference count on the Resource Manager instance.

The resulting reference count.

Registers a scheduler with the Resource Manager. Once the scheduler is registered, it should communicate with
the Resource Manager using the ISchedulerProxy interface that is returned.

pScheduler
An IScheduler interface to the scheduler to be registered.

version
The version of communication interface the scheduler is using to communicate with the Resource Manager. Using
a version allows the Resource Manager to evolve the communication interface while allowing schedulers to obtain
access to older features. Schedulers that wish to use Resource Manager features present in Visual Studio 2010
should use the version CONCRT_RM_VERSION_1 .

The ISchedulerProxy interface the Resource Manager has associated with your scheduler. Your scheduler should
use this interface to communicate with Resource Manager from this point on.

Use this method to initiate communication with the Resource Manager. The method associates the IScheduler

interface for your scheduler with an ISchedulerProxy interface and hands it back to you. You can use the returned
interface to request execution resources for use by your scheduler, or to subscribe threads with the Resource

 IResourceManager::Release Method

virtual unsigned int Release() = 0;

Return Value

See also

Manager. The Resource Manager will use policy elements from the scheduler policy returned by the
IScheduler::GetPolicy method to determine what type of threads the scheduler will need to execute work. If your
SchedulerKind policy key has the value UmsThreadDefault and the value is read back out of the policy as the value
UmsThreadDefault , the IScheduler interface passed to the method must be an IUMSScheduler interface.

The method throws an invalid_argument exception if the parameter pScheduler has the value NULL or if the
parameter version is not a valid version for the communication interface.

Decrements the reference count on the Resource Manager instance. The Resource Manager is destroyed when its
reference count goes to 0 .

The resulting reference count.

concurrency Namespace
ISchedulerProxy Structure
IScheduler Structure

IScheduler Structure
3/4/2019 • 7 minutes to read • Edit Online

Syntax
struct IScheduler;

Members
Public Methods

NAME DESCRIPTION

IScheduler::AddVirtualProcessors Provides a scheduler with a set of virtual processor roots for
its use. Each IVirtualProcessorRoot interface represents
the right to execute a single thread that can perform work on
behalf of the scheduler.

IScheduler::GetId Returns a unique identifier for the scheduler.

IScheduler::GetPolicy Returns a copy of the scheduler's policy. For more information
on scheduler policies, see SchedulerPolicy.

IScheduler::NotifyResourcesExternallyBusy Notifies this scheduler that the hardware threads represented
by the set of virtual processor roots in the array
ppVirtualProcessorRoots are now being used by other

schedulers.

IScheduler::NotifyResourcesExternallyIdle Notifies this scheduler that the hardware threads represented
by the set of virtual processor roots in the array
ppVirtualProcessorRoots are not being used by other

schedulers.

IScheduler::RemoveVirtualProcessors Initiates the removal of virtual processor roots that were
previously allocated to this scheduler.

IScheduler::Statistics Provides information related to task arrival and completion
rates, and change in queue length for a scheduler.

Remarks

An interface to an abstraction of a work scheduler. The Concurrency Runtime's Resource Manager uses this
interface to communicate with work schedulers.

If you are implementing a custom scheduler that communicates with the Resource Manager, you should provide
an implementation of the IScheduler interface. This interface is one end of a two-way channel of communication
between a scheduler and the Resource Manager. The other end is represented by the IResourceManager and
ISchedulerProxy interfaces which are implemented by the Resource Manager.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/ischeduler-structure.md

Inheritance Hierarchy

Requirements

IScheduler::AddVirtualProcessors Method

virtual void AddVirtualProcessors(
 _In_reads_(count) IVirtualProcessorRoot** ppVirtualProcessorRoots,
 unsigned int count) = 0;

Parameters

Remarks

IScheduler::GetId Method

virtual unsigned int GetId() const = 0;

Return Value

Remarks

IScheduler::GetPolicy Method

virtual SchedulerPolicy GetPolicy() const = 0;

IScheduler

Header: concrtrm.h

Namespace: concurrency

Provides a scheduler with a set of virtual processor roots for its use. Each IVirtualProcessorRoot interface
represents the right to execute a single thread that can perform work on behalf of the scheduler.

ppVirtualProcessorRoots
An array of IVirtualProcessorRoot interfaces representing the virtual processor roots being added to the
scheduler.

count
The number of IVirtualProcessorRoot interfaces in the array.

The Resource Manager invokes the AddVirtualProcessor method to grant an initial set of virtual processor roots
to a scheduler. It could also invoke the method to add virtual processor roots to the scheduler when it rebalances
resources among schedulers.

Returns a unique identifier for the scheduler.

A unique integer identifier.

You should use the GetSchedulerId function to obtain a unique identifier for the object that implements the
IScheduler interface, before you use the interface as a parameter to methods supplied by the Resource Manager.

You are expected to return the same identifier when the GetId function is invoked.

An identifier obtained from a different source could result in undefined behavior.

Returns a copy of the scheduler's policy. For more information on scheduler policies, see SchedulerPolicy.

Return Value

IScheduler::NotifyResourcesExternallyBusy Method

virtual void NotifyResourcesExternallyBusy(
 _In_reads_(count) IVirtualProcessorRoot** ppVirtualProcessorRoots,
 unsigned int count) = 0;

Parameters

Remarks

IScheduler::NotifyResourcesExternallyIdle Method

virtual void NotifyResourcesExternallyIdle(
 _In_reads_(count) IVirtualProcessorRoot** ppVirtualProcessorRoots,
 unsigned int count) = 0;

Parameters

A copy of the scheduler's policy.

Notifies this scheduler that the hardware threads represented by the set of virtual processor roots in the array
ppVirtualProcessorRoots are now being used by other schedulers.

ppVirtualProcessorRoots
An array of IVirtualProcessorRoot interfaces associated with the hardware threads on which other schedulers
have become busy.

count
The number of IVirtualProcessorRoot interfaces in the array.

It is possible for a particular hardware thread to be assigned to multiple schedulers at the same time. One reason
for this could be that there are not enough hardware threads on the system to satisfy the minimum concurrency
for all schedulers, without sharing resources. Another possibility is that resources are temporarily assigned to
other schedulers when the owning scheduler is not using them, by way of all its virtual processor roots on that
hardware thread being deactivated.

The subscription level of a hardware thread is denoted by the number of subscribed threads and activated virtual
processor roots associated with that hardware thread. From a particular scheduler's point of view, the external
subscription level of a hardware thread is the portion of the subscription other schedulers contribute to.
Notifications that resources are externally busy are sent to a scheduler when the external subscription level for a
hardware thread moves from zero into positive territory.

Notifications via this method are only sent to schedulers that have a policy where the value for the
MinConcurrency policy key is equal to the value for the MaxConcurrency policy key. For more information on

scheduler policies, see SchedulerPolicy.

A scheduler that qualifies for notifications gets a set of initial notifications when it is created, informing it whether
the resources it was just assigned are externally busy or idle.

Notifies this scheduler that the hardware threads represented by the set of virtual processor roots in the array
ppVirtualProcessorRoots are not being used by other schedulers.

ppVirtualProcessorRoots
An array of IVirtualProcessorRoot interfaces associated with hardware threads on which other schedulers have
become idle.

Remarks

IScheduler::RemoveVirtualProcessors Method

virtual void RemoveVirtualProcessors(
 _In_reads_(count) IVirtualProcessorRoot** ppVirtualProcessorRoots,
 unsigned int count) = 0;

Parameters

Remarks

IScheduler::Statistics Method

count
The number of IVirtualProcessorRoot interfaces in the array.

It is possible for a particular hardware thread to be assigned to multiple schedulers at the same time. One reason
for this could be that there are not enough hardware threads on the system to satisfy the minimum concurrency
for all schedulers, without sharing resources. Another possibility is that resources are temporarily assigned to
other schedulers when the owning scheduler is not using them, by way of all its virtual processor roots on that
hardware thread being deactivated.

The subscription level of a hardware thread is denoted by the number of subscribed threads and activated virtual
processor roots associated with that hardware thread. From a particular scheduler's point of view, the external
subscription level of a hardware thread is the portion of the subscription other schedulers contribute to.
Notifications that resources are externally busy are sent to a scheduler when the external subscription level for a
hardware thread falls to zero from a previous positive value.

Notifications via this method are only sent to schedulers that have a policy where the value for the
MinConcurrency policy key is equal to the value for the MaxConcurrency policy key. For more information on

scheduler policies, see SchedulerPolicy.

A scheduler that qualifies for notifications gets a set of initial notifications when it is created, informing it whether
the resources it was just assigned are externally busy or idle.

Initiates the removal of virtual processor roots that were previously allocated to this scheduler.

ppVirtualProcessorRoots
An array of IVirtualProcessorRoot interfaces representing the virtual processor roots to be removed.

count
The number of IVirtualProcessorRoot interfaces in the array.

The Resource Manager invokes the RemoveVirtualProcessors method to take back a set of virtual processor roots
from a scheduler. The scheduler is expected to invoke the Remove method on each interface when it is done with
the virtual processor roots. Do not use an IVirtualProcessorRoot interface once you have invoked the Remove

method on it.

The parameter ppVirtualProcessorRoots points to an array of interfaces. Among the set of virtual processor roots
to be removed, the roots have never been activated can be returned immediately using the Remove method. The
roots that have been activated and are either executing work, or have been deactivated and are waiting for work
to arrive, should be returned asynchronously. The scheduler must make every attempt to remove the virtual
processor root as quickly as possible. Delaying removal of the virtual processor roots may result in unintentional
oversubscription within the scheduler.

Provides information related to task arrival and completion rates, and change in queue length for a scheduler.

virtual void Statistics(
 Out unsigned int* pTaskCompletionRate,
 Out unsigned int* pTaskArrivalRate,
 Out unsigned int* pNumberOfTasksEnqueued) = 0;

Parameters

Remarks

See also

pTaskCompletionRate
The number of tasks that have been completed by the scheduler since the last call to this method.

pTaskArrivalRate
The number of tasks that have arrived in the scheduler since the last call to this method.

pNumberOfTasksEnqueued
The total number of tasks in all scheduler queues.

This method is invoked by the Resource Manager in order to gather statistics for a scheduler. The statistics
gathered here will be used to drive dynamic feedback algorithms to determine when it is appropriate to assign
more resources to the scheduler and when to take resources away. The values provided by the scheduler can be
optimistic and do not necessarily have to reflect the current count accurately.

You should implement this method if you want the Resource Manager to use feedback about such things as task
arrival to determine how to balance resource between your scheduler and other schedulers registered with the
Resource Manager. If you choose not to gather statistics, you can set the policy key DynamicProgressFeedback to
the value DynamicProgressFeedbackDisabled in your scheduler's policy, and the Resource Manager will not invoke
this method on your scheduler.

In the absence of statistical information, the Resource Manager will use hardware thread subscription levels to
make resource allocation and migration decisions. For more information on subscription levels, see
IExecutionResource::CurrentSubscriptionLevel.

concurrency Namespace
PolicyElementKey
SchedulerPolicy Class
IExecutionContext Structure
IThreadProxy Structure
IVirtualProcessorRoot Structure
IResourceManager Structure

ISchedulerProxy Structure
3/4/2019 • 6 minutes to read • Edit Online

Syntax
struct ISchedulerProxy;

Members
Public Methods

NAME DESCRIPTION

ISchedulerProxy::BindContext Associates an execution context with a thread proxy, if it is not
already associated with one.

ISchedulerProxy::CreateOversubscriber Creates a new virtual processor root on the hardware thread
associated with an existing execution resource.

ISchedulerProxy::RequestInitialVirtualProcessors Requests an initial allocation of virtual processor roots. Every
virtual processor root represents the ability to execute one
thread that can perform work for the scheduler.

ISchedulerProxy::Shutdown Notifies the Resource Manager that the scheduler is shutting
down. This will cause the Resource Manager to immediately
reclaim all resources granted to the scheduler.

ISchedulerProxy::SubscribeCurrentThread Registers the current thread with the Resource Manager,
associating it with this scheduler.

ISchedulerProxy::UnbindContext Disassociates a thread proxy from the execution context
specified by the pContext parameter and returns it to the
thread proxy factory's free pool. This method may only be
called on an execution context which was bound via the
ISchedulerProxy::BindContext method and has not yet been
started via being the pContext parameter of an
IThreadProxy::SwitchTo method call.

Remarks

Inheritance Hierarchy

The interface by which schedulers communicate with the Concurrency Runtime's Resource Manager to negotiate
resource allocation.

The Resource Manager hands an ISchedulerProxy interface to every scheduler that registers with it using the
IResourceManager::RegisterScheduler method.

ISchedulerProxy

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/ischedulerproxy-structure.md

Requirements

ISchedulerProxy::BindContext Method

virtual void BindContext(_Inout_ IExecutionContext* pContext) = 0;

Parameters

Remarks

ISchedulerProxy::CreateOversubscriber Method

virtual IVirtualProcessorRoot* CreateOversubscriber(_Inout_ IExecutionResource* pExecutionResource) = 0;

Parameters

Return Value

Remarks

ISchedulerProxy::RequestInitialVirtualProcessors Method

virtual IExecutionResource* RequestInitialVirtualProcessors(bool doSubscribeCurrentThread) = 0;

Header: concrtrm.h

Namespace: concurrency

Associates an execution context with a thread proxy, if it is not already associated with one.

pContext
An interface to the execution context to associate with a thread proxy.

Normally, the IThreadProxy::SwitchTo method will bind a thread proxy to an execution context on demand. There
are, however, circumstances where it is necessary to bind a context in advance to ensure that the SwitchTo method
switches to an already bound context. This is the case on a UMS scheduling context as it cannot call methods that
allocate memory, and binding a thread proxy may involve memory allocation if a thread proxy is not readily
available in the free pool of the thread proxy factory.

invalid_argument is thrown if the parameter pContext has the value NULL .

Creates a new virtual processor root on the hardware thread associated with an existing execution resource.

pExecutionResource
An IExecutionResource interface that represents the hardware thread you want to oversubscribe.

An IVirtualProcessorRoot interface.

Use this method when your scheduler wants to oversubscribe a particular hardware thread for a limited amount of
time. Once you are done with the virtual processor root, you should return it to the resource manager by calling
the Remove method on the IVirtualProcessorRoot interface.

You can even oversubscribe an existing virtual processor root, because the IVirtualProcessorRoot interface
inherits from the IExecutionResource interface.

Requests an initial allocation of virtual processor roots. Every virtual processor root represents the ability to
execute one thread that can perform work for the scheduler.

Parameters

Return Value

Remarks

ISchedulerProxy::Shutdown Method

virtual void Shutdown() = 0;

Remarks

ISchedulerProxy::SubscribeCurrentThread Method

doSubscribeCurrentThread
Whether to subscribe the current thread and account for it during resource allocation.

The IExecutionResource interface for the current thread, if the parameter doSubscribeCurrentThread has the value
true. If the value is false, the method returns NULL.

Before a scheduler executes any work, it should use this method to request virtual processor roots from the
Resource Manager. The Resource Manager will access the scheduler's policy using IScheduler::GetPolicy and use
the values for the policy keys MinConcurrency , MaxConcurrency and TargetOversubscriptionFactor to determine
how many hardware threads to assign to the scheduler initially and how many virtual processor roots to create for
every hardware thread. For more information on how scheduler policies are used to determine a scheduler's initial
allocation, see PolicyElementKey.

The Resource Manager grants resources to a scheduler by calling the method IScheduler::AddVirtualProcessors
with a list of virtual processor roots. The method is invoked as a callback into the scheduler before this method
returns.

If the scheduler requested subscription for the current thread by setting the parameter doSubscribeCurrentThread

to true, the method returns an IExecutionResource interface. The subscription must be terminated at a later point
by using the IExecutionResource::Remove method.

When determining which hardware threads are selected, the Resource Manager will attempt to optimize for
processor node affinity. If subscription is requested for the current thread, it is an indication that the current thread
intends to participate in the work assigned to this scheduler. In such a case, the allocated virtual processors roots
are located on the processor node the current thread is executing on, if possible.

The act of subscribing a thread increases the subscription level of the underlying hardware thread by one. The
subscription level is reduced by one when the subscription is terminated. For more information on subscription
levels, see IExecutionResource::CurrentSubscriptionLevel.

Notifies the Resource Manager that the scheduler is shutting down. This will cause the Resource Manager to
immediately reclaim all resources granted to the scheduler.

All IExecutionContext interfaces the scheduler received as a result of subscribing an external thread using the
methods ISchedulerProxy::RequestInitialVirtualProcessors or ISchedulerProxy::SubscribeCurrentThread must be
returned to the Resource Manager using IExecutionResource::Remove before a scheduler shuts itself down.

If your scheduler had any deactivated virtual processor roots, you must activate them using
IVirtualProcessorRoot::Activate, and have the thread proxies executing on them leave the Dispatch method of the
execution contexts they are dispatching before you invoke Shutdown on a scheduler proxy.

It is not necessary for the scheduler to individually return all of the virtual processor roots the Resource Manager
granted to it via calls to the Remove method because all virtual processors roots will be returned to the Resource
Manager at shutdown.

virtual IExecutionResource* SubscribeCurrentThread() = 0;

Return Value

Remarks

ISchedulerProxy::UnbindContext Method

virtual void UnbindContext(_Inout_ IExecutionContext* pContext) = 0;

Parameters

See also

Registers the current thread with the Resource Manager, associating it with this scheduler.

The IExecutionResource interfacing representing the current thread in the runtime.

Use this method if you want the Resource Manager to account for the current thread while allocating resources to
your scheduler and other schedulers. It is especially useful when the thread plans to participate in the work queued
to your scheduler, along with the virtual processor roots the scheduler receives from the Resource Manager. The
Resource Manager uses information to prevent unnecessary oversubscription of hardware threads on the system.

The execution resource received via this method should be returned to the Resource Manager using the
IExecutionResource::Remove method. The thread that calls the Remove method must be the same thread that
previously called the SubscribeCurrentThread method.

The act of subscribing a thread increases the subscription level of the underlying hardware thread by one. The
subscription level is reduced by one when the subscription is terminated. For more information on subscription
levels, see IExecutionResource::CurrentSubscriptionLevel.

Disassociates a thread proxy from the execution context specified by the pContext parameter and returns it to the
thread proxy factory's free pool. This method may only be called on an execution context which was bound via the
ISchedulerProxy::BindContext method and has not yet been started via being the pContext parameter of an
IThreadProxy::SwitchTo method call.

pContext
The execution context to disassociate from its thread proxy.

concurrency Namespace
IScheduler Structure
IThreadProxy Structure
IVirtualProcessorRoot Structure
IResourceManager Structure

ISource Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class T>
class ISource;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

source_type A type alias for T .

Public Constructors

NAME DESCRIPTION

~ISource Destructor Destroys the ISource object.

Public Methods

NAME DESCRIPTION

accept When overridden in a derived class, accepts a message that
was offered by this ISource block, transferring ownership
to the caller.

acquire_ref When overridden in a derived class, acquires a reference
count on this ISource block, to prevent deletion.

consume When overridden in a derived class, consumes a message
previously offered by this ISource block and successfully
reserved by the target, transferring ownership to the caller.

link_target When overridden in a derived class, links a target block to
this ISource block.

release When overridden in a derived class, releases a previous
successful message reservation.

The ISource class is the interface for all source blocks. Source blocks propagate messages to ITarget blocks.

T
The data type of the payload within the messages produced by the source block.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/isource-class.md

release_ref When overridden in a derived class, releases a reference
count on this ISource block.

reserve When overridden in a derived class, reserves a message
previously offered by this ISource block.

unlink_target When overridden in a derived class, unlinks a target block
from this ISource block, if found to be previously linked.

unlink_targets When overridden in a derived class, unlinks all target blocks
from this ISource block.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept

virtual message<T>* accept(
 runtime_object_identity _MsgId,
 Inout ITarget<T>* _PTarget) = 0;

Parameters

Return Value

Remarks

acquire_ref

For more information, see Asynchronous Message Blocks.

ISource

Header: agents.h

Namespace: concurrency

When overridden in a derived class, accepts a message that was offered by this ISource block, transferring
ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the accept method.

A pointer to the message that the caller now has ownership of.

The accept method is called by a target while a message is being offered by this ISource block. The message
pointer returned may be different from the one passed into the propagate method of the ITarget block, if this
source decides to make a copy of the message.

virtual void acquire_ref(_Inout_ ITarget<T>* _PTarget) = 0;

Parameters

Remarks

consume

virtual message<T>* consume(
 runtime_object_identity _MsgId,
 Inout ITarget<T>* _PTarget) = 0;

Parameters

Return Value

Remarks

~ISource

virtual ~ISource();

link_target

virtual void link_target(_Inout_ ITarget<T>* _PTarget) = 0;

Parameters

release

When overridden in a derived class, acquires a reference count on this ISource block, to prevent deletion.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being linked to this source during the link_target method.

When overridden in a derived class, consumes a message previously offered by this ISource block and
successfully reserved by the target, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the consume method.

A pointer to the message object that the caller now has ownership of.

The consume method is similar to accept , but must always be preceded by a call to reserve that returned true.

Destroys the ISource object.

When overridden in a derived class, links a target block to this ISource block.

_PTarget
A pointer to the target block being linked to this ISource block.

virtual void release(
 runtime_object_identity _MsgId,
 Inout ITarget<T>* _PTarget) = 0;

Parameters

release_ref

virtual void release_ref(_Inout_ ITarget<T>* _PTarget) = 0;

Parameters

Remarks

reserve

virtual bool reserve(
 runtime_object_identity _MsgId,
 Inout ITarget<T>* _PTarget) = 0;

Parameters

Return Value

Remarks

unlink_target

When overridden in a derived class, releases a previous successful message reservation.

_MsgId
The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the release method.

When overridden in a derived class, releases a reference count on this ISource block.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being unlinked from this source. The source block is allowed
to release any resources reserved for the target block.

When overridden in a derived class, reserves a message previously offered by this ISource block.

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the reserve method.

true if the message was successfully reserved, false otherwise. Reservations can fail for many reasons,
including: the message was already reserved or accepted by another target, the source could deny reservations,
and so forth.

After you call reserve , if it succeeds, you must call either consume or release in order to take or give up
possession of the message, respectively.

virtual void unlink_target(_Inout_ ITarget<T>* _PTarget) = 0;

Parameters

unlink_targets

virtual void unlink_targets() = 0;

See also

When overridden in a derived class, unlinks a target block from this ISource block, if found to be previously
linked.

_PTarget
A pointer to the target block being unlinked from this ISource block.

When overridden in a derived class, unlinks all target blocks from this ISource block.

concurrency Namespace
ITarget Class

ITarget Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class T>
class ITarget;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

filter_method The signature of any method used by the block that returns
a bool value to determine whether an offered message
should be accepted.

type A type alias for T .

Public Constructors

NAME DESCRIPTION

~ITarget Destructor Destroys the ITarget object.

Public Methods

NAME DESCRIPTION

propagate When overridden in a derived class, asynchronously passes a
message from a source block to this target block.

send When overridden in a derived class, synchronously passes a
message to the target block.

supports_anonymous_source When overridden in a derived class, returns true or false
depending on whether the message block accepts messages
offered by a source that is not linked to it. If the overridden
method returns true, the target cannot postpone an offered
message, as consumption of a postponed message at a later
time requires the source to be identified in its sourse link
registry.

The ITarget class is the interface for all target blocks. Target blocks consume messages offered to them by
ISource blocks.

T
The data type of the payload within the messages accepted by the target block.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/itarget-class.md

Protected Methods

NAME DESCRIPTION

link_source When overridden in a derived class, links a specified source
block to this ITarget block.

unlink_source When overridden in a derived class, unlinks a specified
source block from this ITarget block.

unlink_sources When overridden in a derived class, unlinks all source blocks
from this ITarget block.

Remarks

Inheritance Hierarchy

Requirements

~ITarget

virtual ~ITarget();

link_source

virtual void link_source(_Inout_ ISource<T>* _PSource) = 0;

Parameters

Remarks

propagate

For more information, see Asynchronous Message Blocks.

ITarget

Header: agents.h

Namespace: concurrency

Destroys the ITarget object.

When overridden in a derived class, links a specified source block to this ITarget block.

_PSource
The ISource block being linked to this ITarget block.

This function should not be called directly on an ITarget block. Blocks should be connected together using the
link_target method on ISource blocks, which will invoke the link_source method on the corresponding

target.

When overridden in a derived class, asynchronously passes a message from a source block to this target block.

virtual message_status propagate(
 _Inout_opt_ message<T>* _PMessage,
 _Inout_opt_ ISource<T>* _PSource) = 0;

Parameters

Return Value

Remarks

send

virtual message_status send(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource) = 0;

Parameters

Return Value

Remarks

supports_anonymous_source

virtual bool supports_anonymous_source();

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

The method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

When overridden in a derived class, synchronously passes a message to the target block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

The method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

Using the send method outside of message initiation and to propagate messages within a network is
dangerous and can lead to deadlock.

When send returns, the message has either already been accepted, and transferred into the target block, or it
has been declined by the target.

When overridden in a derived class, returns true or false depending on whether the message block accepts
messages offered by a source that is not linked to it. If the overridden method returns true, the target cannot
postpone an offered message, as consumption of a postponed message at a later time requires the source to be
identified in its sourse link registry.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

Return Value

unlink_source

virtual void unlink_source(_Inout_ ISource<T>* _PSource) = 0;

Parameters

Remarks

unlink_sources

virtual void unlink_sources() = 0;

See also

true if the block can accept message from a source that is not linked to it false otherwise.

When overridden in a derived class, unlinks a specified source block from this ITarget block.

_PSource
The ISource block being unlinked from this ITarget block.

This function should not be called directly on an ITarget block. Blocks should be disconnected using the
unlink_target or unlink_targets methods on ISource blocks, which will invoke the unlink_source method on

the corresponding target.

When overridden in a derived class, unlinks all source blocks from this ITarget block.

concurrency Namespace
ISource Class

IThreadProxy Structure
3/4/2019 • 6 minutes to read • Edit Online

Syntax
struct IThreadProxy;

Members
Public Methods

NAME DESCRIPTION

IThreadProxy::GetId Returns a unique identifier for the thread proxy.

IThreadProxy::SwitchOut Disassociates the context from the underlying virtual
processor root.

IThreadProxy::SwitchTo Performs a cooperative context switch from the currently
executing context to a different one.

IThreadProxy::YieldToSystem Causes the calling thread to yield execution to another thread
that is ready to run on the current processor. The operating
system selects the next thread to be executed.

Remarks

Inheritance Hierarchy

Requirements

IThreadProxy::GetId Method

An abstraction for a thread of execution. Depending on the SchedulerType policy key of the scheduler you create,
the Resource Manager will grant you a thread proxy that is backed by either a regular Win32 thread or a user-
mode schedulable (UMS) thread. UMS threads are supported on 64-bit operating systems with version Windows
7 and higher.

Thread proxies are coupled to execution contexts represented by the interface IExecutionContext as a means of
dispatching work.

IThreadProxy

Header: concrtrm.h

Namespace: concurrency

Returns a unique identifier for the thread proxy.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/ithreadproxy-structure.md

virtual unsigned int GetId() const = 0;

Return Value

IThreadProxy::SwitchOut Method

virtual void SwitchOut(SwitchingProxyState switchState = Blocking) = 0;

Parameters

Remarks

A unique integer identifier.

Disassociates the context from the underlying virtual processor root.

switchState
Indicates the state of the thread proxy that is executing the switch. The parameter is of type SwitchingProxyState .

Use SwitchOut if you need to disassociate a context from the virtual processor root it is executing on, for any
reason. Depending on the value you pass in to the parameter switchState , and whether or not it is executing on a
virtual processor root, the call will either return immediately or block the thread proxy associated with the context.
It is an error to call SwitchOut with the parameter set to Idle . Doing so will result in an invalid_argument
exception.

SwitchOut is useful when you want to reduce the number of virtual processor roots your scheduler has, either
because the Resource Manager has instructed you to do so, or because you requested a temporary
oversubscribed virtual processor root, and are done with it. In this case you should invoke the method
IVirtualProcessorRoot::Remove on the virtual processor root, before making a call to SwitchOut with the
parameter switchState set to Blocking . This will block the thread proxy and it will resume execution when a
different virtual processor root in the scheduler is available to execute it. The blocking thread proxy can be
resumed by calling the function SwitchTo to switch to this thread proxy's execution context. You can also resume
the thread proxy, by using its associated context to activate a virtual processor root. For more information on how
to do this, see IVirtualProcessorRoot::Activate.

SwitchOut may also be used when you want reinitialize the virtual processor so it may be activated in the future
while either blocking the thread proxy or temporarily detaching it from the virtual processor root it is running on,
and the scheduler it is dispatching work for. Use SwitchOut with the parameter switchState set to Blocking if
you wish to block the thread proxy. It can later be resumed using either SwitchTo or
IVirtualProcessorRoot::Activate as noted above. Use SwitchOut with the parameter set to Nesting when you

want to temporarily detach this thread proxy from the virtual processor root it is running on, and the scheduler
the virtual processor is associated with. Calling SwitchOut with the parameter switchState set to Nesting while
it is executing on a virtual processor root will cause the root to be reinitialized and the current thread proxy to
continue executing without the need for one. The thread proxy is considered to have left the scheduler until it calls
the IThreadProxy::SwitchOut method with Blocking at a later point in time. The second call to SwitchOut with the
parameter set to Blocking is intended to return the context to a blocked state so that it can be resumed by either
SwitchTo or IVirtualProcessorRoot::Activate in the scheduler it detached from. Because it was not executing on

a virtual processor root, no reinitialization takes place.

A reinitialized virtual processor root is no different from a brand new virtual processor root your scheduler has
been granted by the Resource Manager. You can use it for execution by activating it with an execution context
using IVirtualProcessorRoot::Activate .

SwitchOut must be called on the IThreadProxy interface that represents the currently executing thread or the
results are undefined.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

IThreadProxy::SwitchTo Method

virtual void SwitchTo(
 Inout IExecutionContext* pContext,
 SwitchingProxyState switchState) = 0;

Parameters

Remarks

IThreadProxy::YieldToSystem Method

In the libraries and headers that shipped with Visual Studio 2010, this method did not take a parameter and did
not reinitialize the virtual processor root. To preserve old behavior, the default parameter value of Blocking is
supplied.

Performs a cooperative context switch from the currently executing context to a different one.

pContext
The execution context to cooperatively switch to.

switchState
Indicates the state of the thread proxy that is executing the switch. The parameter is of type SwitchingProxyState .

Use this method to switch from one execution context to another, from the IExecutionContext::Dispatch method of
the first execution context. The method associates the execution context pContext with a thread proxy if it is not
already associated with one. The ownership of the current thread proxy is determined by the value you specify for
the switchState argument.

Use the value Idle when you want to return the currently executing thread proxy to the Resource Manager.
Calling SwitchTo with the parameter switchState set to Idle will cause the execution context pContext to start
executing on the underlying execution resource. Ownership of this thread proxy is transferred to the Resource
Manager, and you are expected to return from the execution context's Dispatch method soon after SwitchTo

returns, in order to complete the transfer. The execution context that the thread proxy was dispatching is
disassociated from the thread proxy, and the scheduler is free to reuse it or destroy it as it sees fit.

Use the value Blocking when you want this thread proxy to enter a blocked state. Calling SwitchTo with the
parameter switchState set to Blocking will cause the execution context pContext to start executing, and block
the current thread proxy until it is resumed. The scheduler retains ownership of the thread proxy when the thread
proxy is in the Blocking state. The blocking thread proxy can be resumed by calling the function SwitchTo to
switch to this thread proxy's execution context. You can also resume the thread proxy, by using its associated
context to activate a virtual processor root. For more information on how to do this, see
IVirtualProcessorRoot::Activate.

Use the value Nesting when you want to temporarily detach this thread proxy from the virtual processor root it is
running on, and the scheduler it is dispatching work for. Calling SwitchTo with the parameter switchState set to
Nesting will cause the execution context pContext to start executing and the current thread proxy also continues

executing without the need for a virtual processor root. The thread proxy is considered to have left the scheduler
until it calls the IThreadProxy::SwitchOut method at a later point in time. The IThreadProxy::SwitchOut method
could block the thread proxy until a virtual processor root is available to reschedule it.

SwitchTo must be called on the IThreadProxy interface that represents the currently executing thread or the
results are undefined. The function throws invalid_argument if the parameter pContext is set to NULL .

Causes the calling thread to yield execution to another thread that is ready to run on the current processor. The
operating system selects the next thread to be executed.

virtual void YieldToSystem() = 0;

Remarks

See also

When called by a thread proxy backed by a regular Windows thread, YieldToSystem behaves exactly like the
Windows function SwitchToThread . However, when called from user-mode schedulable (UMS) threads, the
SwitchToThread function delegates the task of picking the next thread to run to the user mode scheduler, not the

operating system. To achieve the desired effect of switching to a different ready thread in the system, use
YieldToSystem .

YieldToSystem must be called on the IThreadProxy interface that represents the currently executing thread or the
results are undefined.

concurrency Namespace
IExecutionContext Structure
IScheduler Structure
IVirtualProcessorRoot Structure

ITopologyExecutionResource Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct ITopologyExecutionResource;

Members
Public Methods

NAME DESCRIPTION

ITopologyExecutionResource::GetId Returns the Resource Manager's unique identifier for this
execution resource.

ITopologyExecutionResource::GetNext Returns an interface to the next execution resource in
enumeration order.

Remarks

Inheritance Hierarchy

Requirements

ITopologyExecutionResource::GetId Method

virtual unsigned int GetId() const = 0;

Return Value

ITopologyExecutionResource::GetNext Method

An interface to an execution resource as defined by the Resource Manager.

This interface is typically utilized to walk the topology of the system as observed by the Resource Manager.

ITopologyExecutionResource

Header: concrtrm.h

Namespace: concurrency

Returns the Resource Manager's unique identifier for this execution resource.

The Resource Manager's unique identifier for this execution resource.

Returns an interface to the next execution resource in enumeration order.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/itopologyexecutionresource-structure.md

virtual ITopologyExecutionResource *GetNext() const = 0;

Return Value

See also

An interface to the next execution resource in enumeration order. If there are no more nodes in enumeration order
of the node to which this execution resource belongs, this method will return the value NULL .

concurrency Namespace

ITopologyNode Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct ITopologyNode;

Members
Public Methods

NAME DESCRIPTION

ITopologyNode::GetExecutionResourceCount Returns the number of execution resources grouped together
under this node.

ITopologyNode::GetFirstExecutionResource Returns the first execution resource grouped under this node
in enumeration order.

ITopologyNode::GetId Returns the Resource Manager's unique identifier for this
node.

ITopologyNode::GetNext Returns an interface to the next topology node in
enumeration order.

ITopologyNode::GetNumaNode Returns the Windows assigned NUMA node number to which
this Resource Maanger node belongs.

Remarks

Inheritance Hierarchy

Requirements

ITopologyNode::GetExecutionResourceCount Method

An interface to a topology node as defined by the Resource Manager. A node contains one or more execution
resources.

This interface is typically utilized to walk the topology of the system as observed by the Resource Manager.

ITopologyNode

Header: concrtrm.h

Namespace: concurrency

Returns the number of execution resources grouped together under this node.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/itopologynode-structure.md

virtual unsigned int GetExecutionResourceCount() const = 0;

Return Value

ITopologyNode::GetFirstExecutionResource Method

virtual ITopologyExecutionResource *GetFirstExecutionResource() const = 0;

Return Value

ITopologyNode::GetId Method

virtual unsigned int GetId() const = 0;

Return Value

Remarks

ITopologyNode::GetNext Method

virtual ITopologyNode *GetNext() const = 0;

Return Value

ITopologyNode::GetNumaNode Method

virtual unsigned long GetNumaNode() const = 0;

Return Value

The number of execution resources grouped together under this node.

Returns the first execution resource grouped under this node in enumeration order.

The first execution resource grouped under this node in enumeration order.

Returns the Resource Manager's unique identifier for this node.

The Resource Manager's unique identifier for this node.

The Concurrency Runtime represents hardware threads on the system in groups of processor nodes. Nodes are
usually derived from the hardware topology of the system. For example, all processors on a specific socket or a
specific NUMA node may belong to the same processor node. The Resource Manager assigns unique identifiers to
these nodes starting with 0 up to and including nodeCount - 1 , where nodeCount represents the total number of
processor nodes on the system.

The count of nodes can be obtained from the function GetProcessorNodeCount.

Returns an interface to the next topology node in enumeration order.

An interface to the next node in enumeration order. If there are no more nodes in enumeration order of the system
topology, this method will return the value NULL .

Returns the Windows assigned NUMA node number to which this Resource Maanger node belongs.

Remarks

See also

The Windows assigned NUMA node number to which this Resource Manager node belongs.

A thread proxy running on a virtual processor root belonging to this node will have affinity to at least the NUMA
node level for the NUMA node returned by this method.

concurrency Namespace

IUMSCompletionList Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct IUMSCompletionList;

Members
Public Methods

NAME DESCRIPTION

IUMSCompletionList::GetUnblockNotifications Retrieves a chain of IUMSUnblockNotification interfaces
representing execution contexts whose associated thread
proxies have unblocked since the last time this method was
invoked.

Remarks

Inheritance Hierarchy

Requirements

IUMSCompletionList::GetUnblockNotifications Method

Represents a UMS completion list. When a UMS thread blocks, the scheduler's designated scheduling context is
dispatched in order to make a decision of what to schedule on the underlying virtual processor root while the
original thread is blocked. When the original thread unblocks, the operating system queues it to the completion list
which is accessible through this interface. The scheduler can query the completion list on the designated
scheduling context or any other place it searches for work.

A scheduler must be extraordinarily careful about what actions are performed after utilizing this interface to
dequeue items from the completion list. The items should be placed on the scheduler's list of runnable contexts
and be generally accessible as soon as possible. It is entirely possible that one of the dequeued items has been
given ownership of an arbitrary lock. The scheduler can make no arbitrary function calls that may block between
the call to dequeue items and the placement of those items on a list that can be generally accessed from within the
scheduler.

IUMSCompletionList

Header: concrtrm.h

Namespace: concurrency

Retrieves a chain of IUMSUnblockNotification interfaces representing execution contexts whose associated thread
proxies have unblocked since the last time this method was invoked.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iumscompletionlist-structure.md

virtual IUMSUnblockNotification *GetUnblockNotifications() = 0;

Return Value

Remarks

See also

A chain of IUMSUnblockNotification interfaces.

The returned notifications are invalid once the execution contexts are rescheduled.

concurrency Namespace
IUMSScheduler Structure
IUMSUnblockNotification Structure

IUMSScheduler Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct IUMSScheduler : public IScheduler;

Members
Public Methods

NAME DESCRIPTION

IUMSScheduler::SetCompletionList Assigns an IUMSCompletionList interface to a UMS thread
scheduler.

Remarks

Inheritance Hierarchy

Requirements

An interface to an abstraction of a work scheduler that wants the Concurrency Runtime's Resource Manager to
hand it user-mode schedulable (UMS) threads. The Resource Manager uses this interface to communicate with
UMS thread schedulers. The IUMSScheduler interface inherits from the IScheduler interface.

If you are implementing a custom scheduler that communicates with the Resource Manager, and you want UMS
threads to be handed to your scheduler instead of ordinary Win32 threads, you should provide an implementation
of the IUMSScheduler interface. In addition, you should set the policy value for the scheduler policy key
SchedulerKind to be UmsThreadDefault . If the policy specifies UMS thread, the IScheduler interface that is passed

as a parameter to the IResourceManager::RegisterScheduler method must be an IUMSScheduler interface.

The Resource Manager is able to hand you UMS threads only on operating systems that have the UMS feature.
64-bit operating systems with version Windows 7 and higher support UMS threads. If you create a scheduler
policy with the SchedulerKind key set to the value UmsThreadDefault and the underlying platform does not
support UMS, the value of the SchedulerKind key on that policy will be changed to the value ThreadScheduler .
You should always read back this policy value before expecting to receive UMS threads.

The IUMSScheduler interface is one end of a two-way channel of communication between a scheduler and the
Resource Manager. The other end is represented by the IResourceManager and ISchedulerProxy interfaces, which
are implemented by the Resource Manager.

IScheduler

IUMSScheduler

Header: concrtrm.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iumsscheduler-structure.md

 IUMSScheduler::SetCompletionList Method

virtual void SetCompletionList(_Inout_ IUMSCompletionList* pCompletionList) = 0;

Parameters

Remarks

See also

Assigns an IUMSCompletionList interface to a UMS thread scheduler.

pCompletionList
The completion list interface for the scheduler. There is a single list per scheduler.

The Resource Manager will invoke this method on a scheduler that specifies it wants UMS threads, after the
scheduler has requested an initial allocation of resources. The scheduler can use the IUMSCompletionList interface
to determine when UMS thread proxies have unblocked. It is only valid to access this interface from a thread
proxy running on a virtual processor root assigned to the UMS scheduler.

concurrency Namespace
PolicyElementKey
IScheduler Structure
IUMSCompletionList Structure
IResourceManager Structure

IUMSThreadProxy Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct IUMSThreadProxy : public IThreadProxy;

Members
Public Methods

NAME DESCRIPTION

IUMSThreadProxy::EnterCriticalRegion Called in order to enter a critical region. When inside a critical
region, the scheduler will not observe asynchronous blocking
operations that happen during the region. This means that
the scheduler will not be reentered for page faults, thread
suspensions, kernel asynchronous procedure calls (APCs), and
so forth, for a UMS thread.

IUMSThreadProxy::EnterHyperCriticalRegion Called in order to enter a hyper-critical region. When inside a
hyper-critical region, the scheduler will not observe any
blocking operations that happen during the region. This
means the scheduler will not be reentered for blocking
function calls, lock acquisition attempts which block, page
faults, thread suspensions, kernel asynchronous procedure
calls (APCs), and so forth, for a UMS thread.

IUMSThreadProxy::ExitCriticalRegion Called in order to exit a critical region.

IUMSThreadProxy::ExitHyperCriticalRegion Called in order to exit a hyper-critical region.

IUMSThreadProxy::GetCriticalRegionType Returns what kind of critical region the thread proxy is within.
Because hyper-critical regions are a superset of critical regions,
if code has entered a critical region and then a hyper-critical
region, InsideHyperCriticalRegion will be returned.

Inheritance Hierarchy

Requirements

An abstraction for a thread of execution. If you want your scheduler to be granted user-mode schedulable (UMS)
threads, set the value for the scheduler policy element SchedulerKind to UmsThreadDefault , and implement the
IUMSScheduler interface. UMS threads are only supported on 64-bit operating systems with version Windows 7

and higher.

IThreadProxy

IUMSThreadProxy

Header: concrtrm.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iumsthreadproxy-structure.md

IUMSThreadProxy::EnterCriticalRegion Method

virtual int EnterCriticalRegion() = 0;

Return Value

IUMSThreadProxy::EnterHyperCriticalRegion Method

virtual int EnterHyperCriticalRegion() = 0;

Return Value

Remarks

IUMSThreadProxy::ExitCriticalRegion Method

virtual int ExitCriticalRegion() = 0;

Return Value

IUMSThreadProxy::ExitHyperCriticalRegion Method

virtual int ExitHyperCriticalRegion() = 0;

Return Value

IUMSThreadProxy::GetCriticalRegionType Method

Namespace: concurrency

Called in order to enter a critical region. When inside a critical region, the scheduler will not observe asynchronous
blocking operations that happen during the region. This means that the scheduler will not be reentered for page
faults, thread suspensions, kernel asynchronous procedure calls (APCs), and so forth, for a UMS thread.

The new depth of critical region. Critical regions are reentrant.

Called in order to enter a hyper-critical region. When inside a hyper-critical region, the scheduler will not observe
any blocking operations that happen during the region. This means the scheduler will not be reentered for blocking
function calls, lock acquisition attempts which block, page faults, thread suspensions, kernel asynchronous
procedure calls (APCs), and so forth, for a UMS thread.

The new depth of hyper-critical region. Hyper-critical regions are reentrant.

The scheduler must be extraordinarily careful about what methods it calls and what locks it acquires in such
regions. If code in such a region blocks on a lock that is held by something the scheduler is responsible for
scheduling, deadlock may ensue.

Called in order to exit a critical region.

The new depth of critical region. Critical regions are reentrant.

Called in order to exit a hyper-critical region.

The new depth of hyper-critical region. Hyper-critical regions are reentrant.

virtual CriticalRegionType GetCriticalRegionType() const = 0;

Return Value

See also

Returns what kind of critical region the thread proxy is within. Because hyper-critical regions are a superset of
critical regions, if code has entered a critical region and then a hyper-critical region, InsideHyperCriticalRegion will
be returned.

The type of critical region the thread proxy is within.

concurrency Namespace
IUMSScheduler Structure

IUMSUnblockNotification Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct IUMSUnblockNotification;

Members
Public Methods

NAME DESCRIPTION

IUMSUnblockNotification::GetContext Returns the IExecutionContext interface for the execution
context associated with the thread proxy which has
unblocked. Once this method returns and the underlying
execution context has been rescheduled via a call to the
IThreadProxy::SwitchTo method, this interface is no longer

valid.

IUMSUnblockNotification::GetNextUnblockNotification Returns the next IUMSUnblockNotification interface in the
chain returned from the method
IUMSCompletionList::GetUnblockNotifications .

Inheritance Hierarchy

Requirements

IUMSUnblockNotification::GetContext Method

virtual IExecutionContext* GetContext() = 0;

Return Value

Represents a notification from the Resource Manager that a thread proxy which blocked and triggered a return to
the scheduler's designated scheduling context has unblocked and is ready to be scheduled. This interface is invalid
once the thread proxy's associated execution context, returned from the GetContext method, is rescheduled.

IUMSUnblockNotification

Header: concrtrm.h

Namespace: concurrency

Returns the IExecutionContext interface for the execution context associated with the thread proxy which has
unblocked. Once this method returns and the underlying execution context has been rescheduled via a call to the
IThreadProxy::SwitchTo method, this interface is no longer valid.

An IExecutionContext interface for the execution context to a thread proxy which has unblocked.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/iumsunblocknotification-structure.md

 IUMSUnblockNotification::GetNextUnblockNotification Method

virtual IUMSUnblockNotification* GetNextUnblockNotification() = 0;

Return Value

See also

Returns the next IUMSUnblockNotification interface in the chain returned from the method
IUMSCompletionList::GetUnblockNotifications .

The next IUMSUnblockNotification interface in the chain returned from the method
IUMSCompletionList::GetUnblockNotifications .

concurrency Namespace
IUMSScheduler Structure
IUMSCompletionList Structure

IVirtualProcessorRoot Structure
3/4/2019 • 6 minutes to read • Edit Online

Syntax
struct IVirtualProcessorRoot : public IExecutionResource;

Members
Public Methods

NAME DESCRIPTION

IVirtualProcessorRoot::Activate Causes the thread proxy associated with the execution
context interface pContext to start executing on this virtual
processor root.

IVirtualProcessorRoot::Deactivate Causes the thread proxy currently executing on this virtual
processor root to stop dispatching the execution context. The
thread proxy will resume executing on a call to the Activate

method.

IVirtualProcessorRoot::EnsureAllTasksVisible Causes data stored in the memory hierarchy of individual
processors to become visible to all processors on the system.
It ensures that a full memory fence has been executed on all
processors before the method returns.

IVirtualProcessorRoot::GetId Returns a unique identifier for the virtual processor root.

Remarks

Inheritance Hierarchy

Requirements

An abstraction for a hardware thread on which a thread proxy can execute.

Every virtual processor root has an associated execution resource. The IVirtualProcessorRoot interface inherits
from the IExecutionResource interface. Multiple virtual processor roots may correspond to the same underlying
hardware thread.

The Resource Manager grants virtual processor roots to schedulers in response to requests for resources. A
scheduler can use a virtual processor root to perform work by activating it with an execution context.

IExecutionResource

IVirtualProcessorRoot

Header: concrtrm.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/ivirtualprocessorroot-structure.md

IVirtualProcessorRoot::Activate Method

virtual void Activate(_Inout_ IExecutionContext* pContext) = 0;

Parameters

Remarks

IVirtualProcessorRoot::Deactivate Method

virtual bool Deactivate(_Inout_ IExecutionContext* pContext) = 0;

Parameters

Return Value

Causes the thread proxy associated with the execution context interface pContext to start executing on this virtual
processor root.

pContext
An interface to the execution context that will be dispatched on this virtual processor root.

The Resource Manager will supply a thread proxy if one is not associated with the execution context interface
pContext

The Activate method can be used to start executing work on a new virtual processor root returned by the
Resource Manager, or to resume the thread proxy on a virtual processor root that has deactivated or is about to
deactivate. See IVirtualProcessorRoot::Deactivate for more information on deactivation. When you are resuming a
deactivated virtual processor root, the parameter pContext must be the same as the parameter used to deactivate
the virtual processor root.

Once a virtual processor root has been activated for the first time, subsequent pairs of calls to Deactivate and
Activate may race with each other. This means it is acceptable for the Resource Manager to receive a call to
Activate before it receives the Deactivate call it was meant for.

When you activate a virtual processor root, you signal to the Resource Manager that this virtual processor root is
currently busy with work. If your scheduler cannot find any work to execute on this root, it is expected to invoke
the Deactivate method informing the Resource Manager that the virtual processor root is idle. The Resource
Manager uses this data to load balance the system.

invalid_argument is thrown if the argument pContext has the value NULL .

invalid_operation is thrown if the argument pContext does not represent the execution context that was most
recently dispatched by this virtual processor root.

The act of activating a virtual processor root increases the subscription level of the underlying hardware thread by
one. For more information on subscription levels, see IExecutionResource::CurrentSubscriptionLevel.

Causes the thread proxy currently executing on this virtual processor root to stop dispatching the execution
context. The thread proxy will resume executing on a call to the Activate method.

pContext
The context which is currently being dispatched by this root.

A boolean value. A value of true indicates that the thread proxy returned from the Deactivate method in
response to a call to the Activate method. A value of false indicates that the thread proxy returned from the
method in response to a notification event in the Resource Manager. On a user-mode schedulable (UMS) thread
scheduler, this indicates that items have appeared on the scheduler's completion list, and the scheduler is required

Remarks

IVirtualProcessorRoot::EnsureAllTasksVisible Method

virtual void EnsureAllTasksVisible(_Inout_ IExecutionContext* pContext) = 0;

Parameters

Remarks

to handle them.

Use this method to temporarily stop executing a virtual processor root when you cannot find any work in your
scheduler. A call to the Deactivate method must originate from within the Dispatch method of the execution
context that the virtual processor root was last activated with. In other words, the thread proxy invoking the
Deactivate method must be the one that is currently executing on the virtual processor root. Calling the method

on a virtual processor root you are not executing on could result in undefined behavior.

A deactivated virtual processor root may be woken up with a call to the Activate method, with the same
argument that was passed in to the Deactivate method. The scheduler is responsible for ensuring that calls to the
Activate and Deactivate methods are paired, but they are not required to be received in a specific order. The

Resource Manager can handle receiving a call to the Activate method before it receives a call to the Deactivate

method it was meant for.

If a virtual processor root awakens and the return value from the Deactivate method is the value false, the
scheduler should query the UMS completion list via the IUMSCompletionList::GetUnblockNotifications method, act
on that information, and then subsequently call the Deactivate method again. This should be repeated until such
time as the Deactivate method returns the value true .

invalid_argument is thrown if the argument pContext has the value NULL.

invalid_operation is thrown if the virtual processor root has never been activated, or the argument pContext

does not represent the execution context that was most recently dispatched by this virtual processor root.

The act of deactivating a virtual processor root decreases the subscription level of the underlying hardware thread
by one. For more information on subscription levels, see IExecutionResource::CurrentSubscriptionLevel.

Causes data stored in the memory hierarchy of individual processors to become visible to all processors on the
system. It ensures that a full memory fence has been executed on all processors before the method returns.

pContext
The context which is currently being dispatched by this virtual processor root.

You may find this method useful when you want to synchronize deactivation of a virtual processor root with the
addition of new work into the scheduler. For performance reasons, you may decide to add work items to your
scheduler without executing a memory barrier, which means work items added by a thread executing on one
processor are not immediately visible to all other processors. By using this method in conjunction with the
Deactivate method you can ensure that your scheduler does not deactivate all its virtual processor roots while

work items exist in your scheduler's collections.

A call to the EnsureAllTasksVisibleThe method must originate from within the Dispatch method of the execution
context that the virtual processor root was last activated with. In other words, the thread proxy invoking the
EnsureAllTasksVisible method must be the one that is currently executing on the virtual processor root. Calling

the method on a virtual processor root you are not executing on could result in undefined behavior.

invalid_argument is thrown if the argument pContext has the value NULL .

invalid_operation is thrown if the virtual processor root has never been activated, or the argument pContext

 IVirtualProcessorRoot::GetId Method

virtual unsigned int GetId() const = 0;

Return Value

See also

does not represent the execution context that was most recently dispatched by this virtual processor root.

Returns a unique identifier for the virtual processor root.

An integer identifier.

concurrency Namespace

join Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class T,
 join_type _Jtype = non_greedy>
class join : public propagator_block<single_link_registry<ITarget<std::vector<T>>>,
 multi_link_registry<ISource<T>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

join Overloaded. Constructs a join messaging block.

~join Destructor Destroys the join block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this join

messaging block, transferring ownership to the caller.

consume_message Consumes a message previously offered by the join

messaging block and reserved by the target, transferring
ownership to the caller.

link_target_notification A callback that notifies that a new target has been linked to
this join messaging block.

propagate_message Asynchronously passes a message from an ISource block
to this join messaging block. It is invoked by the
propagate method, when called by a source block.

A join messaging block is a single-target, multi-source, ordered propagator_block which combines together
messages of type T from each of its sources.

T
The payload type of the messages joined and propagated by the block.

_Jtype
The kind of join block this is, either greedy or non_greedy

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/join-class.md

propagate_to_any_targets Constructs an output message containing an input message
from each source when they have all propagated a message.
Sends this output message out to each of its targets.

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this join

messaging block. (Overrides source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept_message

virtual message<_OutputType>* accept_message(runtime_object_identity _MsgId);

Parameters

Return Value

consume_message

For more information, see Asynchronous Message Blocks.

ISource

ITarget

source_block

propagator_block

join

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this join messaging block, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

Consumes a message previously offered by the join messaging block and reserved by the target, transferring
ownership to the caller.

virtual message<_OutputType>* consume_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

join

join(
 size_t _NumInputs);

join(
 size_t _NumInputs,
 filter_method const& _Filter);

join(
 Scheduler& _PScheduler,
 size_t _NumInputs);

join(
 Scheduler& _PScheduler,
 size_t _NumInputs,
 filter_method const& _Filter);

join(
 ScheduleGroup& _PScheduleGroup,
 size_t _NumInputs);

join(
 ScheduleGroup& _PScheduleGroup,
 size_t _NumInputs,
 filter_method const& _Filter);

Parameters

Remarks

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

Constructs a join messaging block.

_NumInputs
The number of inputs this join block will be allowed.

_Filter
A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the join messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the join messaging block is scheduled. The
Scheduler object used is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

~join

~join();

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<std::vector<T>> *);

propagate_message

message_status propagate_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

propagate_to_any_targets

void propagate_to_any_targets(_Inout_opt_ message<_OutputType> *);

release_message

virtual void release_message(runtime_object_identity _MsgId);

Parameters

The type filter_method is a functor with signature bool (T const &) which is invoked by this join messaging
block to determine whether or not it should accept an offered message.

Destroys the join block.

A callback that notifies that a new target has been linked to this join messaging block.

Asynchronously passes a message from an ISource block to this join messaging block. It is invoked by the
propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Constructs an output message containing an input message from each source when they have all propagated a
message. Sends this output message out to each of its targets.

Releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

reserve_message

virtual bool reserve_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation();

See also

Reserves a message previously offered by this join messaging block.

_MsgId
The runtime_object_identity of the offered message object.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

concurrency Namespace
choice Class
multitype_join Class

location Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class location;

Members
Public Constructors

NAME DESCRIPTION

location Overloaded. Constructs a location object.

~location Destructor Destroys a location object.

Public Methods

NAME DESCRIPTION

current Returns a location object representing the most specific
place the calling thread is executing.

from_numa_node Returns a location object which represents a given NUMA
node.

Public Operators

NAME DESCRIPTION

operator!= Determines whether two location objects represent
different location.

operator= Assigns the contents of a different location object to this
one.

operator== Determines whether two location objects represent the
same location.

Inheritance Hierarchy

Requirements

An abstraction of a physical location on hardware.

location

Header: concrt.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/location-class.md

~location

~location();

current

static location __cdecl current();

Return Value

from_numa_node

static location __cdecl from_numa_node(unsigned short _NumaNodeNumber);

Parameters

Return Value

location

location();

location(
 const location& _Src);

location(
 T _LocationType,
 unsigned int _Id,
 unsigned int _BindingId = 0,
 _Inout_opt_ void* _PBinding = NULL);

Parameters

Namespace: concurrency

Destroys a location object.

Returns a location object representing the most specific place the calling thread is executing.

A location representing the most specific place the calling thread is executing.

Returns a location object which represents a given NUMA node.

_NumaNodeNumber
The NUMA node number to construct a location for.

A location representing the NUMA node specified by the _NumaNodeNumber parameter.

Constructs a location object.

_Src

_LocationType

_Id

_BindingId

Remarks

operator!=

bool operator!= (const location& _Rhs) const;

Parameters

Return Value

operator=

location& operator= (const location& _Rhs);

Parameters

Return Value

operator==

bool operator== (const location& _Rhs) const;

Parameters

Return Value

See also

_PBinding
(Optional) Binding pointer.

A default constructed location represents the system as a whole.

Determines whether two location objects represent different location.

_Rhs
Operand location .

true if the two locations are different, false otherwise.

Assigns the contents of a different location object to this one.

_Rhs
The source location object.

Determines whether two location objects represent the same location.

_Rhs
Operand location .

true if the two locations are identical, and false otherwise.

concurrency Namespace

message Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
class message : public ::Concurrency::details::_Runtime_object;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type A type alias for T .

Public Constructors

NAME DESCRIPTION

message Overloaded. Constructs a message object.

~message Destructor Destroys the message object.

Public Methods

NAME DESCRIPTION

add_ref Adds to the reference count for the message object. Used for
message blocks that need reference counting to determine
message lifetimes.

msg_id Returns the ID of the message object.

remove_ref Subtracts from the reference count for the message object.
Used for message blocks that need reference counting to
determine message lifetimes.

Public Data Members

NAME DESCRIPTION

payload The payload of the message object.

The basic message envelope containing the data payload being passed between messaging blocks.

T
The data type of the payload within the message.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/message-class.md

Remarks

Inheritance Hierarchy

Requirements

add_ref

long add_ref();

Return Value

message

message(
 T const& _P);

message(
 T const& _P,
 runtime_object_identity _Id);

message(
 message const& _Msg);

message(
 In message const* _Msg);

Parameters

Remarks

For more information, see Asynchronous Message Blocks.

message

Header: agents.h

Namespace: concurrency

Adds to the reference count for the message object. Used for message blocks that need reference counting to
determine message lifetimes.

The new value of the reference count.

Constructs a message object.

_P
The payload of this message.

_Id
The unique ID of this message.

_Msg
A reference or pointer to a message object.

The constructor that takes a pointer to a message object as an argument throws an invalid_argument exception if
the parameter _Msg is NULL .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

~message

virtual ~message();

msg_id

runtime_object_identity msg_id() const;

Return Value

payload

T const payload;

remove_ref

long remove_ref();

Return Value

See also

Destroys the message object.

Returns the ID of the message object.

The runtime_object_identity of the message object.

The payload of the message object.

Subtracts from the reference count for the message object. Used for message blocks that need reference counting
to determine message lifetimes.

The new value of the reference count.

concurrency Namespace

message_not_found Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class message_not_found : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

message_not_found Overloaded. Constructs a message_not_found object.

Inheritance Hierarchy

Requirements

message_not_found

explicit _CRTIMP message_not_found(_In_z_ const char* _Message) throw();

message_not_found() throw();

Parameters

See also

This class describes an exception thrown when a messaging block is unable to find a requested message.

exception

message_not_found

Header: concrt.h

Namespace: concurrency

Constructs a message_not_found object.

_Message
A descriptive message of the error.

concurrency Namespace
Asynchronous Message Blocks

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/message-not-found-class.md

message_processor Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
class message_processor;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type A type alias for T .

Public Methods

NAME DESCRIPTION

async_send When overridden in a derived class, places messages into the
block asynchronously.

sync_send When overridden in a derived class, places messages into the
block synchronously.

wait When overridden in a derived class, waits for all asynchronous
operations to complete.

Protected Methods

NAME DESCRIPTION

process_incoming_message When overridden in a derived class, performs the forward
processing of messages into the block. Called once every time
a new message is added and the queue is found to be empty.

Inheritance Hierarchy

Requirements

The message_processor class is the abstract base class for processing of message objects. There is no guarantee on
the ordering of the messages.

T
The data type of the payload within messages handled by this message_processor object.

message_processor

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/message-processor-class.md

async_send

virtual void async_send(_Inout_opt_ message<T>* _Msg) = 0;

Parameters

Remarks

process_incoming_message

virtual void process_incoming_message() = 0;

Remarks

sync_send

virtual void sync_send(_Inout_opt_ message<T>* _Msg) = 0;

Parameters

Remarks

wait

virtual void wait() = 0;

Remarks

See also

Header: agents.h

Namespace: concurrency

When overridden in a derived class, places messages into the block asynchronously.

_Msg
A message object to send asynchronously.

Processor implementations should override this method.

When overridden in a derived class, performs the forward processing of messages into the block. Called once
every time a new message is added and the queue is found to be empty.

Message block implementations should override this method.

When overridden in a derived class, places messages into the block synchronously.

_Msg
A message object to send synchronously.

Processor implementations should override this method.

When overridden in a derived class, waits for all asynchronous operations to complete.

Processor implementations should override this method.

concurrency Namespace
ordered_message_processor Class

missing_wait Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class missing_wait : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

missing_wait Overloaded. Constructs a missing_wait object.

Remarks

Inheritance Hierarchy

Requirements

missing_wait

explicit _CRTIMP missing_wait(_In_z_ const char* _Message) throw();

missing_wait() throw();

Parameters

This class describes an exception thrown when there are tasks still scheduled to a task_group or
structured_task_group object at the time that object's destructor executes. This exception will never be thrown if

the destructor is reached because of a stack unwinding as the result of an exception.

Absent exception flow, you are responsible for calling either the wait or run_and_wait method of a task_group

or structured_task_group object before allowing that object to destruct. The runtime throws this exception as an
indication that you forgot to call the wait or run_and_wait method.

exception

missing_wait

Header: concrt.h

Namespace: concurrency

Constructs a missing_wait object.

_Message
A descriptive message of the error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/missing-wait-class.md

See also
concurrency Namespace
task_group Class
wait
run_and_wait
structured_task_group Class

multi_link_registry Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _Block>
class multi_link_registry : public network_link_registry<_Block>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

multi_link_registry Constructs a multi_link_registry object.

~multi_link_registry Destructor Destroys the multi_link_registry object.

Public Methods

NAME DESCRIPTION

add Adds a link to the multi_link_registry object. (Overrides
network_link_registry::add.)

begin Returns an iterator to the first element in the
multi_link_registry object. (Overrides

network_link_registry::begin.)

contains Searches the multi_link_registry object for a specified
block. (Overrides network_link_registry::contains.)

count Counts the number of items in the multi_link_registry

object. (Overrides network_link_registry::count.)

remove Removes a link from the multi_link_registry object.
(Overrides network_link_registry::remove.)

set_bound Sets an upper bound on the number of links that the
multi_link_registry object can hold.

Inheritance Hierarchy

The multi_link_registry object is a network_link_registry that manages multiple source blocks or multiple
target blocks.

_Block
The block data type being stored in the multi_link_registry object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/multi-link-registry-class.md

Requirements

add

virtual void add(_EType _Link);

Parameters

Remarks

begin

virtual iterator begin();

Return Value

Remarks

contains

virtual bool contains(_EType _Link);

Parameters

Return Value

count

network_link_registry

multi_link_registry

Header: agents.h

Namespace: concurrency

Adds a link to the multi_link_registry object.

_Link
A pointer to a block to be added.

The method throws an invalid_link_target exception if the link is already present in the registry, or if a bound has
already been set with the set_bound function and a link has since been removed.

Returns an iterator to the first element in the multi_link_registry object.

An iterator addressing the first element in the multi_link_registry object.

The end state is indicated by a NULL link.

Searches the multi_link_registry object for a specified block.

_Link
A pointer to a block that is to be searched for in the multi_link_registry object.

true if the specified block was found, false otherwise.

Counts the number of items in the multi_link_registry object.

virtual size_t count();

Return Value

multi_link_registry

multi_link_registry();

~multi_link_registry

virtual ~multi_link_registry();

Remarks

remove

virtual bool remove(_EType _Link);

Parameters

Return Value

set_bound

void set_bound(size_t _MaxLinks);

Parameters

Remarks

See also

The number of items in the multi_link_registry object.

Constructs a multi_link_registry object.

Destroys the multi_link_registry object.

The method throws an invalid_operation exception if called before all links are removed.

Removes a link from the multi_link_registry object.

_Link
A pointer to a block to be removed, if found.

true if the link was found and removed, false otherwise.

Sets an upper bound on the number of links that the multi_link_registry object can hold.

_MaxLinks
The maximum number of links that the multi_link_registry object can hold.

After a bound is set, unlinking an entry will cause the multi_link_registry object to enter an immutable state
where further calls to add will throw an invalid_link_target exception.

concurrency Namespace
single_link_registry Class

multitype_join Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<
 typename T,
 join_type _Jtype = non_greedy
>
class multitype_join: public ISource<typename _Unwrap<T>::type>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type A type alias for T .

Public Constructors

NAME DESCRIPTION

multitype_join Overloaded. Constructs a multitype_join messaging block.

~multitype_join Destructor Destroys the multitype_join messaging block.

Public Methods

NAME DESCRIPTION

accept Accepts a message that was offered by this multitype_join

block, transferring ownership to the caller.

acquire_ref Acquires a reference count on this multitype_join

messaging block, to prevent deletion.

consume Consumes a message previously offered by the
multitype_join messaging block and successfully reserved

by the target, transferring ownership to the caller.

A multitype_join messaging block is a multi-source, single-target messaging block that combines together
messages of different types from each of its sources and offers a tuple of the combined messages to its targets.

T
The tuple payload type of the messages joined and propagated by the block.

_Jtype
The kind of join block this is, either greedy or non_greedy

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/multitype-join-class.md

link_target Links a target block to this multitype_join messaging
block.

release Releases a previous successful message reservation.

release_ref Releases a reference count on this multiple_join

messaging block.

reserve Reserves a message previously offered by this
multitype_join messaging block.

unlink_target Unlinks a target block from this multitype_join messaging
block.

unlink_targets Unlinks all targets from this multitype_join messaging
block. (Overrides ISource::unlink_targets.)

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept

virtual message<_Destination_type>* accept(
 runtime_object_identity _MsgId,
 Inout ITarget<_Destination_type>* _PTarget);

Parameters

Return Value

acquire_ref

For more information, see Asynchronous Message Blocks.

ISource

multitype_join

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this multitype_join block, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the accept method.

A pointer to the message that the caller now has ownership of.

virtual void acquire_ref(_Inout_ ITarget<_Destination_type>* _PTarget);

Parameters

Remarks

consume

virtual message<_Destination_type>* consume(
 runtime_object_identity _MsgId,
 Inout ITarget<_Destination_type>* _PTarget);

Parameters

Return Value

Remarks

link_target

virtual void link_target(_Inout_ ITarget<_Destination_type>* _PTarget);

Parameters

multitype_join

Acquires a reference count on this multitype_join messaging block, to prevent deletion.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being linked to this source during the link_target method.

Consumes a message previously offered by the multitype_join messaging block and successfully reserved by the
target, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the consume method.

A pointer to the message object that the caller now has ownership of.

The consume method is similar to accept , but must always be preceded by a call to reserve that returned true.

Links a target block to this multitype_join messaging block.

_PTarget
A pointer to an ITarget block to link to this multitype_join messaging block.

Constructs a multitype_join messaging block.

explicit multitype_join(
 T _Tuple);

multitype_join(
 Scheduler& _PScheduler,
 T _Tuple);

multitype_join(
 ScheduleGroup& _PScheduleGroup,
 T _Tuple);

multitype_join(
 multitype_join&& _Join);

Parameters

Remarks

~multitype_join

~multitype_join();

release

virtual void release(
 runtime_object_identity _MsgId,
 Inout ITarget<_Destination_type>* _PTarget);

Parameters

_Tuple
A tuple of sources for this multitype_join messaging block.

_PScheduler
The Scheduler object within which the propagation task for the multitype_join messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the multitype_join messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

_Join
A multitype_join messaging block to copy from. Note that the original object is orphaned, making this a move
constructor.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

Move construction is not performed under a lock, which means that it is up to the user to make sure that there are
no light-weight tasks in flight at the time of moving. Otherwise, numerous races can occur, leading to exceptions
or inconsistent state.

Destroys the multitype_join messaging block.

Releases a previous successful message reservation.

_MsgId
The runtime_object_identity of the message object being released.

_PTarget

release_ref

virtual void release_ref(_Inout_ ITarget<_Destination_type>* _PTarget);

Parameters

Remarks

reserve

virtual bool reserve(
 runtime_object_identity _MsgId,
 Inout ITarget<_Destination_type>* _PTarget);

Parameters

Return Value

Remarks

unlink_target

virtual void unlink_target(_Inout_ ITarget<_Destination_type>* _PTarget);

Parameters

unlink_targets

A pointer to the target block that is calling the release method.

Releases a reference count on this multiple_join messaging block.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being unlinked from this source. The source block is allowed to
release any resources reserved for the target block.

Reserves a message previously offered by this multitype_join messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

_PTarget
A pointer to the target block that is calling the reserve method.

true if the message was successfully reserved, false otherwise. Reservations can fail for many reasons,
including: the message was already reserved or accepted by another target, the source could deny reservations,
and so forth.

After you call reserve , if it succeeds, you must call either consume or release in order to take or give up
possession of the message, respectively.

Unlinks a target block from this multitype_join messaging block.

_PTarget
A pointer to an ITarget block to unlink from this multitype_join messaging block.

virtual void unlink_targets();

See also

Unlinks all targets from this multitype_join messaging block.

concurrency Namespace
choice Class
join Class

nested_scheduler_missing_detach Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class nested_scheduler_missing_detach : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

nested_scheduler_missing_detach Overloaded. Constructs a
nested_scheduler_missing_detach object.

Remarks

Inheritance Hierarchy

Requirements

nested_scheduler_missing_detach

explicit _CRTIMP nested_scheduler_missing_detach(_In_z_ const char* _Message) throw();

nested_scheduler_missing_detach() throw();

Parameters

This class describes an exception thrown when the Concurrency Runtime detects that you neglected to call the
CurrentScheduler::Detach method on a context that attached to a second scheduler using the Attach method of

the Scheduler object.

This exception is thrown only when you nest one scheduler inside another by calling the Attach method of a
Scheduler object on a context that is already owned by or attached to another scheduler. The Concurrency

Runtime throws this exception opportunistically when it can detect the scenario as an aid to locating the problem.
Not every instance of neglecting to call the CurrentScheduler::Detach method is guaranteed to throw this
exception.

exception

nested_scheduler_missing_detach

Header: concrt.h

Namespace: concurrency

Constructs a nested_scheduler_missing_detach object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/nested-scheduler-missing-detach-class.md

See also

_Message
A descriptive message of the error.

concurrency Namespace
Scheduler Class

network_link_registry Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _Block>
class network_link_registry;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

const_pointer A type that provides a pointer to a const element in a
network_link_registry object.

const_reference A type that provides a reference to a const element stored
in a network_link_registry object for reading and
performing const operations.

iterator A type that provides an iterator that can read or modify any
element in a network_link_registry object.

type A type that represents the block type stored in the
network_link_registry object.

Public Methods

NAME DESCRIPTION

add When overridden in a derived class, adds a link to the
network_link_registry object.

begin When overridden in a derived class, returns an iterator to the
first element in the network_link_registry object.

contains When overridden in a derived class, searches the
network_link_registry object for a specified block.

count When overridden in a derived class, returns the number of
items in the network_link_registry object.

The network_link_registry abstract base class manages the links between source and target blocks.

_Block
The block data type being stored in the network_link_registry .

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/network-link-registry-class.md

remove When overridden in a derived class, removes a specified block
from the network_link_registry object.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

add

virtual void add(_EType _Link) = 0;

Parameters

begin

virtual iterator begin() = 0;

Return Value

Remarks

contains

virtual bool contains(_EType _Link) = 0;

Parameters

The network link registry is not safe for concurrent access.

network_link_registry

Header: agents.h

Namespace: concurrency

When overridden in a derived class, adds a link to the network_link_registry object.

_Link
A pointer to a block to be added.

When overridden in a derived class, returns an iterator to the first element in the network_link_registry object.

An iterator addressing the first element in the network_link_registry object.

The end state of the iterator is indicated by a NULL link.

When overridden in a derived class, searches the network_link_registry object for a specified block.

_Link
A pointer to a block that is being searched for in the network_link_registry object.

Return Value

count

virtual size_t count() = 0;

Return Value

remove

virtual bool remove(_EType _Link) = 0;

Parameters

Return Value

See also

true if the block was found, false otherwise.

When overridden in a derived class, returns the number of items in the network_link_registry object.

The number of items in the network_link_registry object.

When overridden in a derived class, removes a specified block from the network_link_registry object.

_Link
A pointer to a block to be removed, if found.

true if the link was found and removed, false otherwise.

concurrency Namespace
single_link_registry Class
multi_link_registry Class

operation_timed_out Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class operation_timed_out : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

operation_timed_out Overloaded. Constructs an operation_timed_out object.

Inheritance Hierarchy

Requirements

operation_timed_out

explicit _CRTIMP operation_timed_out(_In_z_ const char* _Message) throw();

operation_timed_out() throw();

Parameters

See also

This class describes an exception thrown when an operation has timed out.

exception

operation_timed_out

Header: concrt.h

Namespace: concurrency

Constructs an operation_timed_out object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/operation-timed-out-class.md

ordered_message_processor Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
class ordered_message_processor : public message_processor<T>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

type A type alias for T .

Public Constructors

NAME DESCRIPTION

ordered_message_processor Constructs an ordered_message_processor object.

~ordered_message_processor Destructor Destroys the ordered_message_processor object.

Public Methods

NAME DESCRIPTION

async_send Asynchronously queues up messages and starts a processing
task, if this has not been done already. (Overrides
message_processor::async_send.)

initialize Initializes the ordered_message_processor object with the
appropriate callback function, scheduler and schedule group.

initialize_batched_processing Initialize batched message processing

sync_send Synchronously queues up messages and starts a processing
task, if this has not been done already. (Overrides
message_processor::sync_send.)

An ordered_message_processor is a message_processor that allows message blocks to process messages in the
order they were received.

T
The payload type of messages handled by the processor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/ordered-message-processor-class.md

wait A processor-specific spin wait used in destructors of message
blocks to make sure that all asynchronous processing tasks
have time to finish before destroying the block. (Overrides
message_processor::wait.)

NAME DESCRIPTION

Protected Methods

NAME DESCRIPTION

process_incoming_message The processing function that is called asynchronously. It
dequeues messages and begins processing them. (Overrides
message_processor::process_incoming_message.)

Inheritance Hierarchy

Requirements

async_send

virtual void async_send(_Inout_opt_ message<T>* _Msg);

Parameters

initialize

void initialize(
 _Inout_opt_ Scheduler* _PScheduler,
 _Inout_opt_ ScheduleGroup* _PScheduleGroup,
 _Handler_method const& _Handler);

Parameters

message_processor

ordered_message_processor

Header: agents.h

Namespace: concurrency

Asynchronously queues up messages and starts a processing task, if this has not been done already.

_Msg
A pointer to a message.

Initializes the ordered_message_processor object with the appropriate callback function, scheduler and schedule
group.

_PScheduler
A pointer to the scheduler to be used for scheduling light-weight tasks.

_PScheduleGroup
A pointer to the schedule group to be used for scheduling light-weight tasks.

initialize_batched_processing

virtual void initialize_batched_processing(
 _Handler_method const& _Processor,
 _Propagator_method const& _Propagator);

Parameters

ordered_message_processor

ordered_message_processor();

Remarks

~ordered_message_processor

virtual ~ordered_message_processor();

Remarks

process_incoming_message

virtual void process_incoming_message();

sync_send

virtual void sync_send(_Inout_opt_ message<T>* _Msg);

Parameters

_Handler
The handler functor invoked during callback.

Initialize batched message processing

_Processor
The processor functor invoked during callback.

_Propagator
The propagator functor invoked during callback.

Constructs an ordered_message_processor object.

This ordered_message_processor will not schedule asynchronous or synchronous handlers until the initialize

function is called.

Destroys the ordered_message_processor object.

Waits for all outstanding asynchronous operations before destroying the processor.

The processing function that is called asynchronously. It dequeues messages and begins processing them.

Synchronously queues up messages and starts a processing task, if this has not been done already.

 wait

virtual void wait();

See also

_Msg
A pointer to a message.

A processor-specific spin wait used in destructors of message blocks to make sure that all asynchronous
processing tasks have time to finish before destroying the block.

concurrency Namespace

overwrite_buffer Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<class T>
class overwrite_buffer : public propagator_block<multi_link_registry<ITarget<T>>,
multi_link_registry<ISource<T>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

overwrite_buffer Overloaded. Constructs an overwrite_buffer messaging
block.

~overwrite_buffer Destructor Destroys the overwrite_buffer messaging block.

Public Methods

NAME DESCRIPTION

has_value Checks whether this overwrite_buffer messaging block
has a value yet.

value Gets a reference to the current payload of the message being
stored in the overwrite_buffer messaging block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this
overwrite_buffer messaging block, returning a copy of

the message to the caller.

consume_message Consumes a message previously offered by the
overwrite_buffer messaging block and reserved by the

target, returning a copy of the message to the caller.

An overwrite_buffer messaging block is a multi-target, multi-source, ordered propagator_block capable of
storing a single message at a time. New messages overwrite previously held ones.

T
The payload type of the messages stored and propagated by the buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/overwrite-buffer-class.md

link_target_notification A callback that notifies that a new target has been linked to
this overwrite_buffer messaging block.

propagate_message Asynchronously passes a message from an ISource block
to this overwrite_buffer messaging block. It is invoked by
the propagate method, when called by a source block.

propagate_to_any_targets Places the message _PMessage in this overwrite_buffer

messaging block and offers it to all of the linked targets.

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this
overwrite_buffer messaging block. (Overrides

source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

send_message Synchronously passes a message from an ISource block to
this overwrite_buffer messaging block. It is invoked by
the send method, when called by a source block.

supports_anonymous_source Overrides the supports_anonymous_source method to
indicate that this block can accept messages offered to it by a
source that is not linked. (Overrides
ITarget::supports_anonymous_source.)

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept_message

An overwrite_buffer messaging block propagates out copies of its stored message to each of its targets.

For more information, see Asynchronous Message Blocks.

ISource

ITarget

source_block

propagator_block

overwrite_buffer

Header: agents.h

Namespace: concurrency

virtual message<T>* accept_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

consume_message

virtual message<T>* consume_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

has_value

bool has_value() const;

Return Value

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<T>* _PTarget);

Parameters

Accepts a message that was offered by this overwrite_buffer messaging block, returning a copy of the message
to the caller.

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

The overwrite_buffer messaging block returns copies of the message to its targets, rather than transferring
ownership of the currently held message.

Consumes a message previously offered by the overwrite_buffer messaging block and reserved by the target,
returning a copy of the message to the caller.

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

Checks whether this overwrite_buffer messaging block has a value yet.

true if the block has received a value, false otherwise.

A callback that notifies that a new target has been linked to this overwrite_buffer messaging block.

_PTarget

~overwrite_buffer

~overwrite_buffer();

overwrite_buffer

overwrite_buffer();

overwrite_buffer(
 filter_method const& _Filter);

overwrite_buffer(
 Scheduler& _PScheduler);

overwrite_buffer(
 Scheduler& _PScheduler,
 filter_method const& _Filter);

overwrite_buffer(
 ScheduleGroup& _PScheduleGroup);

overwrite_buffer(
 ScheduleGroup& _PScheduleGroup,
 filter_method const& _Filter);

Parameters

Remarks

propagate_message

virtual message_status propagate_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

A pointer to the newly linked target.

Destroys the overwrite_buffer messaging block.

Constructs an overwrite_buffer messaging block.

_Filter
A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the overwrite_buffer messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the overwrite_buffer messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

The type filter_method is a functor with signature bool (T const &) which is invoked by this overwrite_buffer

messaging block to determine whether or not it should accept an offered message.

Asynchronously passes a message from an ISource block to this overwrite_buffer messaging block. It is
invoked by the propagate method, when called by a source block.

Parameters

Return Value

propagate_to_any_targets

virtual void propagate_to_any_targets(_Inout_ message<T>* _PMessage);

Parameters

Remarks

send_message

virtual message_status send_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

supports_anonymous_source

virtual bool supports_anonymous_source();

Return Value

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Places the message _PMessage in this overwrite_buffer messaging block and offers it to all of the linked targets.

_PMessage
A pointer to a message object that this overwrite_buffer has taken ownership of.

This method overwrites the current message in the overwrite_buffer with the newly accepted message
_PMessage .

Synchronously passes a message from an ISource block to this overwrite_buffer messaging block. It is invoked
by the send method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Overrides the supports_anonymous_source method to indicate that this block can accept messages offered to it by
a source that is not linked.

true because the block does not postpone offered messages.

release_message

virtual void release_message(runtime_object_identity _MsgId);

Parameters

reserve_message

virtual bool reserve_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation();

value

T value();

Return Value

Remarks

See also

Releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

Reserves a message previously offered by this overwrite_buffer messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

Gets a reference to the current payload of the message being stored in the overwrite_buffer messaging block.

The payload of the currently stored message.

The value stored in the overwrite_buffer could change immediately after this method returns. This method will
wait until a message arrives if no message is currently stored in the overwrite_buffer .

concurrency Namespace
unbounded_buffer Class

single_assignment Class

progress_reporter Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename _ProgressType>
class progress_reporter;

Parameters

Members
Public Constructors

NAME DESCRIPTION

progress_reporter

Public Methods

NAME DESCRIPTION

report Sends a progress report to the asynchronous action or
operation to which this progress reporter is bound.

Remarks

Inheritance Hierarchy

Requirements

progress_reporter
progress_reporter();

The progress reporter class allows reporting progress notifications of a specific type. Each progress_reporter
object is bound to a particular asynchronous action or operation.

_ProgressType
The payload type of each progress notification reported through the progress reporter.

This type is only available to Windows Runtime apps.

progress_reporter

Header: ppltasks.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/progress-reporter-class.md

 report

void report(const _ProgressType& val) const;

Parameters

See also

Sends a progress report to the asynchronous action or operation to which this progress reporter is bound.

val
The payload to report through a progress notification.

concurrency Namespace

propagator_block Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class _TargetLinkRegistry, class _SourceLinkRegistry, class _MessageProcessorType =
ordered_message_processor<typename _TargetLinkRegistry::type::type>>
class propagator_block : public source_block<_TargetLinkRegistry,
 _MessageProcessorType>,
public ITarget<typename _SourceLinkRegistry::type::source_type>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

source_iterator The type of the iterator for the source_link_manager for
this propagator_block .

Public Constructors

NAME DESCRIPTION

propagator_block Constructs a propagator_block object.

~propagator_block Destructor Destroys a propagator_block object.

Public Methods

NAME DESCRIPTION

propagate Asynchronously passes a message from a source block to this
target block.

send Synchronously initiates a message to this block. Called by an
ISource block. When this function completes, the message

will already have propagated into the block.

The propagator_block class is an abstract base class for message blocks that are both a source and target. It
combines the functionality of both the source_block and target_block classes.

_TargetLinkRegistry
The link registry to be used for holding the target links.

_SourceLinkRegistry
The link registry to be used for holding the source links.

_MessageProcessorType
The processor type for message processing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/propagator-block-class.md

Protected Methods

NAME DESCRIPTION

decline_incoming_messages Indicates to the block that new messages should be declined.

initialize_source_and_target Initializes the base object. Specifically, the
message_processor object needs to be initialized.

link_source Links a specified source block to this propagator_block

object.

process_input_messages Process input messages. This is only useful for propagator
blocks, which derive from source_block (Overrides
source_block::process_input_messages.)

propagate_message When overridden in a derived class, this method
asynchronously passes a message from an ISource block to
this propagator_block object. It is invoked by the
propagate method, when called by a source block.

register_filter Registers a filter method that will be invoked on every
received message.

remove_network_links Removes all the source and target network links from this
propagator_block object.

send_message When overridden in a derived class, this method
synchronously passes a message from an ISource block to
this propagator_block object. It is invoked by the send

method, when called by a source block.

unlink_source Unlinks a specified source block from this
propagator_block object.

unlink_sources Unlinks all source blocks from this propagator_block

object. (Overrides ITarget::unlink_sources.)

Remarks

Inheritance Hierarchy

Requirements

To avoid multiple inheritance, the propagator_block class inherits from the source_block class and ITarget

abstract class. Most of the functionality in the target_block class is replicated here.

ISource

ITarget

source_block

propagator_block

Header: agents.h

decline_incoming_messages

void decline_incoming_messages();

Remarks

initialize_source_and_target

void initialize_source_and_target(
 _Inout_opt_ Scheduler* _PScheduler = NULL,
 _Inout_opt_ ScheduleGroup* _PScheduleGroup = NULL);

Parameters

link_source

virtual void link_source(_Inout_ ISource<_Source_type>* _PSource);

Parameters

process_input_messages

virtual void process_input_messages(_Inout_ message<_Target_type>* _PMessage);

Parameters

propagate

Namespace: concurrency

Indicates to the block that new messages should be declined.

This method is called by the destructor to ensure that new messages are declined while destruction is in progress.

Initializes the base object. Specifically, the message_processor object needs to be initialized.

_PScheduler
The scheduler to be used for scheduling tasks.

_PScheduleGroup
The schedule group to be used for scheduling tasks.

Links a specified source block to this propagator_block object.

_PSource
A pointer to the ISource block that is to be linked.

Process input messages. This is only useful for propagator blocks, which derive from source_block

_PMessage
A pointer to the message that is to be processed.

Asynchronously passes a message from a source block to this target block.

virtual message_status propagate(
 _Inout_opt_ message<_Source_type>* _PMessage,
 _Inout_opt_ ISource<_Source_type>* _PSource);

Parameters

Return Value

Remarks

propagate_message

virtual message_status propagate_message(
 Inout message<_Source_type>* _PMessage,
 Inout ISource<_Source_type>* _PSource) = 0;

Parameters

Return Value

propagator_block

propagator_block();

~propagator_block

virtual ~propagator_block();

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

The propagate method is invoked on a target block by a linked source block. It queues up an asynchronous task
to handle the message, if one is not already queued or executing.

The method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

When overridden in a derived class, this method asynchronously passes a message from an ISource block to this
propagator_block object. It is invoked by the propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Constructs a propagator_block object.

Destroys a propagator_block object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

register_filter

void register_filter(filter_method const& _Filter);

Parameters

remove_network_links

void remove_network_links();

send

virtual message_status send(
 Inout message<_Source_type>* _PMessage,
 Inout ISource<_Source_type>* _PSource);

Parameters

Return Value

Remarks

send_message

virtual message_status send_message(
 Inout message<_Source_type> *,
 Inout ISource<_Source_type> *);

Return Value

Remarks

Registers a filter method that will be invoked on every received message.

_Filter
The filter method.

Removes all the source and target network links from this propagator_block object.

Synchronously initiates a message to this block. Called by an ISource block. When this function completes, the
message will already have propagated into the block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

This method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

When overridden in a derived class, this method synchronously passes a message from an ISource block to this
propagator_block object. It is invoked by the send method, when called by a source block.

A message_status indication of what the target decided to do with the message.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

unlink_source

virtual void unlink_source(_Inout_ ISource<_Source_type>* _PSource);

Parameters

unlink_sources

virtual void unlink_sources();

See also

By default, this block returns declined unless overridden by a derived class.

Unlinks a specified source block from this propagator_block object.

_PSource
A pointer to the ISource block that is to be unlinked.

Unlinks all source blocks from this propagator_block object.

concurrency Namespace
source_block Class
ITarget Class

reader_writer_lock Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class reader_writer_lock;

Members
Public Classes

NAME DESCRIPTION

reader_writer_lock::scoped_lock Class An exception safe RAII wrapper that can be used to acquire
reader_writer_lock lock objects as a writer.

reader_writer_lock::scoped_lock_read Class An exception safe RAII wrapper that can be used to acquire
reader_writer_lock lock objects as a reader.

Public Constructors

NAME DESCRIPTION

reader_writer_lock Constructs a new reader_writer_lock object.

~reader_writer_lock Destructor Destroys the reader_writer_lock object.

Public Methods

NAME DESCRIPTION

lock Acquires the reader-writer lock as a writer.

lock_read Acquires the reader-writer lock as a reader. If there are
writers, active readers have to wait until they are done. The
reader simply registers an interest in the lock and waits for
writers to release it.

try_lock Attempts to acquire the reader-writer lock as a writer without
blocking.

try_lock_read Attempts to acquire the reader-writer lock as a reader
without blocking.

unlock Unlocks the reader-writer lock based on who locked it, reader
or writer.

A writer-preference queue-based reader-writer lock with local only spinning. The lock grants first in - first out
(FIFO) access to writers and starves readers under a continuous load of writers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/reader-writer-lock-class.md

Remarks

Inheritance Hierarchy

Requirements

lock

void lock();

Remarks

lock_read

void lock_read();

Remarks

reader_writer_lock

reader_writer_lock();

For more information, see Synchronization Data Structures.

reader_writer_lock

Header: concrt.h

Namespace: concurrency

Acquires the reader-writer lock as a writer.

It is often safer to utilize the scoped_lock construct to acquire and release a reader_writer_lock object as a writer
in an exception safe way.

After a writer attempts to acquire the lock, any future readers will block until the writers have successfully
acquired and released the lock. This lock is biased towards writers and can starve readers under a continuous
load of writers.

Writers are chained so that a writer exiting the lock releases the next writer in line.

If the lock is already held by the calling context, an improper_lock exception will be thrown.

Acquires the reader-writer lock as a reader. If there are writers, active readers have to wait until they are done.
The reader simply registers an interest in the lock and waits for writers to release it.

It is often safer to utilize the scoped_lock_read construct to acquire and release a reader_writer_lock object as a
reader in an exception safe way.

If there are writers waiting on the lock, the reader will wait until all writers in line have acquired and released the
lock. This lock is biased towards writers and can starve readers under a continuous load of writers.

Constructs a new reader_writer_lock object.

~reader_writer_lock

~reader_writer_lock();

Remarks

reader_writer_lock::scoped_lock Class

class scoped_lock;

scoped_lock::scoped_lock

explicit _CRTIMP scoped_lock(reader_writer_lock& _Reader_writer_lock);

Parameters

scoped_lock::~scoped_lock

~scoped_lock();

reader_writer_lock::scoped_lock_read Class

class scoped_lock_read;

try_lock

scoped_lock_read::scoped_lock_read

Destroys the reader_writer_lock object.

It is expected that the lock is no longer held when the destructor runs. Allowing the reader writer lock to destruct
with the lock still held results in undefined behavior.

An exception safe RAII wrapper that can be used to acquire reader_writer_lock lock objects as a writer.

Constructs a scoped_lock object and acquires the reader_writer_lock object passed in the _Reader_writer_lock

parameter as a writer. If the lock is held by another thread, this call will block.

_Reader_writer_lock
The reader_writer_lock object to acquire as a writer.

Destroys a reader_writer_lock object and releases the lock supplied in its constructor.

An exception safe RAII wrapper that can be used to acquire reader_writer_lock lock objects as a reader.

Attempts to acquire the reader-writer lock as a writer without blocking.

Constructs a scoped_lock_read object and acquires the reader_writer_lock object passed in the
_Reader_writer_lock parameter as a reader. If the lock is held by another thread as a writer or there are pending

writers, this call will block.

 reader_writer_lock::scoped_lock_read::~scoped_lock_read Destructor

explicit _CRTIMP scoped_lock_read(reader_writer_lock& _Reader_writer_lock);

Parameters

~scoped_lock_read();

try_lock
bool try_lock();

Return Value

try_lock_read

bool try_lock_read();

Return Value

unlock

void unlock();

Remarks

See also

_Reader_writer_lock
The reader_writer_lock object to acquire as a reader.

Destroys a scoped_lock_read object and releases the lock supplied in its constructor.

If the lock was acquired, the value true; otherwise, the value false.

Attempts to acquire the reader-writer lock as a reader without blocking.

If the lock was acquired, the value true; otherwise, the value false.

Unlocks the reader-writer lock based on who locked it, reader or writer.

If there are writers waiting on the lock, the release of the lock will always go to the next writer in FIFO order. This
lock is biased towards writers and can starve readers under a continuous load of writers.

concurrency Namespace
critical_section Class

ScheduleGroup Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class ScheduleGroup;

Members
Protected Constructors

NAME DESCRIPTION

~ScheduleGroup Destructor

Public Methods

NAME DESCRIPTION

Id Returns an identifier for the schedule group that is unique
within the scheduler to which the group belongs.

Reference Increments the schedule group reference count.

Release Decrements the scheduler group reference count.

ScheduleTask Schedules a light-weight task within the schedule group.

Inheritance Hierarchy

Requirements

Id

virtual unsigned int Id() const = 0;

Represents an abstraction for a schedule group. Schedule groups organize a set of related work that benefits
from being scheduled close together either temporally, by executing another task in the same group before
moving to another group, or spatially, by executing multiple items within the same group on the same NUMA
node or physical socket.

ScheduleGroup

Header: concrt.h

Namespace: concurrency

Returns an identifier for the schedule group that is unique within the scheduler to which the group belongs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/schedulegroup-class.md

Return Value

operator delete

void operator delete(
 void* _PObject);

void operator delete(
 void* _PObject,
 int,
const char *,
 int);

Parameters

Reference

virtual unsigned int Reference() = 0;

Return Value

Remarks

Release

virtual unsigned int Release() = 0;

Return Value

Remarks

An identifier for the schedule group that is unique within the scheduler to which the group belongs.

A ScheduleGroup object is destroyed internally by the runtime when all external references to it are released. It
cannot be explicitly deleted.

_PObject
A pointer to the object to be deleted.

Increments the schedule group reference count.

The newly incremented reference count.

This is typically used to manage the lifetime of the schedule group for composition. When the reference count of
a schedule group falls to zero, the schedule group is deleted by the runtime. A schedule group created using
either the CurrentScheduler::CreateScheduleGroup method, or the Scheduler::CreateScheduleGroup method
starts out with a reference count of one.

Decrements the scheduler group reference count.

The newly decremented reference count.

This is typically used to manage the lifetime of the schedule group for composition. When the reference count of
a schedule group falls to zero, the schedule group is deleted by the runtime. After you have called the Release

method the specific number of times to remove the creation reference count and any additional references placed
using the Reference method, you cannot utilize the schedule group further. Doing so will result in undefined
behavior.

A schedule group is associated with a particular scheduler instance. You must ensure that all references to the

~ScheduleGroup
virtual ~ScheduleGroup();

ScheduleTask

virtual void ScheduleTask(
 TaskProc _Proc,
 _Inout_opt_ void* _Data) = 0;

Parameters

Remarks

See also

schedule group are released before all references to the scheduler are released, because the latter could result in
the scheduler being destroyed. Doing otherwise results in undefined behavior.

Schedules a light-weight task within the schedule group.

_Proc
A pointer to the function to execute to perform the body of the light-weight task.

_Data
A void pointer to the data that will be passed as a parameter to the body of the task.

Calling the ScheduleTask method implicitly places a reference count on the schedule group which is removed by
the runtime at an appropriate time after the task executes.

concurrency Namespace
CurrentScheduler Class
Scheduler Class
Task Scheduler

Scheduler Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class Scheduler;

Members
Protected Constructors

NAME DESCRIPTION

Scheduler An object of the Scheduler class can only created using
factory methods, or implicitly.

~Scheduler Destructor An object of the Scheduler class is implicitly destroyed
when all external references to it cease to exist.

Public Methods

NAME DESCRIPTION

Attach Attaches the scheduler to the calling context. After this
method returns, the calling context is managed by the
scheduler and the scheduler becomes the current scheduler.

Create Creates a new scheduler whose behavior is described by
the _Policy parameter, places an initial reference on the
scheduler, and returns a pointer to it.

CreateScheduleGroup Overloaded. Creates a new schedule group within the
scheduler. The version that takes the parameter
_Placement causes tasks within the newly created

schedule group to be biased towards executing at the
location specified by that parameter.

GetNumberOfVirtualProcessors Returns the current number of virtual processors for the
scheduler.

GetPolicy Returns a copy of the policy that the scheduler was created
with.

Id Returns a unique identifier for the scheduler.

IsAvailableLocation Determines whether a given location is available on the
scheduler.

Represents an abstraction for a Concurrency Runtime scheduler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-class.md

Reference Increments the scheduler reference count.

RegisterShutdownEvent Causes the Windows event handle passed in the _Event

parameter to be signaled when the scheduler shuts down
and destroys itself. At the time the event is signaled, all
work that had been scheduled to the scheduler is complete.
Multiple shutdown events can be registered through this
method.

Release Decrements the scheduler reference count.

ResetDefaultSchedulerPolicy Resets the default scheduler policy to the runtime default.
The next time a default scheduler is created, it will use the
runtime default policy settings.

ScheduleTask Overloaded. Schedules a light-weight task within the
scheduler. The light-weight task will be placed in a schedule
group determined by the runtime. The version that takes
the parameter _Placement causes the task to be biased
towards executing at the specified location.

SetDefaultSchedulerPolicy Allows a user defined policy to be used to create the
default scheduler. This method can be called only when no
default scheduler exists within the process. After a default
policy has been set, it remains in effect until the next valid
call to either the SetDefaultSchedulerPolicy or the
ResetDefaultSchedulerPolicy method.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

Attach

The Concurrency Runtime scheduler uses execution contexts, which map to the operating system execution
contexts, such as a thread, to execute the work queued to it by your application. At any time, the concurrency
level of a scheduler is equal to the number of virtual processor granted to it by the Resource Manager. A
virtual processor is an abstraction for a processing resource and maps to a hardware thread on the
underlying system. Only a single scheduler context can execute on a virtual processor at a given time.

The Concurrency Runtime will create a default scheduler per process to execute parallel work. In addition you
can create your own scheduler instances and manipulate it using this class.

Scheduler

Header: concrt.h

Namespace: concurrency

Attaches the scheduler to the calling context. After this method returns, the calling context is managed by the
scheduler and the scheduler becomes the current scheduler.

virtual void Attach() = 0;

Remarks

Create

static Scheduler* __cdecl Create(const SchedulerPolicy& _Policy);

Parameters

Return Value

Remarks

CreateScheduleGroup

virtual ScheduleGroup* CreateScheduleGroup() = 0;

virtual ScheduleGroup* CreateScheduleGroup(location& _Placement) = 0;

Parameters

Attaching a scheduler implicitly places a reference on the scheduler.

At some point in the future, you must call the CurrentScheduler::Detach method in order to allow the
scheduler to shut down.

If this method is called from a context that is already attached to a different scheduler, the existing scheduler is
remembered as the previous scheduler, and the newly created scheduler becomes the current scheduler.
When you call the CurrentScheduler::Detach method at a later point, the previous scheduler is restored as the
current scheduler.

This method will throw an improper_scheduler_attach exception if this scheduler is the current scheduler of
the calling context.

Creates a new scheduler whose behavior is described by the _Policy parameter, places an initial reference on
the scheduler, and returns a pointer to it.

_Policy
The scheduler policy that describes behavior of the newly created scheduler.

A pointer to a newly created scheduler. This Scheduler object has an initial reference count placed on it.

After a scheduler is created with the Create method, you must call the Release method at some point in the
future in order to remove the initial reference count and allow the scheduler to shut down.

A scheduler created with this method is not attached to the calling context. It can be attached to a context
using the Attach method.

This method can throw a variety of exceptions, including scheduler_resource_allocation_error and
invalid_scheduler_policy_value.

Creates a new schedule group within the scheduler. The version that takes the parameter _Placement causes
tasks within the newly created schedule group to be biased towards executing at the location specified by that
parameter.

_Placement
A reference to a location where the tasks within the schedule group will biased towards executing at.

Return Value

Remarks

GetNumberOfVirtualProcessors

virtual unsigned int GetNumberOfVirtualProcessors() const = 0;

Return Value

GetPolicy

virtual SchedulerPolicy GetPolicy() const = 0;

Return Value

Id

virtual unsigned int Id() const = 0;

Return Value

IsAvailableLocation

virtual bool IsAvailableLocation(const location& _Placement) const = 0;

Parameters

Return Value

A pointer to the newly created schedule group. This ScheduleGroup object has an initial reference count
placed on it.

You must invoke the Release method on a schedule group when you are done scheduling work to it. The
scheduler will destroy the schedule group when all work queued to it has completed.

Note that if you explicitly created this scheduler, you must release all references to schedule groups within it,
before you release your references on the scheduler.

Returns the current number of virtual processors for the scheduler.

The current number of virtual processors for the scheduler.

Returns a copy of the policy that the scheduler was created with.

A copy of the policy that the scheduler was created with.

Returns a unique identifier for the scheduler.

A unique identifier for the scheduler.

Determines whether a given location is available on the scheduler.

_Placement
A reference to the location to query the scheduler about.

An indication of whether or not the location specified by the _Placement argument is available on the
scheduler.

Remarks

Reference

virtual unsigned int Reference() = 0 ;

Return Value

Remarks

RegisterShutdownEvent

virtual void RegisterShutdownEvent(HANDLE _Event) = 0;

Parameters

Release

virtual unsigned int Release() = 0;

Return Value

Remarks

ResetDefaultSchedulerPolicy

Note that the return value is an instantaneous sampling of whether the given location is available. In the
presence of multiple schedulers, dynamic resource management can add or take away resources from
schedulers at any point. Should this happen, the given location can change availability.

Increments the scheduler reference count.

The newly incremented reference count.

This is typically used to manage the lifetime of the scheduler for composition. When the reference count of a
scheduler falls to zero, the scheduler will shut down and destruct itself after all work on the scheduler has
completed.

The method will throw an improper_scheduler_reference exception if the reference count prior to calling the
Reference method was zero and the call is made from a context that is not owned by the scheduler.

Causes the Windows event handle passed in the _Event parameter to be signaled when the scheduler shuts
down and destroys itself. At the time the event is signaled, all work that had been scheduled to the scheduler
is complete. Multiple shutdown events can be registered through this method.

_Event
A handle to a Windows event object which will be signaled by the runtime when the scheduler shuts down
and destroys itself.

Decrements the scheduler reference count.

The newly decremented reference count.

This is typically used to manage the lifetime of the scheduler for composition. When the reference count of a
scheduler falls to zero, the scheduler will shut down and destruct itself after all work on the scheduler has
completed.

static void __cdecl ResetDefaultSchedulerPolicy();

Remarks

Scheduler

Scheduler();

Remarks

~Scheduler

virtual ~Scheduler();

ScheduleTask

virtual void ScheduleTask(
 TaskProc _Proc,
 _Inout_opt_ void* _Data) = 0;

virtual void ScheduleTask(
 TaskProc _Proc,
 _Inout_opt_ void* _Data,
 location& _Placement) = 0;

Parameters

Resets the default scheduler policy to the runtime default. The next time a default scheduler is created, it will
use the runtime default policy settings.

This method can be called while a default scheduler exists within the process. It will not affect the policy of the
existing default scheduler. However, if the default scheduler were to shutdown, and a new default were to be
created at a later point, the new scheduler would use the runtime default policy settings.

An object of the Scheduler class can only created using factory methods, or implicitly.

The process' default scheduler is created implicitly when you utilize many of the runtime functions which
require a scheduler to be attached to the calling context. Methods within the CurrentScheduler class and
features of the PPL and agents layers typically perform implicit attachment.

You can also create a scheduler explicitly through either the CurrentScheduler::Create method or the
Scheduler::Create method.

An object of the Scheduler class is implicitly destroyed when all external references to it cease to exist.

Schedules a light-weight task within the scheduler. The light-weight task will be placed in a schedule group
determined by the runtime. The version that takes the parameter _Placement causes the task to be biased
towards executing at the specified location.

_Proc
A pointer to the function to execute to perform the body of the light-weight task.

_Data
A void pointer to the data that will be passed as a parameter to the body of the task.

 SetDefaultSchedulerPolicy

static void __cdecl SetDefaultSchedulerPolicy(const SchedulerPolicy& _Policy);

Parameters

Remarks

See also

_Placement
A reference to a location where the light-weight task will be biased towards executing at.

Allows a user defined policy to be used to create the default scheduler. This method can be called only when
no default scheduler exists within the process. After a default policy has been set, it remains in effect until the
next valid call to either the SetDefaultSchedulerPolicy or the ResetDefaultSchedulerPolicy method.

_Policy
The policy to be set as the default scheduler policy.

If the SetDefaultSchedulerPolicy method is called when a default scheduler already exists within the process,
the runtime will throw a default_scheduler_exists exception.

concurrency Namespace
Scheduler Class
PolicyElementKey
Task Scheduler

scheduler_interface Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct __declspec(novtable) scheduler_interface;

Members
Public Methods

NAME DESCRIPTION

scheduler_interface::schedule

Inheritance Hierarchy

Requirements

scheduler_interface::schedule Method
virtual void schedule(
 TaskProc_t,
void*) = 0;

See also

Scheduler Interface

scheduler_interface

Header: pplinterface.h

Namespace: concurrency

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-interface-structure.md

scheduler_not_attached Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class scheduler_not_attached : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

scheduler_not_attached Overloaded. Constructs a scheduler_not_attached object.

Inheritance Hierarchy

Requirements

scheduler_not_attached

explicit _CRTIMP scheduler_not_attached(_In_z_ const char* _Message) throw();

scheduler_not_attached() throw();

Parameters

See also

This class describes an exception thrown when an operation is performed which requires a scheduler to be
attached to the current context and one is not.

exception

scheduler_not_attached

Header: concrt.h

Namespace: concurrency

Constructs a scheduler_not_attached object.

_Message
A descriptive message of the error.

concurrency Namespace
Scheduler Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-not-attached-class.md

scheduler_ptr Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct scheduler_ptr;

Members
Public Constructors

NAME DESCRIPTION

scheduler_ptr::scheduler_ptr Overloaded. Creates a scheduler pointer from shared_ptr to
scheduler

Public Methods

NAME DESCRIPTION

scheduler_ptr::get Returns the raw pointer to the scheduler

Public Operators

NAME DESCRIPTION

scheduler_ptr::operator bool Test whether the scheduler pointer is non-null

scheduler_ptr::operator-> Behave like a pointer

Inheritance Hierarchy

Requirements

scheduler_ptr::get Method

scheduler_interface* get() const;

Represents a pointer to a scheduler. This class exists to allow the specification of a shared lifetime by using
shared_ptr or just a plain reference by using raw pointer.

scheduler_ptr

Header: pplinterface.h

Namespace: concurrency

Returns the raw pointer to the scheduler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-ptr-structure-concurrency-runtime.md

Return Value

scheduler_ptr::operator bool

operator bool() const;

scheduler_ptr::operator->

scheduler_interface* operator->() const;

Return Value

scheduler_ptr::scheduler_ptr Constructor

explicit scheduler_ptr(std::shared_ptr<scheduler_interface> scheduler);
explicit scheduler_ptr(_In_opt_ scheduler_interface* pScheduler);

Parameters

See also

Tests whether the scheduler pointer is non-null.

Behaves like a pointer.

Creates a scheduler pointer from shared_ptr to scheduler.

scheduler
The scheduler to convert.

pScheduler
The scheduler pointer to convert.

concurrency Namespace

scheduler_resource_allocation_error Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class scheduler_resource_allocation_error : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

scheduler_resource_allocation_error Overloaded. Constructs a
scheduler_resource_allocation_error object.

Public Methods

NAME DESCRIPTION

get_error_code Returns the error code that caused the exception.

Remarks

Inheritance Hierarchy

Requirements

get_error_code

HRESULT get_error_code() const throw();

This class describes an exception thrown because of a failure to acquire a critical resource in the Concurrency
Runtime.

This exception is typically thrown when a call to the operating system from within the Concurrency Runtime fails.
The error code which would normally be returned from a call to the Win32 method GetLastError is converted to
a value of type HRESULT and can be retrieved using the get_error_code method.

exception

scheduler_resource_allocation_error

Header: concrt.h

Namespace: concurrency

Returns the error code that caused the exception.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-resource-allocation-error-class.md

Return Value

scheduler_resource_allocation_error

scheduler_resource_allocation_error(
 _In_z_ const char* _Message,
 HRESULT _Hresult) throw();

explicit _CRTIMP scheduler_resource_allocation_error(
 HRESULT _Hresult) throw();

Parameters

See also

The HRESULT value of the error that caused the exception.

Constructs a scheduler_resource_allocation_error object.

_Message
A descriptive message of the error.

_Hresult
The HRESULT value of the error that caused the exception.

concurrency Namespace

scheduler_worker_creation_error Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class scheduler_worker_creation_error : public scheduler_resource_allocation_error;

Members
Public Constructors

NAME DESCRIPTION

scheduler_worker_creation_error Overloaded. Constructs a
scheduler_worker_creation_error object.

Remarks

Inheritance Hierarchy

Requirements

scheduler_worker_creation_error

scheduler_worker_creation_error(
 _In_z_ const char* _Message,
 HRESULT _Hresult) throw();

explicit _CRTIMP scheduler_worker_creation_error(
 HRESULT _Hresult) throw();

This class describes an exception thrown because of a failure to create a worker execution context in the
Concurrency Runtime.

This exception is typically thrown when a call to the operating system to create execution contexts from within the
Concurrency Runtime fails. Execution contexts are threads that execute tasks in the Concurrency Runtime. The
error code which would normally be returned from a call to the Win32 method GetLastError is converted to a
value of type HRESULT and can be retrieved using the base class method get_error_code .

exception

scheduler_resource_allocation_error

scheduler_worker_creation_error

Header: concrt.h

Namespace: concurrency

Constructs a scheduler_worker_creation_error object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/scheduler-worker-creation-error-class.md

Parameters

See also

_Message
A descriptive message of the error.

_Hresult
The HRESULT value of the error that caused the exception.

concurrency Namespace

SchedulerPolicy Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class SchedulerPolicy;

Members
Public Constructors

NAME DESCRIPTION

SchedulerPolicy Overloaded. Constructs a new scheduler policy and
populates it with values for policy keys supported by
Concurrency Runtime schedulers and the Resource Manager.

~SchedulerPolicy Destructor Destroys a scheduler policy.

Public Methods

NAME DESCRIPTION

GetPolicyValue Retrieves the value of the policy key supplied as the key

parameter.

SetConcurrencyLimits Simultaneously sets the MinConcurrency and
MaxConcurrency policies on the SchedulerPolicy object.

SetPolicyValue Sets the value of the policy key supplied as the key

parameter and returns the old value.

Public Operators

NAME DESCRIPTION

operator= Assigns the scheduler policy from another scheduler policy.

Remarks

Inheritance Hierarchy

The SchedulerPolicy class contains a set of key/value pairs, one for each policy element, that control the
behavior of a scheduler instance.

For more information about the policies which can be controlled using the SchedulerPolicy class, see
PolicyElementKey.

SchedulerPolicy

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/schedulerpolicy-class.md

Requirements

GetPolicyValue

unsigned int GetPolicyValue(PolicyElementKey key) const;

Parameters

Return Value

Remarks

operator=

SchedulerPolicy& operator= (const SchedulerPolicy& _RhsPolicy);

Parameters

Return Value

Remarks

SchedulerPolicy

SchedulerPolicy();

SchedulerPolicy(
 size_t _PolicyKeyCount,
...);

SchedulerPolicy(
 const SchedulerPolicy& _SrcPolicy);

Parameters

Header: concrt.h, concrtrm.h

Namespace: concurrency

Retrieves the value of the policy key supplied as the key parameter.

key
The policy key to retrieve a value for.

If the key specified by the key parameter is supported, the policy value for the key cast to an unsigned int .

The method will throw invalid_scheduler_policy_key for an invalid policy key.

Assigns the scheduler policy from another scheduler policy.

_RhsPolicy
The policy to assign to this policy.

A reference to the scheduler policy.

Often, the most convenient way to define a new scheduler policy is to copy an existing policy and modify it using
the SetPolicyValue or SetConcurrencyLimits methods.

Constructs a new scheduler policy and populates it with values for policy keys supported by Concurrency
Runtime schedulers and the Resource Manager.

Remarks

~SchedulerPolicy

~SchedulerPolicy();

SetConcurrencyLimits

void SetConcurrencyLimits(
 unsigned int _MinConcurrency,
 unsigned int _MaxConcurrency = MaxExecutionResources);

Parameters

Remarks

SetPolicyValue

unsigned int SetPolicyValue(
 PolicyElementKey key,
 unsigned int value);

Parameters

_PolicyKeyCount
The number of key/value pairs that follow the _PolicyKeyCount parameter.

_SrcPolicy
The source policy to copy.

The first constructor creates a new scheduler policy where all policies will be initialized to their default values.

The second constructor creates a new scheduler policy that uses a named-parameter style of initialization.
Values after the _PolicyKeyCount parameter are supplied as key/value pairs. Any policy key which is not
specified in this constructor will have its default value. This constructor could throw the exceptions
invalid_scheduler_policy_key, invalid_scheduler_policy_value or invalid_scheduler_policy_thread_specification.

The third constructor is a copy constructor. Often, the most convenient way to define a new scheduler policy is to
copy an existing policy and modify it using the SetPolicyValue or SetConcurrencyLimits methods.

Destroys a scheduler policy.

Simultaneously sets the MinConcurrency and MaxConcurrency policies on the SchedulerPolicy object.

_MinConcurrency
The value for the MinConcurrency policy key.

_MaxConcurrency
The value for the MaxConcurrency policy key.

The method will throw invalid_scheduler_policy_thread_specification if the value specified for the
MinConcurrency policy is greater than that specified for the MaxConcurrency policy.

The method can also throw invalid_scheduler_policy_value for other invalid values.

Sets the value of the policy key supplied as the key parameter and returns the old value.

key

Return Value

Remarks

See also

The policy key to set a value for.

value
The value to set the policy key to.

If the key specified by the key parameter is supported, the old policy value for the key cast to an unsigned int .

The method will throw invalid_scheduler_policy_key for an invalid policy key or any policy key whose value
cannot be set by the SetPolicyValue method.

The method will throw invalid_scheduler_policy_value for a value that is not supported for the key specified by
the key parameter.

Note that this method is not allowed to set the MinConcurrency or MaxConcurrency policies. To set these values,
use the SetConcurrencyLimits method.

concurrency Namespace
PolicyElementKey
CurrentScheduler Class
Scheduler Class
Task Scheduler

simple_partitioner Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class simple_partitioner;

Members
Public Constructors

NAME DESCRIPTION

simple_partitioner Constructs a simple_partitioner object.

~simple_partitioner Destructor Destroys a simple_partitioner object.

Inheritance Hierarchy

Requirements

~simple_partitioner

~simple_partitioner();

simple_partitioner

explicit simple_partitioner(_Size_type _Chunk_size);

Parameters

The simple_partitioner class represents a static partitioning of the range iterated over by parallel_for . The
partitioner divides the range into chunks such that each chunk has at least the number of iterations specified by
the chunk size.

simple_partitioner

Header: ppl.h

Namespace: concurrency

Destroys a simple_partitioner object.

Constructs a simple_partitioner object.

_Chunk_size
The minimum partition size.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/simple-partitioner-class.md

See also
concurrency Namespace

single_assignment Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class T>
class single_assignment : public propagator_block<multi_link_registry<ITarget<T>>,
multi_link_registry<ISource<T>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

single_assignment Overloaded. Constructs a single_assignment messaging
block.

~single_assignment Destructor Destroys the single_assignment messaging block.

Public Methods

NAME DESCRIPTION

has_value Checks whether this single_assignment messaging block
has been initialized with a value yet.

value Gets a reference to the current payload of the message being
stored in the single_assignment messaging block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this
single_assignment messaging block, returning a copy of

the message to the caller.

consume_message Consumes a message previously offered by the
single_assignment and reserved by the target, returning a

copy of the message to the caller.

A single_assignment messaging block is a multi-target, multi-source, ordered propagator_block capable of
storing a single, write-once message .

T
The payload type of the message stored and propagated by the buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/single-assignment-class.md

link_target_notification A callback that notifies that a new target has been linked to
this single_assignment messaging block.

propagate_message Asynchronously passes a message from an ISource block
to this single_assignment messaging block. It is invoked
by the propagate method, when called by a source block.

propagate_to_any_targets Places the message _PMessage in this single_assignment

messaging block and offers it to all of the linked targets.

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this
single_assignment messaging block. (Overrides

source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

send_message Synchronously passes a message from an ISource block to
this single_assignment messaging block. It is invoked by
the send method, when called by a source block.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept_message

A single_assignment messaging block propagates out copies of its message to each target.

For more information, see Asynchronous Message Blocks.

ISource

ITarget

source_block

propagator_block

single_assignment

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this single_assignment messaging block, returning a copy of the
message to the caller.

virtual message<T>* accept_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

consume_message

virtual message<T>* consume_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

has_value

bool has_value() const;

Return Value

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<T>* _PTarget);

Parameters

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

The single_assignment messaging block returns copies of the message to its targets, rather than transferring
ownership of the currently held message.

Consumes a message previously offered by the single_assignment and reserved by the target, returning a copy
of the message to the caller.

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

Checks whether this single_assignment messaging block has been initialized with a value yet.

true if the block has received a value, false otherwise.

A callback that notifies that a new target has been linked to this single_assignment messaging block.

_PTarget
A pointer to the newly linked target.

propagate_message

virtual message_status propagate_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

propagate_to_any_targets

virtual void propagate_to_any_targets(_Inout_opt_ message<T>* _PMessage);

Parameters

release_message

virtual void release_message(runtime_object_identity _MsgId);

Parameters

reserve_message

virtual bool reserve_message(runtime_object_identity _MsgId);

Parameters

Return Value

Asynchronously passes a message from an ISource block to this single_assignment messaging block. It is
invoked by the propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Places the message _PMessage in this single_assignment messaging block and offers it to all of the linked
targets.

_PMessage
A pointer to a message that this single_assignment messaging block has taken ownership of.

Releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

Reserves a message previously offered by this single_assignment messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

Remarks

resume_propagation

virtual void resume_propagation();

send_message

virtual message_status send_message(
 Inout message<T>* _PMessage,
 Inout ISource<T>* _PSource);

Parameters

Return Value

single_assignment

single_assignment();

single_assignment(
 filter_method const& _Filter);

single_assignment(
 Scheduler& _PScheduler);

single_assignment(
 Scheduler& _PScheduler,
 filter_method const& _Filter);

single_assignment(
 ScheduleGroup& _PScheduleGroup);

single_assignment(
 ScheduleGroup& _PScheduleGroup,
 filter_method const& _Filter);

Parameters

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

Synchronously passes a message from an ISource block to this single_assignment messaging block. It is
invoked by the send method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Constructs a single_assignment messaging block.

_Filter

Remarks

~single_assignment

~single_assignment();

value

T const& value();

Return Value

Remarks

See also

A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the single_assignment messaging block is
scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the single_assignment messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

The type filter_method is a functor with signature bool (T const &) which is invoked by this
single_assignment messaging block to determine whether or not it should accept an offered message.

Destroys the single_assignment messaging block.

Gets a reference to the current payload of the message being stored in the single_assignment messaging block.

The payload of the stored message.

This method will wait until a message arrives if no message is currently stored in the single_assignment

messaging block.

concurrency Namespace
overwrite_buffer Class
unbounded_buffer Class

single_link_registry Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _Block>
class single_link_registry : public network_link_registry<_Block>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

single_link_registry Constructs a single_link_registry object.

~single_link_registry Destructor Destroys the single_link_registry object.

Public Methods

NAME DESCRIPTION

add Adds a link to the single_link_registry object. (Overrides
network_link_registry::add.)

begin Returns an iterator to the first element in the
single_link_registry object. (Overrides

network_link_registry::begin.)

contains Searches the single_link_registry object for a specified
block. (Overrides network_link_registry::contains.)

count Counts the number of items in the single_link_registry

object. (Overrides network_link_registry::count.)

remove Removes a link from the single_link_registry object.
(Overrides network_link_registry::remove.)

Inheritance Hierarchy

The single_link_registry object is a network_link_registry that manages only a single source or target block.

_Block
The block data type being stored in the single_link_registry object.

network_link_registry

single_link_registry

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/single-link-registry-class.md

Requirements

add

virtual void add(_EType _Link);

Parameters

Remarks

begin

virtual iterator begin();

Return Value

Remarks

contains

virtual bool contains(_EType _Link);

Parameters

Return Value

count

virtual size_t count();

Return Value

Header: agents.h

Namespace: concurrency

Adds a link to the single_link_registry object.

_Link
A pointer to a block to be added.

The method throws an invalid_link_target exception if there is already a link in this registry.

Returns an iterator to the first element in the single_link_registry object.

An iterator addressing the first element in the single_link_registry object.

The end state is indicated by a NULL link.

Searches the single_link_registry object for a specified block.

_Link
A pointer to a block that is to be searched for in the single_link_registry object.

true if the link was found, false otherwise.

Counts the number of items in the single_link_registry object.

remove

virtual bool remove(_EType _Link);

Parameters

Return Value

single_link_registry

single_link_registry();

~single_link_registry

virtual ~single_link_registry();

Remarks

See also

The number of items in the single_link_registry object.

Removes a link from the single_link_registry object.

_Link
A pointer to a block to be removed, if found.

true if the link was found and removed, false otherwise.

Constructs a single_link_registry object.

Destroys the single_link_registry object.

The method throws an invalid_operation exception if it is called before the link is removed.

concurrency Namespace
multi_link_registry Class

source_block Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
template<class _TargetLinkRegistry, class _MessageProcessorType = ordered_message_processor<typename
_TargetLinkRegistry::type::type>>
class source_block : public ISource<typename _TargetLinkRegistry::type::type>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

target_iterator The iterator to walk the connected targets.

Public Constructors

NAME DESCRIPTION

source_block Constructs a source_block object.

~source_block Destructor Destroys the source_block object.

Public Methods

NAME DESCRIPTION

accept Accepts a message that was offered by this source_block

object, transferring ownership to the caller.

acquire_ref Acquires a reference count on this source_block object, to
prevent deletion.

consume Consumes a message previously offered by this
source_block object and successfully reserved by the

target, transferring ownership to the caller.

link_target Links a target block to this source_block object.

The source_block class is an abstract base class for source-only blocks. The class provides basic link
management functionality as well as common error checks.

_TargetLinkRegistry
Link registry to be used for holding the target links.

_MessageProcessorType
Processor type for message processing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/source-block-class.md

release Releases a previous successful message reservation.

release_ref Releases a reference count on this source_block object.

reserve Reserves a message previously offered by this
source_block object.

unlink_target Unlinks a target block from this source_block object.

unlink_targets Unlinks all target blocks from this source_block object.
(Overrides ISource::unlink_targets.)

NAME DESCRIPTION

Protected Methods

NAME DESCRIPTION

accept_message When overridden in a derived class, accepts an offered
message by the source. Message blocks should override this
method to validate the _MsgId and return a message.

async_send Asynchronously queues up messages and starts a
propagation task, if this has not been done already

consume_message When overridden in a derived class, consumes a message
that was previously reserved.

enable_batched_processing Enables batched processing for this block.

initialize_source Initializes the message_propagator within this
source_block .

link_target_notification A callback that notifies that a new target has been linked to
this source_block object.

process_input_messages Process input messages. This is only useful for propagator
blocks, which derive from source_block

propagate_output_messages Propagate messages to targets.

propagate_to_any_targets When overridden in a derived class, propagates the given
message to any or all of the linked targets. This is the main
propagation routine for message blocks.

release_message When overridden in a derived class, releases a previous
message reservation.

remove_targets Removes all target links for this source block. This should be
called from the destructor.

reserve_message When overridden in a derived class, reserves a message
previously offered by this source_block object.

resume_propagation When overridden in a derived class, resumes propagation
after a reservation has been released.

sync_send Synchronously queues up messages and starts a
propagation task, if this has not been done already.

unlink_target_notification A callback that notifies that a target has been unlinked from
this source_block object.

wait_for_outstanding_async_sends Waits for all asynchronous propagations to complete. This
propagator-specific spin wait is used in destructors of
message blocks to make sure that all asynchronous
propagations have time to finish before destroying the block.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept

virtual message<_Target_type>* accept(
 runtime_object_identity _MsgId,
 Inout ITarget<_Target_type>* _PTarget);

Parameters

Return Value

Remarks

Message blocks should derive from this block to take advantage of link management and synchronization
provided by this class.

ISource

source_block

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this source_block object, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the accept method.

A pointer to the message object that the caller now has ownership of.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

The accept method is called by a target while a message is being offered by this ISource block. The message

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

accept_message

virtual message<_Target_type>* accept_message(runtime_object_identity _MsgId) = 0;

Parameters

Return Value

Remarks

acquire_ref

virtual void acquire_ref(_Inout_ ITarget<_Target_type> *);

Remarks

async_send

virtual void async_send(_Inout_opt_ message<_Target_type>* _Msg);

Parameters

consume

virtual message<_Target_type>* consume(
 runtime_object_identity _MsgId,
 Inout ITarget<_Target_type>* _PTarget);

Parameters

pointer returned may be different from the one passed into the propagate method of the ITarget block, if this
source decides to make a copy of the message.

When overridden in a derived class, accepts an offered message by the source. Message blocks should override
this method to validate the _MsgId and return a message.

_MsgId
The runtime object identity of the message object.

A pointer to the message that the caller now has ownership of.

To transfer ownership, the original message pointer should be returned. To maintain ownership, a copy of
message payload needs to be made and returned.

Acquires a reference count on this source_block object, to prevent deletion.

This method is called by an ITarget object that is being linked to this source during the link_target method.

Asynchronously queues up messages and starts a propagation task, if this has not been done already

_Msg
A pointer to a message object to asynchronously send.

Consumes a message previously offered by this source_block object and successfully reserved by the target,
transferring ownership to the caller.

_MsgId

Return Value

Remarks

consume_message

virtual message<_Target_type>* consume_message(runtime_object_identity _MsgId) = 0;

Parameters

Return Value

Remarks

enable_batched_processing

void enable_batched_processing();

initialize_source

void initialize_source(
 _Inout_opt_ Scheduler* _PScheduler = NULL,
 _Inout_opt_ ScheduleGroup* _PScheduleGroup = NULL);

Parameters

The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the consume method.

A pointer to the message object that the caller now has ownership of.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

The method throws a bad_target exception if the parameter _PTarget does not represent the target that called
reserve .

The consume method is similar to accept , but must always be preceded by a call to reserve that returned true.

When overridden in a derived class, consumes a message that was previously reserved.

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

Enables batched processing for this block.

Initializes the message_propagator within this source_block .

_PScheduler
The scheduler to be used for scheduling tasks.

_PScheduleGroup
The schedule group to be used for scheduling tasks.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

link_target

virtual void link_target(_Inout_ ITarget<_Target_type>* _PTarget);

Parameters

Remarks

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<_Target_type> *);

process_input_messages

virtual void process_input_messages(_Inout_ message<_Target_type>* _PMessage);

Parameters

propagate_output_messages

virtual void propagate_output_messages();

propagate_to_any_targets

virtual void propagate_to_any_targets(_Inout_opt_ message<_Target_type>* _PMessage);

Parameters

release

Links a target block to this source_block object.

_PTarget
A pointer to an ITarget block to link to this source_block object.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

A callback that notifies that a new target has been linked to this source_block object.

Process input messages. This is only useful for propagator blocks, which derive from source_block

_PMessage
A pointer to the message that is to be processed.

Propagate messages to targets.

When overridden in a derived class, propagates the given message to any or all of the linked targets. This is the
main propagation routine for message blocks.

_PMessage
A pointer to the message that is to be propagated.

Releases a previous successful message reservation.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

virtual void release(
 runtime_object_identity _MsgId,
 Inout ITarget<_Target_type>* _PTarget);

Parameters

Remarks

release_message

virtual void release_message(runtime_object_identity _MsgId) = 0;

Parameters

release_ref

virtual void release_ref(_Inout_ ITarget<_Target_type>* _PTarget);

Parameters

Remarks

remove_targets

void remove_targets();

reserve

_MsgId
The runtime_object_identity of the reserved message object.

_PTarget
A pointer to the target block that is calling the release method.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

The method throws a bad_target exception if the parameter _PTarget does not represent the target that called
reserve .

When overridden in a derived class, releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

Releases a reference count on this source_block object.

_PTarget
A pointer to the target block that is calling this method.

This method is called by an ITarget object that is being unlinked from this source. The source block is allowed
to release any resources reserved for the target block.

Removes all target links for this source block. This should be called from the destructor.

Reserves a message previously offered by this source_block object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

virtual bool reserve(
 runtime_object_identity _MsgId,
 Inout ITarget<_Target_type>* _PTarget);

Parameters

Return Value

Remarks

reserve_message

virtual bool reserve_message(runtime_object_identity _MsgId) = 0;

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation() = 0;

source_block

source_block();

_MsgId
The runtime_object_identity of the offered message object.

_PTarget
A pointer to the target block that is calling the reserve method.

true if the message was successfully reserved, false otherwise. Reservations can fail for many reasons, including:
the message was already reserved or accepted by another target, the source could deny reservations, and so
forth.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

After you call reserve , if it succeeds, you must call either consume or release in order to take or give up
possession of the message, respectively.

When overridden in a derived class, reserves a message previously offered by this source_block object.

_MsgId
The runtime_object_identity of the message object being reserved.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

When overridden in a derived class, resumes propagation after a reservation has been released.

Constructs a source_block object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

~source_block

virtual ~source_block();

sync_send

virtual void sync_send(_Inout_opt_ message<_Target_type>* _Msg);

Parameters

unlink_target

virtual void unlink_target(_Inout_ ITarget<_Target_type>* _PTarget);

Parameters

Remarks

unlink_target_notification

virtual void unlink_target_notification(_Inout_ ITarget<_Target_type>* _PTarget);

Parameters

unlink_targets

virtual void unlink_targets();

wait_for_outstanding_async_sends

Destroys the source_block object.

Synchronously queues up messages and starts a propagation task, if this has not been done already.

_Msg
A pointer to a message object to synchronously send.

Unlinks a target block from this source_block object.

_PTarget
A pointer to an ITarget block to unlink from this source_block object.

The method throws an invalid_argument exception if the parameter _PTarget is NULL .

A callback that notifies that a target has been unlinked from this source_block object.

_PTarget
The ITarget block that was unlinked.

Unlinks all target blocks from this source_block object.

Waits for all asynchronous propagations to complete. This propagator-specific spin wait is used in destructors of
message blocks to make sure that all asynchronous propagations have time to finish before destroying the block.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

void wait_for_outstanding_async_sends();

See also
concurrency Namespace
ISource Class

source_link_manager Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _LinkRegistry>
class source_link_manager;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

const_pointer A type that provides a pointer to a const element in a
source_link_manager object.

const_reference A type that provides a reference to a const element stored
in a source_link_manager object for reading and performing
const operations.

iterator A type that provides an iterator that can read or modify any
element in the source_link_manager object.

type The type of link registry being managed by the
source_link_manager object.

Public Constructors

NAME DESCRIPTION

source_link_manager Constructs a source_link_manager object.

~source_link_manager Destructor Destroys the source_link_manager object.

Public Methods

NAME DESCRIPTION

add Adds a source link to the source_link_manager object.

begin Returns an iterator to the first element in the
source_link_manager object.

The source_link_manager object manages messaging block network links to ISource blocks.

_LinkRegistry
The network link registry.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/source-link-manager-class.md

contains Searches the network_link_registry within this
source_link_manager object for a specified block.

count Counts the number of linked blocks in the
source_link_manager object.

reference Acquires a reference on the source_link_manager object.

register_target_block Registers the target block that holds this
source_link_manager object.

release Releases the reference on the source_link_manager object.

remove Removes a link from the source_link_manager object.

set_bound Sets the maximum number of source links that can be added
to this source_link_manager object.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

add

void add(_EType _Link);

Parameters

begin

iterator begin();

Currently, the source blocks are reference counted. This is a wrapper on a network_link_registry object that allows
concurrent access to the links and provides the ability to reference the links through callbacks. Message blocks (
target_block s or propagator_block s) should use this class for their source links.

source_link_manager

Header: agents.h

Namespace: concurrency

Adds a source link to the source_link_manager object.

_Link
A pointer to a block to be added.

Returns an iterator to the first element in the source_link_manager object.

Return Value

Remarks

contains

bool contains(_EType _Link);

Parameters

Return Value

count

size_t count();

Return Value

reference

void reference();

register_target_block

void register_target_block(_Inout_ ITarget<typename _Block::source_type>* _PTarget);

Parameters

release

void release();

An iterator addressing the first element in the source_link_manager object.

The end state of the iterator is indicated by a NULL link.

Searches the network_link_registry within this source_link_manager object for a specified block.

_Link
A pointer to a block that is to be searched for in the source_link_manager object.

true if the specified block was found, false otherwise.

Counts the number of linked blocks in the source_link_manager object.

The number of linked blocks in the source_link_manager object.

Acquires a reference on the source_link_manager object.

Registers the target block that holds this source_link_manager object.

_PTarget
The target block holding this source_link_manager object.

Releases the reference on the source_link_manager object.

remove

bool remove(_EType _Link);

Parameters

Return Value

set_bound

void set_bound(size_t _MaxLinks);

Parameters

source_link_manager

source_link_manager();

~source_link_manager

~source_link_manager();

See also

Removes a link from the source_link_manager object.

_Link
A pointer to a block to be removed, if found.

true if the link was found and removed, false otherwise.

Sets the maximum number of source links that can be added to this source_link_manager object.

_MaxLinks
The maximum number of links.

Constructs a source_link_manager object.

Destroys the source_link_manager object.

concurrency Namespace
single_link_registry Class
multi_link_registry Class

static_partitioner Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class static_partitioner;

Members
Public Constructors

NAME DESCRIPTION

static_partitioner Constructs a static_partitioner object.

~static_partitioner Destructor Destroys a static_partitioner object.

Inheritance Hierarchy

Requirements

~static_partitioner

~static_partitioner();

static_partitioner

static_partitioner();

See also

The static_partitioner class represents a static partitioning of the range iterated over by parallel_for . The
partitioner divides the range into as many chunks as there are workers available to the underyling scheduler.

static_partitioner

Header: ppl.h

Namespace: concurrency

Destroys a static_partitioner object.

Constructs a static_partitioner object.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/static-partitioner-class.md

structured_task_group Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class structured_task_group;

Members
Public Constructors

NAME DESCRIPTION

structured_task_group Overloaded. Constructs a new structured_task_group

object.

~structured_task_group Destructor Destroys a structured_task_group object. You are
expected to call either the wait or run_and_wait

method on the object prior to the destructor executing,
unless the destructor is executing as a result of stack
unwinding due to an exception.

Public Methods

NAME DESCRIPTION

cancel Makes a best effort attempt to cancel the sub-tree of work
rooted at this task group. Every task scheduled on the task
group will get canceled transitively if possible.

is_canceling Informs the caller whether or not the task group is
currently in the midst of a cancellation. This does not
necessarily indicate that the cancel method was called on
the structured_task_group object (although such
certainly qualifies this method to return true). It may be the
case that the structured_task_group object is executing
inline and a task group further up in the work tree was
canceled. In cases such as these where the runtime can
determine ahead of time that cancellation will flow through
this structured_task_group object, true will be returned
as well.

The structured_task_group class represents a highly structured collection of parallel work. You can queue
individual parallel tasks to a structured_task_group using task_handle objects, and wait for them to complete,
or cancel the task group before they have finished executing, which will abort any tasks that have not begun
execution.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/structured-task-group-class.md

run Overloaded. Schedules a task on the
structured_task_group object. The caller manages the

lifetime of the task_handle object passed in the
_Task_handle parameter. The version that takes the

parameter _Placement causes the task to be biased
towards executing at the location specified by that
parameter.

run_and_wait Overloaded. Schedules a task to be run inline on the calling
context with the assistance of the
structured_task_group object for full cancellation

support. If a task_handle object is passed as a parameter
to run_and_wait , the caller is responsible for managing
the lifetime of the task_handle object. The function then
waits until all work on the structured_task_group object
has either completed or been canceled.

wait Waits until all work on the structured_task_group has
completed or is canceled.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

There are a number of severe restrictions placed on usage of a structured_task_group object in order to gain
performance:

A single structured_task_group object cannot be used by multiple threads. All operations on a
structured_task_group object must be performed by the thread that created the object. The two

exceptions to this rule are the member functions cancel and is_canceling . The object may not be in
the capture list of a lambda expression and be used within a task, unless the task is using one of the
cancellation operations.

All tasks scheduled to a structured_task_group object are scheduled through the use of task_handle

objects which you must explicitly manage the lifetime of.

Multiple groups may only be used in absolutely nested order. If two structured_task_group objects are
declared, the second one being declared (the inner one) must destruct before any method except
cancel or is_canceling is called on the first one (the outer one). This condition holds true in both the

case of simply declaring multiple structured_task_group objects within the same or functionally nested
scopes as well as the case of a task that was queued to the structured_task_group via the run or
run_and_wait methods.

Unlike the general task_group class, all states in the structured_task_group class are final. After you
have queued tasks to the group and waited for them to complete, you may not use the same group
again.

For more information, see Task Parallelism.

structured_task_group

Header: ppl.h

cancel

void cancel();

Remarks

is_canceling

bool is_canceling();

Return Value

Remarks

run

template<class _Function>
void run(
 task_handle<_Function>& _Task_handle);

template<class _Function>
void run(
 task_handle<_Function>& _Task_handle,
 location& _Placement);

Parameters

Namespace: concurrency

Makes a best effort attempt to cancel the sub-tree of work rooted at this task group. Every task scheduled on
the task group will get canceled transitively if possible.

For more information, see Cancellation.

Informs the caller whether or not the task group is currently in the midst of a cancellation. This does not
necessarily indicate that the cancel method was called on the structured_task_group object (although such
certainly qualifies this method to return true). It may be the case that the structured_task_group object is
executing inline and a task group further up in the work tree was canceled. In cases such as these where the
runtime can determine ahead of time that cancellation will flow through this structured_task_group object,
true will be returned as well.

An indication of whether the structured_task_group object is in the midst of a cancellation (or is guaranteed to
be shortly).

For more information, see Cancellation.

Schedules a task on the structured_task_group object. The caller manages the lifetime of the task_handle

object passed in the _Task_handle parameter. The version that takes the parameter _Placement causes the
task to be biased towards executing at the location specified by that parameter.

_Function
The type of the function object that will be invoked to execute the body of the task handle.

_Task_handle
A handle to the work being scheduled. Note that the caller has responsibility for the lifetime of this object. The
runtime will continue to expect it to live until either the wait or run_and_wait method has been called on this

Remarks

run_and_wait

template<class _Function>
task_group_status run_and_wait(task_handle<_Function>& _Task_handle);

template<class _Function>
task_group_status run_and_wait(const _Function& _Func);

Parameters

Return Value

Remarks

structured_task_group object.

_Placement
A reference to the location where the task represented by the _Task_handle parameter should execute.

The runtime creates a copy of the work function that you pass to this method. Any state changes that occur in
a function object that you pass to this method will not appear in your copy of that function object.

If the structured_task_group destructs as the result of stack unwinding from an exception, you do not need to
guarantee that a call has been made to either the wait or run_and_wait method. In this case, the destructor
will appropriately cancel and wait for the task represented by the _Task_handle parameter to complete.

Throws an invalid_multiple_scheduling exception if the task handle given by the _Task_handle parameter has
already been scheduled onto a task group object via the run method and there has been no intervening call
to either the wait or run_and_wait method on that task group.

Schedules a task to be run inline on the calling context with the assistance of the structured_task_group object
for full cancellation support. If a task_handle object is passed as a parameter to run_and_wait , the caller is
responsible for managing the lifetime of the task_handle object. The function then waits until all work on the
structured_task_group object has either completed or been canceled.

_Function
The type of the function object that will be invoked to execute the task.

_Task_handle
A handle to the task which will be run inline on the calling context. Note that the caller has responsibility for
the lifetime of this object. The runtime will continue to expect it to live until the run_and_wait method finishes
execution.

_Func
A function which will be called to invoke the body of the work. This may be a lambda or other object which
supports a version of the function call operator with the signature void operator()() .

An indication of whether the wait was satisfied or the task group was canceled, due to either an explicit cancel
operation or an exception being thrown from one of its tasks. For more information, see task_group_status

Note that one or more of the tasks scheduled to this structured_task_group object may execute inline on the
calling context.

If one or more of the tasks scheduled to this structured_task_group object throws an exception, the runtime
will select one such exception of its choosing and propagate it out of the call to the run_and_wait method.

After this function returns, the structured_task_group object is considered in a final state and should not be

structured_task_group

structured_task_group();

structured_task_group(cancellation_token _CancellationToken);

Parameters

Remarks

~structured_task_group

~structured_task_group();

Remarks

wait

task_group_status wait();

Return Value

Remarks

used. Note that utilization after the run_and_wait method returns will result in undefined behavior.

In the non-exceptional path of execution, you have a mandate to call either this method or the wait method
before the destructor of the structured_task_group executes.

Constructs a new structured_task_group object.

_CancellationToken
A cancellation token to associate with this structured task group. The structured task group will be canceled
when the token is canceled.

The constructor that takes a cancellation token creates a structured_task_group that will be canceled when the
source associated with the token is canceled. Providing an explicit cancellation token also isolates this
structured task group from participating in an implicit cancellation from a parent group with a different token
or no token.

Destroys a structured_task_group object. You are expected to call either the wait or run_and_wait method
on the object prior to the destructor executing, unless the destructor is executing as a result of stack unwinding
due to an exception.

If the destructor runs as the result of normal execution (for example, not stack unwinding due to an exception)
and neither the wait nor run_and_wait methods have been called, the destructor may throw a missing_wait
exception.

Waits until all work on the structured_task_group has completed or is canceled.

An indication of whether the wait was satisfied or the task group was canceled, due to either an explicit cancel
operation or an exception being thrown from one of its tasks. For more information, see task_group_status

Note that one or more of the tasks scheduled to this structured_task_group object may execute inline on the
calling context.

If one or more of the tasks scheduled to this structured_task_group object throws an exception, the runtime

See also

will select one such exception of its choosing and propagate it out of the call to the wait method.

After this function returns, the structured_task_group object is considered in a final state and should not be
used. Note that utilization after the wait method returns will result in undefined behavior.

In the non-exceptional path of execution, you have a mandate to call either this method or the run_and_wait

method before the destructor of the structured_task_group executes.

concurrency Namespace
task_group Class
task_handle Class

target_block Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<class _SourceLinkRegistry, class _MessageProcessorType = ordered_message_processor<typename
_SourceLinkRegistry::type::source_type>>
class target_block : public ITarget<typename _SourceLinkRegistry::type::source_type>;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

source_iterator The type of the iterator for the source_link_manager for
this target_block object.

Public Constructors

NAME DESCRIPTION

target_block Constructs a target_block object.

~target_block Destructor Destroys the target_block object.

Public Methods

NAME DESCRIPTION

propagate Asynchronously passes a message from a source block to this
target block.

send Synchronously passes a message from a source block to this
target block.

Protected Methods

The target_block class is an abstract base class that provides basic link management functionality and error
checking for target only blocks.

_SourceLinkRegistry
The link registry to be used for holding the source links.

_MessageProcessorType
The processor type for message processing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/target-block-class.md

NAME DESCRIPTION

async_send Asynchronously sends a message for processing.

decline_incoming_messages Indicates to the block that new messages should be declined.

enable_batched_processing Enables batched processing for this block.

initialize_target Initializes the base object. Specifically, the
message_processor object needs to be initialized.

link_source Links a specified source block to this target_block object.

process_input_messages Processes messages that are received as inputs.

process_message When overridden in a derived class, processes a message that
was accepted by this target_block object.

propagate_message When overridden in a derived class, this method
asynchronously passes a message from an ISource block to
this target_block object. It is invoked by the propagate

method, when called by a source block.

register_filter Registers a filter method that will be invoked on every
message received.

remove_sources Unlinks all sources after waiting for outstanding asynchronous
send operations to complete.

send_message When overridden in a derived class, this method
synchronously passes a message from an ISource block to
this target_block object. It is invoked by the send

method, when called by a source block.

sync_send Synchronously send a message for processing.

unlink_source Unlinks a specified source block from this target_block

object.

unlink_sources Unlinks all source blocks from this target_block object.
(Overrides ITarget::unlink_sources.)

wait_for_async_sends Waits for all asynchronous propagations to complete.

Inheritance Hierarchy

Requirements

ITarget

target_block

Header: agents.h

Namespace: concurrency

async_send

void async_send(_Inout_opt_ message<_Source_type>* _PMessage);

Parameters

decline_incoming_messages

void decline_incoming_messages();

Remarks

enable_batched_processing

void enable_batched_processing();

initialize_target

void initialize_target(
 _Inout_opt_ Scheduler* _PScheduler = NULL,
 _Inout_opt_ ScheduleGroup* _PScheduleGroup = NULL);

Parameters

link_source

virtual void link_source(_Inout_ ISource<_Source_type>* _PSource);

Parameters

Asynchronously sends a message for processing.

_PMessage
A pointer to the message being sent.

Indicates to the block that new messages should be declined.

This method is called by the destructor to ensure that new messages are declined while destruction is in progress.

Enables batched processing for this block.

Initializes the base object. Specifically, the message_processor object needs to be initialized.

_PScheduler
The scheduler to be used for scheduling tasks.

_PScheduleGroup
The schedule group to be used for scheduling tasks.

Links a specified source block to this target_block object.

_PSource
A pointer to the ISource block that is to be linked.

Remarks

process_input_messages

virtual void process_input_messages(_Inout_ message<_Source_type>* _PMessage);

Parameters

process_message

virtual void process_message(message<_Source_type> *);

propagate

virtual message_status propagate(
 _Inout_opt_ message<_Source_type>* _PMessage,
 _Inout_opt_ ISource<_Source_type>* _PSource);

Parameters

Return Value

Remarks

propagate_message

virtual message_status propagate_message(
 Inout message<_Source_type>* _PMessage,
 Inout ISource<_Source_type>* _PSource) = 0;

This function should not be called directly on a target_block object. Blocks should be connected together using
the link_target method on ISource blocks, which will invoke the link_source method on the corresponding
target.

Processes messages that are received as inputs.

_PMessage
A pointer to the message that is to be processed.

When overridden in a derived class, processes a message that was accepted by this target_block object.

Asynchronously passes a message from a source block to this target block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

The method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

When overridden in a derived class, this method asynchronously passes a message from an ISource block to this
target_block object. It is invoked by the propagate method, when called by a source block.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

Parameters

Return Value

register_filter

void register_filter(filter_method const& _Filter);

Parameters

remove_sources

void remove_sources();

Remarks

send

virtual message_status send(
 Inout message<_Source_type>* _PMessage,
 Inout ISource<_Source_type>* _PSource);

Parameters

Return Value

Remarks

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Registers a filter method that will be invoked on every message received.

_Filter
The filter method.

Unlinks all sources after waiting for outstanding asynchronous send operations to complete.

All target blocks should call this routine to remove the sources in their destructor.

Synchronously passes a message from a source block to this target block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

The method throws an invalid_argument exception if either the _PMessage or _PSource parameter is NULL .

Using the send method outside of message initiation and to propagate messages within a network is dangerous
and can lead to deadlock.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

send_message

virtual message_status send_message(
 Inout message<_Source_type> *,
 Inout ISource<_Source_type> *);

Return Value

Remarks

sync_send

void sync_send(_Inout_opt_ message<_Source_type>* _PMessage);

Parameters

target_block

target_block();

~target_block

virtual ~target_block();

unlink_source

virtual void unlink_source(_Inout_ ISource<_Source_type>* _PSource);

Parameters

When send returns, the message has either already been accepted, and transferred into the target block, or it has
been declined by the target.

When overridden in a derived class, this method synchronously passes a message from an ISource block to this
target_block object. It is invoked by the send method, when called by a source block.

A message_status indication of what the target decided to do with the message.

By default, this block returns declined unless overridden by a derived class.

Synchronously send a message for processing.

_PMessage
A pointer to the message being sent.

Constructs a target_block object.

Destroys the target_block object.

Unlinks a specified source block from this target_block object.

_PSource
A pointer to the ISource block that is to be unlinked.

unlink_sources

virtual void unlink_sources();

wait_for_async_sends

void wait_for_async_sends();

Remarks

See also

Unlinks all source blocks from this target_block object.

Waits for all asynchronous propagations to complete.

This method is used by message block destructors to ensure all asynchronous operations have had time to finish
before destroying the block.

concurrency Namespace
ITarget Class

task Class (Concurrency Runtime)
3/20/2019 • 7 minutes to read • Edit Online

Syntax
template <typename T>
class task;

template <>
class task<void>;

template<typename _ReturnType>
class task;

Parameters

Members
Public Typedefs

NAME DESCRIPTION

result_type The type of the result an object of this class produces.

Public Constructors

NAME DESCRIPTION

task Overloaded. Constructs a task object.

Public Methods

NAME DESCRIPTION

get Overloaded. Returns the result this task produced. If the
task is not in a terminal state, a call to get will wait for the
task to finish. This method does not return a value when
called on a task with a result_type of void .

The Parallel Patterns Library (PPL) task class. A task object represents work that can be executed
asynchronously, and concurrently with other tasks and parallel work produced by parallel algorithms in the
Concurrency Runtime. It produces a result of type _ResultType on successful completion. Tasks of type
task<void> produce no result. A task can be waited upon and canceled independently of other tasks. It can

also be composed with other tasks using continuations(then), and join(when_all) and choice(when_any)
patterns.

T
The task object type.

_ReturnType
The result type of this task.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-class.md

is_apartment_aware Determines whether the task unwraps a Windows Runtime
IAsyncInfo interface or is descended from such a task.

is_done Determines if the task is completed.

scheduler Returns the scheduler for this task

then Overloaded. Adds a continuation task to this task.

wait Waits for this task to reach a terminal state. It is possible for
wait to execute the task inline, if all of the tasks

dependencies are satisfied, and it has not already been
picked up for execution by a background worker.

NAME DESCRIPTION

Public Operators

NAME DESCRIPTION

operator!= Overloaded. Determines whether two task objects
represent different internal tasks.

operator= Overloaded. Replaces the contents of one task object
with another.

operator== Overloaded. Determines whether two task objects
represent the same internal task.

Remarks

Inheritance Hierarchy

Requirements

get

_ReturnType get() const;

void get() const;

Return Value

For more information, see Task Parallelism.

task

Header: ppltasks.h

Namespace: concurrency

Returns the result this task produced. If the task is not in a terminal state, a call to get will wait for the task to
finish. This method does not return a value when called on a task with a result_type of void .

The result of the task.

Remarks

IMPORTANT

is_apartment_aware

bool is_apartment_aware() const;

Return Value

task::is_done Method (Concurrency Runtime)

bool is_done() const;

Return Value

Remarks

operator!=

bool operator!= (const task<_ReturnType>& _Rhs) const;

bool operator!= (const task<void>& _Rhs) const;

Parameters

Return Value

operator=

If the task is canceled, a call to get will throw a task_canceled exception. If the task encountered an different
exception or an exception was propagated to it from an antecedent task, a call to get will throw that
exception.

In a Universal Windows Platform (UWP) app, do not call concurrency::task::wait or get (wait calls get) in code that
runs on the user-interface thread. Otherwise, the runtime throws concurrency::invalid_operation because these methods
block the current thread and can cause the app to become unresponsive. However, you can call the get method to
receive the result of the antecedent task in a task-based continuation because the result is immediately available.

Determines whether the task unwraps a Windows Runtime IAsyncInfo interface or is descended from such a
task.

true if the task unwraps an IAsyncInfo interface or is descended from such a task, false otherwise.

Determines if the task is completed.

True if the task has completed, false otherwise.

The function returns true if the task is completed or canceled (with or without user exception).

Determines whether two task objects represent different internal tasks.

_Rhs
The task to compare.

true if the objects refer to different underlying tasks, and false otherwise.

task& operator= (const task& _Other);

task& operator= (task&& _Other);

Parameters

Return Value

Remarks

operator==

bool operator== (const task<_ReturnType>& _Rhs) const;

bool operator== (const task<void>& _Rhs) const;

Parameters

Return Value

task::scheduler Method (Concurrency Runtime)

scheduler_ptr scheduler() const;

Return Value

task

Replaces the contents of one task object with another.

_Other
The source task object.

As task behaves like a smart pointer, after a copy assignment, this task objects represents the same actual
task as _Other does.

Determines whether two task objects represent the same internal task.

_Rhs
The task to compare.

true if the objects refer to the same underlying task, and false otherwise.

Returns the scheduler for this task

A pointer to the scheduler

Constructs a task object.

task();

template<typename T>
__declspec(
 noinline) explicit task(T _Param);

template<typename T>
__declspec(
 noinline) explicit task(T _Param, const task_options& _TaskOptions);

task(
 const task& _Other);

task(
 task&& _Other);

Parameters

Remarks

T
The type of the parameter from which the task is to be constructed.

_Param
The parameter from which the task is to be constructed. This could be a lambda, a function object, a
task_completion_event<result_type> object, or a Windows::Foundation::IAsyncInfo if you are using tasks in

your Windows Runtime app. The lambda or function object should be a type equivalent to
std::function<X(void)> , where X can be a variable of type result_type , task<result_type> , or a

Windows::Foundation::IAsyncInfo in Windows Runtime apps.

_TaskOptions
The task options include cancellation token, scheduler etc

_Other
The source task object.

The default constructor for a task is only present in order to allow tasks to be used within containers. A
default constructed task cannot be used until you assign a valid task to it. Methods such as get , wait or
then will throw an invalid_argument exception when called on a default constructed task.

A task that is created from a task_completion_event will complete (and have its continuations scheduled) when
the task completion event is set.

The version of the constructor that takes a cancellation token creates a task that can be canceled using the
cancellation_token_source the token was obtained from. Tasks created without a cancellation token are not

cancelable.

Tasks created from a Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo

interface reach their terminal state when the enclosed Windows Runtime asynchronous operation or action
completes. Similarly, tasks created from a lamda that returns a task<result_type> reach their terminal state
when the inner task reaches its terminal state, and not when the lamda returns.

task behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
without the need for locks.

The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such
an interface, are only available to Windows Runtime apps.

For more information, see Task Parallelism.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class

 then

template<typename _Function>
__declspec(
 noinline) auto then(const _Function& _Func) const -> typename
details::_ContinuationTypeTraits<_Function,
 _ReturnType>::_TaskOfType;

template<typename _Function>
__declspec(
 noinline) auto then(const _Function& _Func,
 const task_options& _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function,
 _ReturnType>::_TaskOfType;

template<typename _Function>
__declspec(
 noinline) auto then(const _Function& _Func,
 cancellation_token _CancellationToken,
 task_continuation_context _ContinuationContext) const -> typename
details::_ContinuationTypeTraits<_Function,
 _ReturnType>::_TaskOfType;

template<typename _Function>
__declspec(
 noinline) auto then(const _Function& _Func,
 const task_options& _TaskOptions = task_options()) const -> typename
details::_ContinuationTypeTraits<_Function,
 void>::_TaskOfType;

template<typename _Function>
__declspec(
 noinline) auto then(const _Function& _Func,
 cancellation_token _CancellationToken,
 task_continuation_context _ContinuationContext) const -> typename
details::_ContinuationTypeTraits<_Function,
 void>::_TaskOfType;

Parameters

Return Value

Adds a continuation task to this task.

_Function
The type of the function object that will be invoked by this task.

_Func
The continuation function to execute when this task completes. This continuation function must take as input a
variable of either result_type or task<result_type> , where result_type is the type of the result this task
produces.

_TaskOptions
The task options include cancellation token, scheduler and continuation context. By default the former 3
options are inherited from the antecedent task

_CancellationToken
The cancellation token to associate with the continuation task. A continuation task that is created without a
cancellation token will inherit the token of its antecedent task.

_ContinuationContext
A variable that specifies where the continuation should execute. This variable is only useful when used in a
UWP app. For more information, see task_continuation_context

Remarks

wait

task_status wait() const;

Return Value

Remarks

IMPORTANT

See also

The newly created continuation task. The result type of the returned task is determined by what _Func

returns.

The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo
interface, are only available to Windows Runtime apps.

For more information on how to use task continuations to compose asynchronous work, see Task Parallelism.

Waits for this task to reach a terminal state. It is possible for wait to execute the task inline, if all of the tasks
dependencies are satisfied, and it has not already been picked up for execution by a background worker.

A task_status value which could be either completed or canceled . If the task encountered an exception
during execution, or an exception was propagated to it from an antecedent task, wait will throw that
exception.

In a Universal Windows Platform (UWP) app, do not call wait in code that runs on the user-interface thread.
Otherwise, the runtime throws concurrency::invalid_operation because this method blocks the current thread and can
cause the app to become unresponsive. However, you can call the concurrency::task::get method to receive the result of
the antecedent task in a task-based continuation.

concurrency Namespace

task_canceled Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class task_canceled : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

task_canceled Overloaded. Constructs a task_canceled object.

Inheritance Hierarchy

Requirements

task_canceled

explicit _CRTIMP task_canceled(_In_z_ const char* _Message) throw();

task_canceled() throw();

Parameters

See also

This class describes an exception thrown by the PPL tasks layer in order to force the current task to cancel. It is
also thrown by the get() method on task, for a canceled task.

exception

task_canceled

Header: concrt.h

Namespace: concurrency

Constructs a task_canceled object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-canceled-class.md
https://docs.microsoft.com/visualstudio/extensibility/debugger/task-class-internal-members

task_completion_event Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename _ResultType>
class task_completion_event;

template<>
class task_completion_event<void>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

task_completion_event Constructs a task_completion_event object.

Public Methods

NAME DESCRIPTION

set Overloaded. Sets the task completion event.

set_exception Overloaded. Propagates an exception to all tasks associated
with this event.

Remarks

Inheritance Hierarchy

The task_completion_event class allows you to delay the execution of a task until a condition is satisfied, or start
a task in response to an external event.

_ResultType
The result type of this task_completion_event class.

Use a task created from a task completion event when your scenario requires you to create a task that will
complete, and thereby have its continuations scheduled for execution, at some point in the future. The
task_completion_event must have the same type as the task you create, and calling the set method on the task

completion event with a value of that type will cause the associated task to complete, and provide that value as a
result to its continuations.

If the task completion event is never signaled, any tasks created from it will be canceled when it is destructed.

task_completion_event behaves like a smart pointer, and should be passed by value.

task_completion_event

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-completion-event-class.md

Requirements

set

bool set(_ResultType _Result) const ;

bool set() const ;

Parameters

Return Value

Remarks

set_exception

template<typename _E>
__declspec(noinline) bool set_exception(_E _Except) const;

__declspec(noinline) bool set_exception(std::exception_ptr _ExceptionPtr) const ;

Parameters

Return Value

task_completion_event

task_completion_event();

Header: ppltasks.h

Namespace: concurrency

Sets the task completion event.

_Result
The result to set this event with.

The method returns true if it was successful in setting the event. It returns false if the event is already set.

In the presence of multiple or concurrent calls to set , only the first call will succeed and its result (if any) will be
stored in the task completion event. The remaining sets are ignored and the method will return false. When you
set a task completion event, all the tasks created from that event will immediately complete, and its
continuations, if any, will be scheduled. Task completion objects that have a _ResultType other than void will
pass the value to their continuations.

Propagates an exception to all tasks associated with this event.

_E
The exception type.

_Except
The exception to set.

_ExceptionPtr
The exception pointer to set.

Constructs a task_completion_event object.

See also
concurrency Namespace

task_continuation_context Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class task_continuation_context : public details::_ContextCallback;

Members
Public Methods

NAME DESCRIPTION

get_current_winrt_context Returns a task continuation context object that represents the
current winrt thread context.

use_arbitrary Creates a task continuation context which allows the Runtime
to choose the execution context for a continuation.

use_current Returns a task continuation context object that represents the
current execution context.

use_default Creates the default task continuation context.

use_synchronous_execution Returns a task continuation context object that represents the
synchronous execution context.

Inheritance Hierarchy

Requirements

get_current_winrt_context

Syntax

The task_continuation_context class allows you to specify where you would like a continuation to be executed. It
is only useful to use this class from a Windows Runtime app. For non-Windows Runtime apps, the task
continuation's execution context is determined by the runtime, and not configurable.

_ContextCallback

task_continuation_context

Header: ppltasks.h

Namespace: concurrency

Returns a task continuation context object that represents the current WinRT thread context.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-continuation-context-class.md

static task_continuation_context get_current_winrt_context();

Return Value

Remarks

use_arbitrary

static task_continuation_context use_arbitrary();

Return Value

Remarks

use_current

static task_continuation_context use_current();

Return Value

Remarks

The current Windows Runtime thread context. Returns an empty task_continuation_context if called from a non-
Windows Runtime context.

The get_current_winrt_context method captures the caller's Windows Runtime thread context. It returns an
empty context to non-Windows Runtime callers.

The value returned by get_current_winrt_context can be used to indicate to the Runtime that the continuation
should execute in the apartment model of the captured context (STA vs MTA), regardless of whether the
antecedent task is apartment aware. An apartment aware task is a task that unwraps a Windows Runtime
IAsyncInfo interface, or a task that is descended from such a task.

This method is similar to the use_current method, but it is also available to native C++ code without C++/CX
extension support. It is intended for use by advanced users writing C++/CX-agnostic library code for both native
and Windows Runtime callers. Unless you need this functionality, we recommend the use_current method, which
is only available to C++/CX clients.

Creates a task continuation context which allows the Runtime to choose the execution context for a continuation.

A task continuation context that represents an arbitrary location.

When this continuation context is used the continuation will execute in a context the runtime chooses even if the
antecedent task is apartment aware.

use_arbitrary can be used to turn off the default behavior for a continuation on an apartment aware task created
in an STA.

This method is only available to Windows Runtime apps.

Returns a task continuation context object that represents the current execution context.

The current execution context.

This method captures the caller's Windows Runtime context so that continuations can be executed in the right
apartment.

use_default

static task_continuation_context use_default();

Return Value

Remarks

task_continuation_context::use_synchronous_execution

Syntax
static task_continuation_context use_synchronous_execution();

Return Value

Remarks

See also

The value returned by use_current can be used to indicate to the Runtime that the continuation should execute in
the captured context (STA vs MTA) regardless of whether or not the antecedent task is apartment aware. An
apartment aware task is a task that unwraps a Windows Runtime IAsyncInfo interface, or a task that is
descended from such a task.

This method is only available to Windows Runtime apps.

Creates the default task continuation context.

The default continuation context.

The default context is used if you don't specifiy a continuation context when you call the then method. In
Windows applications for Windows 7 and below, as well as desktop applications on Windows 8 and higher, the
runtime determines where task continuations will execute. However, in a Windows Runtime app, the default
continuation context for a continuation on an apartment aware task is the apartment where then is invoked.

An apartment aware task is a task that unwraps a Windows Runtime IAsyncInfo interface, or a task that is
descended from such a task. Therefore, if you schedule a continuation on an apartment aware task in a Windows
Runtime STA, the continuation will execute in that STA.

A continuation on a non-apartment aware task will execute in a context the Runtime chooses.

Returns a task continuation context object that represents the synchronous execution context.

The synchronous execution context.

The use_synchronous_execution method forces the continuation task to run synchronously on the context, causing
its antecedent task's completion.

If the antecedent task has already completed when the continuation is attached, the continuation runs
synchronously on the context that attaches the continuation.

concurrency Namespace

task_group Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class task_group;

Members
Public Constructors

NAME DESCRIPTION

task_group Overloaded. Constructs a new task_group object.

~task_group Destructor Destroys a task_group object. You are expected to call
the either the wait or run_and_wait method on the
object prior to the destructor executing, unless the
destructor is executing as the result of stack unwinding
due to an exception.

Public Methods

NAME DESCRIPTION

cancel Makes a best effort attempt to cancel the sub-tree of
work rooted at this task group. Every task scheduled on
the task group will get canceled transitively if possible.

is_canceling Informs the caller whether or not the task group is
currently in the midst of a cancellation. This does not
necessarily indicate that the cancel method was called
on the task_group object (although such certainly
qualifies this method to return true). It may be the case
that the task_group object is executing inline and a task
group further up in the work tree was canceled. In cases
such as these where the runtime can determine ahead of
time that cancellation will flow through this task_group

object, true will be returned as well.

The task_group class represents a collection of parallel work which can be waited on or canceled.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-group-class.md

run Overloaded. Schedules a task on the task_group object.
If a task_handle object is passed as a parameter to
run , the caller is responsible for managing the lifetime of

the task_handle object. The version of the method that
takes a reference to a function object as a parameter
involves heap allocation inside the runtime which may be
perform less well than using the version that takes a
reference to a task_handle object. The version which
takes the parameter _Placement causes the task to be
biased towards executing at the location specified by that
parameter.

run_and_wait Overloaded. Schedules a task to be run inline on the
calling context with the assistance of the task_group

object for full cancellation support. The function then waits
until all work on the task_group object has either
completed or been canceled. If a task_handle object is
passed as a parameter to run_and_wait , the caller is
responsible for managing the lifetime of the
task_handle object.

wait Waits until all work on the task_group object has either
completed or been canceled.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

cancel

void cancel();

Remarks

Unlike the heavily restricted structured_task_group class, the task_group class is much more general
construct. It does not have any of the restrictions described by structured_task_group. task_group objects
may safely be used across threads and utilized in free-form ways. The disadvantage of the task_group

construct is that it may not perform as well as the structured_task_group construct for tasks which perform
small amounts of work.

For more information, see Task Parallelism.

task_group

Header: ppl.h

Namespace: concurrency

Makes a best effort attempt to cancel the sub-tree of work rooted at this task group. Every task scheduled
on the task group will get canceled transitively if possible.

For more information, see Cancellation.

is_canceling

bool is_canceling();

Return Value

Remarks

run

template<
 typename _Function
>
void run(
 const _Function& _Func
);

template<
 typename _Function
>
void run(
 const _Function& _Func,
 location& _Placement
);

template<
 typename _Function
>
void run(
 task_handle<_Function>& _Task_handle
);

template<
 typename _Function
>
void run(
 task_handle<_Function>& _Task_handle,
 location& _Placement
);

Parameters

Informs the caller whether or not the task group is currently in the midst of a cancellation. This does not
necessarily indicate that the cancel method was called on the task_group object (although such certainly
qualifies this method to return true). It may be the case that the task_group object is executing inline and
a task group further up in the work tree was canceled. In cases such as these where the runtime can
determine ahead of time that cancellation will flow through this task_group object, true will be returned
as well.

An indication of whether the task_group object is in the midst of a cancellation (or is guaranteed to be
shortly).

For more information, see Cancellation.

Schedules a task on the task_group object. If a task_handle object is passed as a parameter to run , the
caller is responsible for managing the lifetime of the task_handle object. The version of the method that
takes a reference to a function object as a parameter involves heap allocation inside the runtime which may
be perform less well than using the version that takes a reference to a task_handle object. The version
which takes the parameter _Placement causes the task to be biased towards executing at the location
specified by that parameter.

Remarks

run_and_wait

template<
 class _Function
>
task_group_status run_and_wait(
 task_handle<_Function>& _Task_handle
);

template<
 class _Function
>
task_group_status run_and_wait(
 const _Function& _Func
);

Parameters

_Function
The type of the function object that will be invoked to execute the body of the task handle.

_Func
A function which will be called to invoke the body of the task. This may be a lambda expression or other
object which supports a version of the function call operator with the signature void operator()() .

_Placement
A reference to the location where the task represented by the _Func parameter should execute.

_Task_handle
A handle to the work being scheduled. Note that the caller has responsibility for the lifetime of this object.
The runtime will continue to expect it to live until either the wait or run_and_wait method has been called
on this task_group object.

The runtime schedules the provided work function to run at a later time, which can be after the calling
function returns. This method uses a task_handle object to hold a copy of the provided work function.
Therefore, any state changes that occur in a function object that you pass to this method will not appear in
your copy of that function object. In addition, make sure that the lifetime of any objects that you pass by
pointer or by reference to the work function remain valid until the work function returns.

If the task_group destructs as the result of stack unwinding from an exception, you do not need to
guarantee that a call has been made to either the wait or run_and_wait method. In this case, the destructor
will appropriately cancel and wait for the task represented by the _Task_handle parameter to complete.

The method throws an invalid_multiple_scheduling exception if the task handle given by the _Task_handle

parameter has already been scheduled onto a task group object via the run method and there has been no
intervening call to either the wait or run_and_wait method on that task group.

Schedules a task to be run inline on the calling context with the assistance of the task_group object for full
cancellation support. The function then waits until all work on the task_group object has either completed
or been canceled. If a task_handle object is passed as a parameter to run_and_wait , the caller is responsible
for managing the lifetime of the task_handle object.

_Function
The type of the function object that will be invoked to execute the body of the task.

_Task_handle
A handle to the task which will be run inline on the calling context. Note that the caller has responsibility for

Return Value

Remarks

task_group

task_group();

task_group(
 cancellation_token _CancellationToken
);

Parameters

Remarks

~task_group

~task_group();

Remarks

the lifetime of this object. The runtime will continue to expect it to live until the run_and_wait method
finishes execution.

_Func
A function which will be called to invoke the body of the work. This may be a lambda expression or other
object which supports a version of the function call operator with the signature void operator()() .

An indication of whether the wait was satisfied or the task group was canceled, due to either an explicit
cancel operation or an exception being thrown from one of its tasks. For more information, see
task_group_status.

Note that one or more of the tasks scheduled to this task_group object may execute inline on the calling
context.

If one or more of the tasks scheduled to this task_group object throws an exception, the runtime will select
one such exception of its choosing and propagate it out of the call to the run_and_wait method.

Upon return from the run_and_wait method on a task_group object, the runtime resets the object to a
clean state where it can be reused. This includes the case where the task_group object was canceled.

In the non-exceptional path of execution, you have a mandate to call either this method or the wait

method before the destructor of the task_group executes.

Constructs a new task_group object.

_CancellationToken
A cancellation token to associate with this task group. The task group will be canceled when the token is
canceled.

The constructor that takes a cancellation token creates a task_group that will be canceled when the source
associated with the token is canceled. Providing an explicit cancellation token also isolates this task group
from participating in an implicit cancellation from a parent group with a different token or no token.

Destroys a task_group object. You are expected to call the either the wait or run_and_wait method on the
object prior to the destructor executing, unless the destructor is executing as the result of stack unwinding
due to an exception.

 wait

task_group_status wait();

Return Value

Remarks

See also

If the destructor runs as the result of normal execution (for example, not stack unwinding due to an
exception) and neither the wait nor run_and_wait methods have been called, the destructor may throw a
missing_wait exception.

Waits until all work on the task_group object has either completed or been canceled.

An indication of whether the wait was satisfied or the task group was canceled, due to either an explicit
cancel operation or an exception being thrown from one of its tasks. For more information, see
task_group_status.

Note that one or more of the tasks scheduled to this task_group object may execute inline on the calling
context.

If one or more of the tasks scheduled to this task_group object throws an exception, the runtime will select
one such exception of its choosing and propagate it out of the call to the wait method.

Calling wait on a task_group object resets it to a clean state where it can be reused. This includes the case
where the task_group object was canceled.

In the non-exceptional path of execution, you have a mandate to call either this method or the run_and_wait

method before the destructor of the task_group executes.

concurrency Namespace
structured_task_group Class
task_handle Class

task_handle Class
5/21/2019 • 2 minutes to read • Edit Online

Syntax
template<
 typename _Function
>
class task_handle : public ::Concurrency::details::_UnrealizedChore;

Parameters

Members
Public Constructors

NAME DESCRIPTION

task_handle Constructs a new task_handle object. The work of the task
is performed by invoking the function specified as a
parameter to the constructor.

~task_handle Destructor Destroys the task_handle object.

Public Operators

NAME DESCRIPTION

operator() The function call operator that the runtime invokes to
perform the work of the task handle.

Remarks

The task_handle class represents an individual parallel work item. It encapsulates the instructions and the data
required to execute a piece of work.

_Function
The type of the function object that will be invoked to execute the work represented by the task_handle object.

task_handle objects can be used in conjunction with a structured_task_group or a more general task_group

object, to decompose work into parallel tasks. For more information, see Task Parallelism.

Note that the creator of a task_handle object is responsible for maintaining the lifetime of the created
task_handle object until it is no longer required by the Concurrency Runtime. Typically, this means that the
task_handle object must not destruct until either the wait or run_and_wait method of the task_group or
structured_task_group to which it is queued has been called.

task_handle objects are typically used in conjunction with C++ lambdas. Because you do not know the true type
of the lambda, the make_task function is typically used to create a task_handle object.

The runtime creates a copy of the work function that you pass to a task_handle object. Therefore, any state

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-handle-class.md

Inheritance Hierarchy

Requirements

operator()

void operator()() const;

task_handle

task_handle(const _Function& _Func);

Parameters

Remarks

~task_handle

~task_handle();

See also

changes that occur in a function object that you pass to a task_handle object will not appear in your copy of that
function object.

task_handle

Header: ppl.h

Namespace: concurrency

The function call operator that the runtime invokes to perform the work of the task handle.

Constructs a new task_handle object. The work of the task is performed by invoking the function specified as a
parameter to the constructor.

_Func
The function that will be invoked to execute the work represented by the task_handle object. This may be a
lambda functor, a pointer to a function, or any object that supports a version of the function call operator with the
signature void operator()() .

The runtime creates a copy of the work function that you pass to the constructor. Therefore, any state changes
that occur in a function object that you pass to a task_handle object will not appear in your copy of that function
object.

Destroys the task_handle object.

concurrency Namespace
task_group Class
structured_task_group Class

task_options Class (Concurrency Runtime)
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class task_options;

Members
Public Constructors

NAME DESCRIPTION

task_options::task_options Constructor (Concurrency Runtime) Overloaded. Default list of task creation options

Public Methods

NAME DESCRIPTION

task_options::get_cancellation_token Method (Concurrency
Runtime)

Returns the cancellation token

task_options::get_continuation_context Method (Concurrency
Runtime)

Returns the continuation context

task_options::get_scheduler Method (Concurrency Runtime) Returns the scheduler

task_options::has_cancellation_token Method (Concurrency
Runtime)

Indicates whether a cancellation token was specified by the
user

task_options::has_scheduler Method (Concurrency Runtime) Indicates whether a scheduler n was specified by the user

task_options::set_cancellation_token Method (Concurrency
Runtime)

Sets the given token in the options

task_options::set_continuation_context Method (Concurrency
Runtime)

Sets the given continuation context in the options

Inheritance Hierarchy

Requirements

Represents the allowed options for creating a task

task_options

Header: ppltasks.h

Namespace: concurrency

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/task-options-class-concurrency-runtime.md

task_options::get_cancellation_token Method (Concurrency Runtime)

cancellation_token get_cancellation_token() const;

Return Value

task_options::get_continuation_context Method (Concurrency Runtime)

task_continuation_context get_continuation_context() const;

Return Value

task_options::get_scheduler Method (Concurrency Runtime)

scheduler_ptr get_scheduler() const;

Return Value

task_options::has_cancellation_token Method (Concurrency Runtime)

bool has_cancellation_token() const;

Return Value

task_options::has_scheduler Method (Concurrency Runtime)

bool has_scheduler() const;

Return Value

task_options::set_cancellation_token Method (Concurrency Runtime)

void set_cancellation_token(cancellation_token _Token);

Parameters

task_options::set_continuation_context Method (Concurrency Runtime)

Returns the cancellation token

Returns the continuation context

Returns the scheduler

Indicates whether a cancellation token was specified by the user

Indicates whether a scheduler n was specified by the user

Sets the given token in the options

_Token

void set_continuation_context(task_continuation_context _ContinuationContext);

Parameters

task_options::task_options Constructor (Concurrency Runtime)

task_options();

task_options(
 cancellation_token _Token);

task_options(
 task_continuation_context _ContinuationContext);

task_options(
 cancellation_token _Token,
 task_continuation_context _ContinuationContext);

template<typename _SchedType>
task_options(
 std::shared_ptr<_SchedType> _Scheduler);

task_options(
 scheduler_interface& _Scheduler);

task_options(
 scheduler_ptr _Scheduler);

task_options(
 const task_options& _TaskOptions);

Parameters

See also

Sets the given continuation context in the options

_ContinuationContext

Default list of task creation options

_SchedType

_Token

_ContinuationContext

_Scheduler

_TaskOptions

concurrency Namespace

timer Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class T>
class timer : public Concurrency::details::_Timer, public source_block<single_link_registry<ITarget<T>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

timer Overloaded. Constructs a timer messaging block that will
fire a given message after a specified interval.

~timer Destructor Destroys a timer messaging block.

Public Methods

NAME DESCRIPTION

pause Stops the timer messaging block. If it is a repeating
timer messaging block, it can be restarted with a

subsequent start() call. For non-repeating timers, this has
the same effect as a stop call.

start Starts the timer messaging block. The specified number of
milliseconds after this is called, the specified value will be
propagated downstream as a message .

stop Stops the timer messaging block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this timer

messaging block, transferring ownership to the caller.

consume_message Consumes a message previously offered by the timer and
reserved by the target, transferring ownership to the caller.

A timer messaging block is a single-target source_block capable of sending a message to its target after a
specified time period has elapsed or at specific intervals.

T
The payload type of the output messages of this block.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/timer-class.md

link_target_notification A callback that notifies that a new target has been linked to
this timer messaging block.

propagate_to_any_targets Tries to offer the message produced by the timer block to
all of the linked targets.

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this timer

messaging block. (Overrides source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept_message

virtual message<T>* accept_message(runtime_object_identity _MsgId);

Parameters

Return Value

consume_message

For more information, see Asynchronous Message Blocks.

ISource

source_block

timer

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this timer messaging block, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

Consumes a message previously offered by the timer and reserved by the target, transferring ownership to the
caller.

virtual message<T>* consume_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<T>* _PTarget);

Parameters

pause

void pause();

propagate_to_any_targets

virtual void propagate_to_any_targets(_Inout_opt_ message<T> *);

release_message

virtual void release_message(runtime_object_identity _MsgId);

Parameters

reserve_message

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

A callback that notifies that a new target has been linked to this timer messaging block.

_PTarget
A pointer to the newly linked target.

Stops the timer messaging block. If it is a repeating timer messaging block, it can be restarted with a
subsequent start() call. For non-repeating timers, this has the same effect as a stop call.

Tries to offer the message produced by the timer block to all of the linked targets.

Releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

Reserves a message previously offered by this timer messaging block.

virtual bool reserve_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation();

start

void start();

stop

void stop();

timer

_MsgId
The runtime_object_identity of the message object being reserved.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

Starts the timer messaging block. The specified number of milliseconds after this is called, the specified value
will be propagated downstream as a message .

Stops the timer messaging block.

Constructs a timer messaging block that will fire a given message after a specified interval.

timer(
 unsigned int _Ms,
 T const& value,
 ITarget<T>* _PTarget = NULL,
 bool _Repeating = false);

timer(
 Scheduler& _Scheduler,
 unsigned int _Ms,
 T const& value,
 _Inout_opt_ ITarget<T>* _PTarget = NULL,
 bool _Repeating = false);

timer(
 ScheduleGroup& _ScheduleGroup,
 unsigned int _Ms,
 T const& value,
 _Inout_opt_ ITarget<T>* _PTarget = NULL,
 bool _Repeating = false);

Parameters

Remarks

~timer

~timer();

See also

_Ms
The number of milliseconds that must elapse after the call to start for the specified message to be propagated
downstream.

value
The value which will be propagated downstream when the timer elapses.

_PTarget
The target to which the timer will propagate its message.

_Repeating
If true, indicates that the timer will fire periodically every _Ms milliseconds.

_Scheduler
The Scheduler object within which the propagation task for the timer messaging block is scheduled is
scheduled.

_ScheduleGroup
The ScheduleGroup object within which the propagation task for the timer messaging block is scheduled. The
Scheduler object used is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _Scheduler or _ScheduleGroup parameters.

Destroys a timer messaging block.

concurrency Namespace

transformer Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class _Input, class _Output>
class transformer : public propagator_block<single_link_registry<ITarget<_Output>>,
 multi_link_registry<ISource<_Input>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

transformer Overloaded. Constructs a transformer messaging block.

~transformer Destructor Destroys the transformer messaging block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this transformer

messaging block, transferring ownership to the caller.

consume_message Consumes a message previously offered by the
transformer and reserved by the target, transferring

ownership to the caller.

link_target_notification A callback that notifies that a new target has been linked to
this transformer messaging block.

propagate_message Asynchronously passes a message from an ISource block
to this transformer messaging block. It is invoked by the
propagate method, when called by a source block.

propagate_to_any_targets Executes the transformer function on the input messages.

A transformer messaging block is a single-target, multi-source, ordered propagator_block which can accept
messages of one type and is capable of storing an unbounded number of messages of a different type.

_Input
The payload type of the messages accepted by the buffer.

_Output
The payload type of the messages stored and propagated out by the buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/transformer-class.md

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this
transformer messaging block. (Overrides

source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

send_message Synchronously passes a message from an ISource block to
this transformer messaging block. It is invoked by the
send method, when called by a source block.

supports_anonymous_source Overrides the supports_anonymous_source method to
indicate that this block can accept messages offered to it by
a source that is not linked. (Overrides
ITarget::supports_anonymous_source.)

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

accept_message

virtual message<_Output>* accept_message(runtime_object_identity _MsgId);

Parameters

Return Value

For more information, see Asynchronous Message Blocks.

ISource

ITarget

source_block

propagator_block

transformer

Header: agents.h

Namespace: concurrency

Accepts a message that was offered by this transformer messaging block, transferring ownership to the caller.

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

consume_message

virtual message<_Output>* consume_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

link_target_notification

virtual void link_target_notification(_Inout_ ITarget<_Output> *);

propagate_message

virtual message_status propagate_message(
 Inout message<_Input>* _PMessage,
 Inout ISource<_Input>* _PSource);

Parameters

Return Value

propagate_to_any_targets

virtual void propagate_to_any_targets(_Inout_opt_ message<_Output> *);

release_message

Consumes a message previously offered by the transformer and reserved by the target, transferring
ownership to the caller.

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

A callback that notifies that a new target has been linked to this transformer messaging block.

Asynchronously passes a message from an ISource block to this transformer messaging block. It is invoked
by the propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Executes the transformer function on the input messages.

Releases a previous message reservation.

virtual void release_message(runtime_object_identity _MsgId);

Parameters

reserve_message

virtual bool reserve_message(runtime_object_identity _MsgId);

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation();

send_message

virtual message_status send_message(
 Inout message<_Input>* _PMessage,
 Inout ISource<_Input>* _PSource);

Parameters

Return Value

supports_anonymous_source

_MsgId
The runtime_object_identity of the message object being released.

Reserves a message previously offered by this transformer messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

Synchronously passes a message from an ISource block to this transformer messaging block. It is invoked by
the send method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Overrides the supports_anonymous_source method to indicate that this block can accept messages offered to it

virtual bool supports_anonymous_source();

Return Value

transformer

transformer(
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget = NULL);

transformer(
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget,
 filter_method const& _Filter);

transformer(
 Scheduler& _PScheduler,
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget = NULL);

transformer(
 Scheduler& _PScheduler,
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget,
 filter_method const& _Filter);

transformer(
 ScheduleGroup& _PScheduleGroup,
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget = NULL);

transformer(
 ScheduleGroup& _PScheduleGroup,
 _Transform_method const& _Func,
 _Inout_opt_ ITarget<_Output>* _PTarget,
 filter_method const& _Filter);

Parameters

Remarks

by a source that is not linked.

true because the block does not postpone offered messages.

Constructs a transformer messaging block.

_Func
A function that will be invoked for each accepted message.

_PTarget
A pointer to a target block to link with the transformer.

_Filter
A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the transformer messaging block is scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the transformer messaging block is scheduled.
The Scheduler object used is implied by the schedule group.

 ~transformer

~transformer();

See also

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

The type _Transform_method is a functor with signature _Output (_Input const &) which is invoked by this
transformer messaging block to process a message.

The type filter_method is a functor with signature bool (_Input const &) which is invoked by this
transformer messaging block to determine whether or not it should accept an offered message.

Destroys the transformer messaging block.

concurrency Namespace
call Class

unbounded_buffer Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<
 class _Type
>
class unbounded_buffer : public propagator_block<multi_link_registry<ITarget< _Type>>,
multi_link_registry<ISource< _Type>>>;

Parameters

Members
Public Constructors

NAME DESCRIPTION

unbounded_buffer Overloaded. Constructs an unbounded_buffer messaging
block.

~unbounded_buffer Destructor Destroys the unbounded_buffer messaging block.

Public Methods

NAME DESCRIPTION

dequeue Removes an item from the unbounded_buffer messaging
block.

enqueue Adds an item to the unbounded_buffer messaging block.

Protected Methods

NAME DESCRIPTION

accept_message Accepts a message that was offered by this
unbounded_buffer messaging block, transferring

ownership to the caller.

consume_message Consumes a message previously offered by the
unbounded_buffer messaging block and reserved by the

target, transferring ownership to the caller.

An unbounded_buffer messaging block is a multi-target, multi-source, ordered propagator_block capable of
storing an unbounded number of messages.

_Type
The payload type of the messages stored and propagated by the buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/unbounded-buffer-class.md

link_target_notification A callback that notifies that a new target has been linked to
this unbounded_buffer messaging block.

process_input_messages Places the message _PMessage in this
unbounded_buffer messaging block and tries to offer it to

all of the linked targets.

propagate_message Asynchronously passes a message from an ISource block
to this unbounded_buffer messaging block. It is invoked
by the propagate method, when called by a source block.

propagate_output_messages Places the message _PMessage in this
unbounded_buffer messaging block and tries to offer it to

all of the linked targets. (Overrides
source_block::propagate_output_messages.)

release_message Releases a previous message reservation. (Overrides
source_block::release_message.)

reserve_message Reserves a message previously offered by this
unbounded_buffer messaging block. (Overrides

source_block::reserve_message.)

resume_propagation Resumes propagation after a reservation has been released.
(Overrides source_block::resume_propagation.)

send_message Synchronously passes a message from an ISource block
to this unbounded_buffer messaging block. It is invoked
by the send method, when called by a source block.

supports_anonymous_source Overrides the supports_anonymous_source method to
indicate that this block can accept messages offered to it by
a source that is not linked. (Overrides
ITarget::supports_anonymous_source.)

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

For more information, see Asynchronous Message Blocks.

ISource

ITarget

source_block

propagator_block

unbounded_buffer

Header: agents.h

Namespace: concurrency

accept_message

virtual message<_Type> * accept_message(
 runtime_object_identity _MsgId
);

Parameters

Return Value

consume_message

virtual message<_Type> * consume_message(
 runtime_object_identity _MsgId
);

Parameters

Return Value

Remarks

dequeue

_Type dequeue();

Return Value

enqueue

bool enqueue(
 _Type const& _Item
);

Accepts a message that was offered by this unbounded_buffer messaging block, transferring ownership to the
caller.

_MsgId
The runtime_object_identity of the offered message object.

A pointer to the message object that the caller now has ownership of.

Consumes a message previously offered by the unbounded_buffer messaging block and reserved by the target,
transferring ownership to the caller.

_MsgId
The runtime_object_identity of the message object being consumed.

A pointer to the message object that the caller now has ownership of.

Similar to accept , but is always preceded by a call to reserve .

Removes an item from the unbounded_buffer messaging block.

The payload of the message removed from the unbounded_buffer .

Adds an item to the unbounded_buffer messaging block.

Parameters

Return Value

link_target_notification

virtual void link_target_notification(
 Inout ITarget<_Type> * _PTarget
);

Parameters

propagate_message

virtual message_status propagate_message(
 Inout message<_Type> * _PMessage,
 Inout ISource<_Type> * _PSource
);

Parameters

Return Value

propagate_output_messages

virtual void propagate_output_messages();

Remarks

process_input_messages

_Item
The item to add.

true if the item was accepted, false otherwise.

A callback that notifies that a new target has been linked to this unbounded_buffer messaging block.

_PTarget
A pointer to the newly linked target.

Asynchronously passes a message from an ISource block to this unbounded_buffer messaging block. It is
invoked by the propagate method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Places the message _PMessage in this unbounded_buffer messaging block and tries to offer it to all of the linked
targets.

If another message is already ahead of this one in the unbounded_buffer , propagation to linked targets will not
occur until any earlier messages have been accepted or consumed. The first linked target to successfully
accept or consume the message takes ownership, and no other target can then get the message.

virtual void process_input_messages(
 Inout message<_Type> * _PMessage
);

Parameters

release_message

virtual void release_message(
 runtime_object_identity _MsgId
);

Parameters

reserve_message

virtual bool reserve_message(
 runtime_object_identity _MsgId
);

Parameters

Return Value

Remarks

resume_propagation

virtual void resume_propagation();

send_message

Places the message _PMessage in this unbounded_buffer messaging block and tries to offer it to all of the linked
targets.

_PMessage
A pointer to the message that is to be processed.

Releases a previous message reservation.

_MsgId
The runtime_object_identity of the message object being released.

Reserves a message previously offered by this unbounded_buffer messaging block.

_MsgId
The runtime_object_identity of the message object being reserved.

true if the message was successfully reserved, false otherwise.

After reserve is called, if it returns true, either consume or release must be called to either take or release
ownership of the message.

Resumes propagation after a reservation has been released.

Synchronously passes a message from an ISource block to this unbounded_buffer messaging block. It is

virtual message_status send_message(
 Inout message<_Type> * _PMessage,
 Inout ISource<_Type> * _PSource
);

Parameters

Return Value

supports_anonymous_source

virtual bool supports_anonymous_source();

Return Value

unbounded_buffer

unbounded_buffer();

unbounded_buffer(
 filter_method const& _Filter
);

unbounded_buffer(
 Scheduler& _PScheduler
);

unbounded_buffer(
 Scheduler& _PScheduler,
 filter_method const& _Filter
);

unbounded_buffer(
 ScheduleGroup& _PScheduleGroup
);

unbounded_buffer(
 ScheduleGroup& _PScheduleGroup,
 filter_method const& _Filter
);

Parameters

invoked by the send method, when called by a source block.

_PMessage
A pointer to the message object.

_PSource
A pointer to the source block offering the message.

A message_status indication of what the target decided to do with the message.

Overrides the supports_anonymous_source method to indicate that this block can accept messages offered to it
by a source that is not linked.

true because the block does not postpone offered messages.

Constructs an unbounded_buffer messaging block.

_Filter

Remarks

~unbounded_buffer

~unbounded_buffer();

See also

A filter function which determines whether offered messages should be accepted.

_PScheduler
The Scheduler object within which the propagation task for the unbounded_buffer messaging block is
scheduled.

_PScheduleGroup
The ScheduleGroup object within which the propagation task for the unbounded_buffer messaging block is
scheduled. The Scheduler object used is implied by the schedule group.

The runtime uses the default scheduler if you do not specify the _PScheduler or _PScheduleGroup parameters.

The type filter_method is a functor with signature bool (_Type const &) which is invoked by this
unbounded_buffer messaging block to determine whether or not it should accept an offered message.

Destroys the unbounded_buffer messaging block.

concurrency Namespace
overwrite_buffer Class
single_assignment Class

unsupported_os Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class unsupported_os : public std::exception;

Members
Public Constructors

NAME DESCRIPTION

unsupported_os Overloaded. Constructs an unsupported_os object.

Inheritance Hierarchy

Requirements

unsupported_os

explicit _CRTIMP unsupported_os(_In_z_ const char* _Message) throw();

unsupported_os() throw();

Parameters

See also

This class describes an exception thrown when an unsupported operating system is used.

exception

unsupported_os

Header: concrt.h

Namespace: concurrency

Constructs an unsupported_os object.

_Message
A descriptive message of the error.

concurrency Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/unsupported-os-class.md

std Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace std;

Members
Functions

NAME DESCRIPTION

make_exception_ptr Function

Requirements

See also

Header: ppltasks.h

Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/std-namespace.md

make_exception_ptr Function
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _E>
exception_ptr make_exception_ptr(_E _Except);

Parameters

Return Value

Requirements

See also

_E
Exception type.

_Except
Exception value.

Header: ppltasks.h

Namespace: std

std Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/make-exception-ptr-function.md

stdx Namespace
3/4/2019 • 2 minutes to read • Edit Online

Syntax
namespace stdx;

Members
Functions

NAME DESCRIPTION

declval Function

Requirements

See also

Header: ppltasks.h

Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/stdx-namespace.md

declval Function
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class _T>
_T&& declval();

Parameters

Return Value

Requirements

See also

_T

Header: ppltasks.h

Namespace: stdx

stdx Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/concrt/reference/declval-function.md

OpenMP in Visual C++
4/22/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

The OpenMP C and C++ application program interface lets you write applications that effectively use multiple
processors. Visual C++ supports the OpenMP 2.0 standard.

Library Reference
Provides links to constructs used in the OpenMP API.

C and C++ Application Program Interface
Discusses the OpenMP C and C++ API, as documented in the version 2.0 specification from the OpenMP
Architecture Review Board.

/openmp (Enable OpenMP 2.0 Support)
Causes the compiler to process #pragma omp .

Predefined Macros
Names the predefined ANSI C and Microsoft C++ implementation macros. See the _OPENMP macro.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/openmp-in-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/openmp-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/openmp-c-and-cpp-application-program-interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/openmp-enable-openmp-2-0-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

SIMD Extension
4/22/2019 • 3 minutes to read • Edit Online

NOTE

OpenMP SIMD in Visual C++

 #pragma omp simd
 for (i = 0; i < count; i++)
 {
 a[i] = a[i-1] + 1;
 b[i] = *c + 1;
 bar(i);
 }

 cl -O2 -openmp:experimental -Qvec-report:2 mycode.cpp

 mycode.cpp(84) : info C5002: Omp simd loop not vectorized due to reason '1200'
 mycode.cpp(90) : info C5002: Omp simd loop not vectorized due to reason '1200'
 mycode.cpp(96) : info C5001: Omp simd loop vectorized

Visual C++ currently supports the OpenMP 2.0 standard, however Visual Studio 2019 also now offers S IMD
functionality.

To use SIMD, compile with the -openmp:experimental switch that enables additional OpenMP features not available when
using the -openmp switch.

The -openmp:experimental switch subsumes -openmp , meaning all OpenMP 2.0 features are included in its use.

For more information, see SIMD Extension to C++ OpenMP in Visual Studio.

OpenMP SIMD, introduced in the OpenMP 4.0 standard, targets making vector-friendly loops. By using the simd

directive before a loop, the compiler can ignore vector dependencies, make the loop as vector-friendly as possible,
and respect the users’ intention to have multiple loop iterations executed simultaneously.

Visual C++ provides similar non-OpenMP loop pragmas like #pragma vector and #pragma ivdep , however with
OpenMP SIMD, the compiler can do more, like:

Always allowed to ignore present vector dependencies.
/fp:fast is enabled within the loop.

Outer loops and loops with function calls are vector-friendly.
Nested loops can be coalesced into one loop and made vector-friendly.
Hybrid acceleration with #pragma omp for simd to enable coarse-grained multi-threading and fine-grained
vectors.

For vector-friendly loops, the compiler remains silent unless you use a vector-support log switch:

For non-vector-friendly loops, the compiler issues each a message:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/openmp-simd.md
https://devblogs.microsoft.com/cppblog/simd-extension-to-c-openmp-in-visual-studio/

 cl -O2 -openmp:experimental mycode.cpp

 mycode.cpp(84) : info C5002: Omp simd loop not vectorized due to reason '1200'
 mycode.cpp(90) : info C5002: Omp simd loop not vectorized due to reason '1200'

Clauses

DIRECTIVE DESCRIPTION

simdlen(length) Specify the number of vector lanes.

safelen(length) Specify the vector dependency distance.

linear(list[: linear-step]) The linear mapping from loop induction variable to array
subscription.

aligned(list[: alignment]) The alignment of data.

private(list) Specify data privatization.

lastprivate(list) Specify data privatization with final value from the last
iteration.

reduction(reduction-identifier:list) Specify customized reduction operations.

collapse(n) Coalescing loop nest.

NOTE

 #pragma omp simd simdlen(8)
 for (i = 0; i < count; i++)
 {
 a[i] = a[i-1] + 1;
 b[i] = *c + 1;
 bar(i);
 }

 warning C4849: OpenMP 'simdlen' clause ignored in 'simd' directive

Example

The OpenMP SIMD directive can also take the following clauses to enhance vector-support:

Non-effective SIMD clauses are parsed and ignored by the compiler with a warning.

For example, use of the following code issues a warning:

The OpenMP SIMD directive provides users a way to dictate the compiler make loops vector-friendly. By
annotating a loop with the OpenMP SIMD directive, users intend to have multiple loop iterations executed
simultaneously.

For example, the following loop is annotated with the OpenMP SIMD directive. There's no perfect parallelism
among loop iterations since there's a backward dependency from a[i] to a[i-1], but because of the SIMD directive
the compiler is still allowed to pack consecutive iterations of the first statement into one vector instruction and run

 #pragma omp simd
 for (i = 0; i < count; i++)
 {
 a[i] = a[i-1] + 1;
 b[i] = *c + 1;
 bar(i);
 }

 for (i = 0; i < count; i+=4)
 {
 a[i:i+3] = a[i-1:i+2] + 1;
 b[i:i+3] = *c + 1;
 bar(i);
 bar(i+1);
 bar(i+2);
 bar(i+3);
 }

 c = b;
 t = *c;
 for (i = 0; i < count; i+=4)
 {
 a[i:i+3] = a[i-1:i+2] + 1;
 bar(i); // illegal to reorder if bar[i] depends on b[i]
 b[i:i+3] = t + 1; // illegal to move *c out of the loop
 bar(i+1);
 bar(i+2);
 bar(i+3);
 }

See also

them in parallel.

Therefore, the following transformed vector form of the loop is legal because the compiler keeps the sequential
behavior of each original loop iteration. In other words, a[i] is executed after a[-1] , b[i] is after a[i] and the
call to bar happens last.

It's not legal to move the memory reference *c out of the loop if it may alias with a[i] or b[i] . It's also not
legal to reorder the statements inside one original iteration if it breaks the sequential dependency. For example, the
following transformed loop isn't legal:

/openmp (Enable OpenMP 2.0 Support)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/openmp-enable-openmp-2-0-support

OpenMP C and C++ Application Program Interface
4/22/2019 • 2 minutes to read • Edit Online

Contents

Appendices

See also

Discusses the OpenMP C and C++ API, as documented in the version 2.0 specification from the OpenMP
Architecture Review Board.

Version 2.0 March 2002

Copyright 1997-2002 OpenMP Architecture Review Board.

Permission to copy without fee all or part of this material is granted, provided the OpenMP Architecture Review
Board copyright notice and the title of this document appear. Notice is given that copying is by permission of
OpenMP Architecture Review Board.

1. Introduction

2. Directives

3. Run-time library functions

4. Environment variables

A. Examples

B. Stubs for run-time library functions

C. OpenMP C and C++ grammar

D. The schedule clause

E. Implementation-defined behaviors in OpenMP C/C++

F. New features and clarifications in version 2.0

OpenMP

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/openmp-c-and-cpp-application-program-interface.md

1. Introduction
1/28/2019 • 8 minutes to read • Edit Online

1.1 Scope

1.2 Definition of terms

This document specifies a collection of compiler directives, library functions, and environment variables that you
can use to specify shared-memory parallelism in C and C++ programs. The functionality described in this
document is collectively known as the OpenMP C/C++ Application Program Interface (API). The goal of this
specification is to provide a model for parallel programming that allows a program to be portable across shared-
memory architectures from different vendors. Compilers from many vendors support the OpenMP C/C++ API.
More information about OpenMP, including the OpenMP Fortran Application Program Interface, can be found at
the following web site:

https://www.openmp.org

The directives, library functions, and environment variables defined in this document allow you to create and
manage parallel programs while allowing portability. The directives extend the C and C++ sequential
programming model with single program multiple data (SPMD) constructs, work-sharing constructs, and
synchronization constructs. They also support the sharing and privatization of data. Compilers that support the
OpenMP C and C++ API include a command-line option to the compiler that activates and allows interpretation of
all OpenMP compiler directives.

This specification covers only user-directed parallelization, wherein you explicitly define what actions the compiler
and run-time system take to execute the program in parallel. OpenMP C and C++ implementations aren't required
to check for dependencies, conflicts, deadlocks, race conditions, or other problems that result in incorrect program
execution. You are responsible for ensuring that the application using the OpenMP C and C++ API constructs
executes correctly. Compiler-generated automatic parallelization and directives to the compiler to assist such
parallelization aren't covered in this document.

The following terms are used in this document:

barrier

A synchronization point that all threads in a team must reach. Each thread waits until all threads in the team
arrive at this point. There are explicit barriers identified by directives and implicit barriers created by the
implementation.

construct

A construct is a statement. It consists of a directive, followed by a structured block. Some directives aren't
part of a construct. (See openmp-directive in appendix C).

directive

A C or C++ #pragma followed by the omp identifier, other text, and a new line. The directive specifies
program behavior.

dynamic extent

All statements in the lexical extent, plus any statement inside a function that's executed as a result of the
execution of statements within the lexical extent. A dynamic extent is also referred to as a region.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/1-introduction.md
https://www.openmp.org

lexical extent

Statements lexically held within a structured block.

master thread

The thread that creates a team when a parallel region is entered.

parallel region

Statements that bind to an OpenMP parallel construct and may be executed by many threads.

private

A private variable names a block of storage that's unique to the thread making the reference. There are
several ways to specify that a variable is private: a definition within a parallel region, a threadprivate

directive, a private , firstprivate , lastprivate , or reduction clause, or use of the variable as a for loop
control variable in a for loop immediately following a for or parallel for directive.

region

A dynamic extent.

serial region

Statements executed only by the master thread outside of the dynamic extent of any parallel region.

serialize

To execute a parallel construct with:

a team of threads consisting of only a single thread (which is the master thread for that parallel
construct),

serial order of execution for the statements within the structured block (the same order as if the block
were not part of a parallel construct), and

no effect on the value returned by omp_in_parallel() (apart from the effects of any nested parallel
constructs).

shared

A shared variable names a single block of storage. All threads in a team that access this variable also access
this single block of storage.

structured block

A structured block is a statement (single or compound) that has a single entry and a single exit. If there's a
jump into or out of a statement, that statement is a structured block. (This rule includes a call to longjmp

(3C) or the use of throw , although a call to exit is permitted.) If its execution always begins at the opening
{ and always ends at the closing } , a compound statement is a structured block. An expression statement,

selection statement, iteration statement, or try block is a structured block if the corresponding compound
statement obtained by enclosing it in { and } would be a structured block. A jump statement, labeled
statement, or declaration statement isn't a structured block.

team

One or more threads cooperating in the execution of a construct.

thread

An execution entity having a serial flow of control, a set of private variables, and access to shared variables.

1.3 Execution model

1.4 Compliance

variable

An identifier, optionally qualified by namespace names, that names an object.

OpenMP uses the fork-join model of parallel execution. Although this fork-join model can be useful for solving
various problems, it's tailored for large array-based applications. OpenMP is intended to support programs that
execute correctly both as parallel programs (many threads of execution and a full OpenMP support library). It's
also for programs that execute correctly as sequential programs (directives ignored and a simple OpenMP stubs
library). However, it's possible and permitted to develop a program that doesn't behave correctly when executed
sequentially. Furthermore, different degrees of parallelism may result in different numeric results because of
changes in the association of numeric operations. For example, a serial addition reduction may have a different
pattern of addition associations than a parallel reduction. These different associations may change the results of
floating-point addition.

A program written with the OpenMP C/C++ API begins execution as a single thread of execution called the
master thread. The master thread executes in a serial region until the first parallel construct is encountered. In the
OpenMP C/C++ API, the parallel directive constitutes a parallel construct. When a parallel construct is
encountered, the master thread creates a team of threads, and the master becomes master of the team. Each
thread in the team executes the statements in the dynamic extent of a parallel region, except for the work-sharing
constructs. All threads in the team must encounter work-sharing constructs in the same order, and one or more of
the threads executes the statements within the associated structured block. The barrier implied at the end of a
work-sharing construct without a nowait clause is executed by all threads in the team.

If a thread modifies a shared object, it affects not only its own execution environment, but also those of the other
threads in the program. The modification is guaranteed to be complete, from the point of view of another thread, at
the next sequence point (as defined in the base language) only if the object is declared to be volatile. Otherwise, the
modification is guaranteed to be complete after first the modifying thread. The other threads then (or concurrently)
see a flush directive that specifies the object (either implicitly or explicitly). When the flush directives that are
implied by other OpenMP directives don't guarantee the correct ordering of side effects, it's the programmer's
responsibility to supply additional, explicit flush directives.

Upon completion of the parallel construct, the threads in the team synchronize at an implicit barrier, and only the
master thread continues execution. Any number of parallel constructs can be specified in a single program. As a
result, a program may fork and join many times during execution.

The OpenMP C/C++ API allows programmers to use directives in functions called from within parallel constructs.
Directives that don't appear in the lexical extent of a parallel construct but may lie in the dynamic extent are called
orphaned directives. With orphaned directives, programmers can execute major portions of their program in
parallel, with only minimal changes to the sequential program. With this functionality, you can code parallel
constructs at the top levels of the program call tree and use directives to control execution in any of the called
functions.

Unsynchronized calls to C and C++ output functions that write to the same file may result in output in which data
written by different threads appears in nondeterministic order. Similarly, unsynchronized calls to input functions
that read from the same file may read data in nondeterministic order. Unsynchronized use of I/O, such that each
thread accesses a different file, produces the same results as serial execution of the I/O functions.

An implementation of the OpenMP C/C++ API is OpenMP-compliant if it recognizes and preserves the semantics
of all the elements of this specification, as laid out in Chapters 1, 2, 3, 4, and Appendix C. Appendices A, B, D, E, and
F are for information purposes only and aren't part of the specification. Implementations that include only a subset
of the API aren't OpenMP-compliant.

1.5 Normative references

1.6 Organization

The OpenMP C and C++ API is an extension to the base language that's supported by an implementation. If the
base language doesn't support a language construct or extension that appears in this document, the OpenMP
implementation isn't required to support it.

All standard C and C++ library functions and built-in functions (that is, functions of which the compiler has specific
knowledge) must be thread-safe. Unsynchronized use of thread-safe functions by different threads inside a parallel
region doesn't produce undefined behavior. However, the behavior might not be the same as in a serial region. (A
random number generation function is an example.)

The OpenMP C/C++ API specifies that certain behavior is implementation-defined. A conforming OpenMP
implementation is required to define and document its behavior in these cases. For a list of implementation-
defined behaviors, see appendix E.

ISO/IEC 9899:1999, Information Technology - Programming Languages - C. This OpenMP API
specification refers to ISO/IEC 9899:1999 as C99.

ISO/IEC 9899:1990, Information Technology - Programming Languages - C. This OpenMP API
specification refers to ISO/IEC 9899:1990 as C90.

ISO/IEC 14882:1998, Information Technology - Programming Languages - C++. This OpenMP API
specification refers to ISO/IEC 14882:1998 as C++.

Where this OpenMP API specification refers to C, reference is made to the base language supported by the
implementation.

Run-time library functions
Environment variables
Implementation-defined behaviors in OpenMP C/C++
New features in OpenMP C/C++ version 2.0

2. Directives
1/28/2019 • 35 minutes to read • Edit Online

2.1 Directive format

#pragma omp directive-name [clause[[,] clause]...] new-line

/* ERROR - multiple directive names not allowed */
#pragma omp parallel barrier

2.2 Conditional compilation

#ifdef _OPENMP
iam = omp_get_thread_num() + index;
#endif

2.3 parallel construct

#pragma omp parallel [clause[[,]clause] ...] new-line structured-block

Directives are based on #pragma directives defined in the C and C++ standards. Compilers that support the
OpenMP C and C++ API will include a command-line option that activates and allows interpretation of all
OpenMP compiler directives.

The syntax of an OpenMP directive is formally specified by the grammar in appendix C, and informally as follows:

Each directive starts with #pragma omp , to reduce the potential for conflict with other (non-OpenMP or vendor
extensions to OpenMP) pragma directives with the same names. The rest of the directive follows the conventions
of the C and C++ standards for compiler directives. In particular, white space can be used before and after the # ,
and sometimes white space must be used to separate the words in a directive. Preprocessing tokens following the
#pragma omp are subject to macro replacement.

Directives are case-sensitive. The order in which clauses appear in directives isn't significant. Clauses on directives
may be repeated as needed, subject to the restrictions listed in the description of each clause. If variable-list
appears in a clause, it must specify only variables. Only one directive-name can be specified per directive. For
example, the following directive isn't allowed:

An OpenMP directive applies to at most one succeeding statement, which must be a structured block.

The _OPENMP macro name is defined by OpenMP-compliant implementations as the decimal constant yyyymm,
which will be the year and month of the approved specification. This macro must not be the subject of a #define

or a #undef preprocessing directive.

If vendors define extensions to OpenMP, they may specify additional predefined macros.

The following directive defines a parallel region, which is a region of the program that's to be executed by many
threads in parallel. This directive is the fundamental construct that starts parallel execution.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/2-directives.md

The clause is one of the following:

if(scalar-expression)

private(variable-list)

firstprivate(variable-list)

default(shared | none)

shared(variable-list)

copyin(variable-list)

reduction(operator : variable-list)

num_threads(integer-expression)

When a thread gets to a parallel construct, a team of threads is created if one of the following cases is true:

No if clause is present.
The if expression evaluates to a nonzero value.

This thread becomes the master thread of the team, with a thread number of 0, and all threads in the team,
including the master thread, execute the region in parallel. If the value of the if expression is zero, the region is
serialized.

To determine the number of threads that are requested, the following rules will be considered in order. The first
rule whose condition is met will be applied:

1. If the num_threads clause is present, then the value of the integer expression is the number of threads
requested.

2. If the omp_set_num_threads library function has been called, then the value of the argument in the most
recently executed call is the number of threads requested.

3. If the environment variable OMP_NUM_THREADS is defined, then the value of this environment variable is the
number of threads requested.

4. If none of the methods above is used, then the number of threads requested is implementation-defined.

If the num_threads clause is present then it supersedes the number of threads requested by the
omp_set_num_threads library function or the OMP_NUM_THREADS environment variable only for the parallel region it's

applied to. Later parallel regions aren't affected by it.

The number of threads that execute the parallel region also depends upon whether dynamic adjustment of the
number of threads is enabled. If dynamic adjustment is disabled, then the requested number of threads will
execute the parallel region. If dynamic adjustment is enabled then the requested number of threads is the
maximum number of threads that may execute the parallel region.

If a parallel region is encountered while dynamic adjustment of the number of threads is disabled, and the number
of threads requested for the parallel region is more than the number that the run-time system can supply, the
behavior of the program is implementation-defined. An implementation may, for example, interrupt the execution
of the program, or it may serialize the parallel region.

The omp_set_dynamic library function and the OMP_DYNAMIC environment variable can be used to enable and
disable dynamic adjustment of the number of threads.

The number of physical processors actually hosting the threads at any given time is implementation-defined. Once
created, the number of threads in the team stays constant for the duration of that parallel region. It can be changed
either explicitly by the user or automatically by the run-time system from one parallel region to another.

The statements contained within the dynamic extent of the parallel region are executed by each thread, and each
thread can execute a path of statements that's different from the other threads. Directives encountered outside the

Cross-references

2.4 Work-sharing constructs

2.4.1 for construct

lexical extent of a parallel region are referred to as orphaned directives.

There's an implied barrier at the end of a parallel region. Only the master thread of the team continues execution at
the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel construct, it creates a new team, and it
becomes the master of that new team. Nested parallel regions are serialized by default. As a result, by default, a
nested parallel region is executed by a team composed of one thread. The default behavior may be changed by
using either the runtime library function omp_set_nested or the environment variable OMP_NESTED . However, the
number of threads in a team that execute a nested parallel region is implementation-defined.

Restrictions to the parallel directive are as follows:

At most, one if clause can appear on the directive.

It's unspecified whether any side effects inside the if expression or num_threads expression occur.

A throw executed inside a parallel region must cause execution to resume within the dynamic extent of the
same structured block, and it must be caught by the same thread that threw the exception.

Only a single num_threads clause can appear on the directive. The num_threads expression is evaluated
outside the context of the parallel region, and must evaluate to a positive integer value.

The order of evaluation of the if and num_threads clauses is unspecified.

private , firstprivate , default , shared , copyin , and reduction clauses (section 2.7.2)
OMP_NUM_THREADS environment variable
omp_set_dynamic library function
OMP_DYNAMIC environment variable
omp_set_nested function
OMP_NESTED environment variable
omp_set_num_threads library function

A work-sharing construct distributes the execution of the associated statement among the members of the team
that encounter it. The work-sharing directives don't launch new threads, and there's no implied barrier on entry to
a work-sharing construct.

The sequence of work-sharing constructs and barrier directives encountered must be the same for every thread
in a team.

OpenMP defines the following work-sharing constructs, and these constructs are described in the sections that
follow:

for directive
sections directive
single directive

The for directive identifies an iterative work-sharing construct that specifies that the iterations of the associated
loop will be executed in parallel. The iterations of the for loop are distributed across threads that already exist in
the team executing the parallel construct to which it binds. The syntax of the for construct is as follows:

#pragma omp for [clause[[,] clause] ...] new-line for-loop

The clause is one of the following:

private(variable-list)

firstprivate(variable-list)

lastprivate(variable-list)

reduction(operator : variable-list)

ordered

schedule(kind [, chunk_size])

nowait

The for directive places restrictions on the structure of the corresponding for loop. Specifically, the
corresponding for loop must have canonical shape:

for (init-expr ; var logical-op b ; incr-expr)

init-expr
One of the following:

var = lb
integer-type var = lb

incr-expr
One of the following:

++ var

var ++

-- var

var --

var += incr

var -= incr

var = var + incr

var = incr + var

var = var - incr

var
A signed integer variable. If this variable would otherwise be shared, it's implicitly made private for the duration of
the for . Do not modify this variable within the body of the for statement. Unless the variable is specified
lastprivate , its value after the loop is indeterminate.

logical-op
One of the following:

<

<=

>

>=

lb, b, and incr
Loop invariant integer expressions. There's no synchronization during the evaluation of these expressions, so any
evaluated side effects produce indeterminate results.

static When schedule(static, chunk_size) is specified,
iterations are divided into chunks of a size specified by
chunk_size. The chunks are statically assigned to threads in
the team in a round-robin fashion in the order of the thread
number. When no chunk_size is specified, the iteration space is
divided into chunks that are approximately equal in size, with
one chunk assigned to each thread.

dynamic When schedule(dynamic, chunk_size) is specified, the
iterations are divided into a series of chunks, each containing
chunk_size iterations. Each chunk is assigned to a thread that's
waiting for an assignment. The thread executes the chunk of
iterations and then waits for its next assignment, until no
chunks remain to be assigned. The last chunk to be assigned
may have a smaller number of iterations. When no chunk_size
is specified, it defaults to 1.

guided When schedule(guided, chunk_size) is specified, the
iterations are assigned to threads in chunks with decreasing
sizes. When a thread finishes its assigned chunk of iterations,
it's dynamically assigned another chunk, until none is left. For
a chunk_size of 1, the size of each chunk is approximately the
number of unassigned iterations divided by the number of
threads. These sizes decrease almost exponentially to 1. For a
chunk_size with value k greater than 1, the sizes decrease
almost exponentially to k, except that the last chunk may have
fewer than k iterations. When no chunk_size is specified, it
defaults to 1.

runtime When schedule(runtime) is specified, the decision
regarding scheduling is deferred until runtime. The schedule
kind and size of the chunks can be chosen at run time by
setting the environment variable OMP_SCHEDULE . If this
environment variable isn't set, the resulting schedule is
implementation-defined. When schedule(runtime) is
specified, chunk_size must not be specified.

The canonical form allows the number of loop iterations to be computed on entry to the loop. This computation is
made with values in the type of var, after integral promotions. In particular, if value of b - lb + incr can't be
represented in that type, the result is indeterminate. Further, if logical-op is < or <= , then incr-expr must cause
var to increase on each iteration of the loop. If logical-op is > or >= , then incr-expr must cause var to get smaller
on each iteration of the loop.

The schedule clause specifies how iterations of the for loop are divided among threads of the team. The
correctness of a program must not depend on which thread executes a particular iteration. The value of chunk_size,
if specified, must be a loop invariant integer expression with a positive value. There's no synchronization during the
evaluation of this expression, so any evaluated side effects produce indeterminate results. The schedule kind can be
one of the following values:

Table 2-1: schedule clause kind values

In the absence of an explicitly defined schedule clause, the default schedule is implementation-defined.

An OpenMP-compliant program shouldn't rely on a particular schedule for correct execution. A program shouldn't
rely on a schedule kind conforming precisely to the description given above, because it's possible to have
variations in the implementations of the same schedule kind across different compilers. The descriptions can be
used to select the schedule that's appropriate for a particular situation.

Cross-references

2.4.2 sections construct

#pragma omp sections [clause[[,] clause] ...] new-line
 {
 [#pragma omp section new-line]
 structured-block
 [#pragma omp section new-linestructured-block]
...
}

The ordered clause must be present when ordered directives bind to the for construct.

There's an implicit barrier at the end of a for construct unless a nowait clause is specified.

Restrictions to the for directive are as follows:

The for loop must be a structured block, and, in addition, its execution must not be terminated by a break

statement.

The values of the loop control expressions of the for loop associated with a for directive must be the
same for all the threads in the team.

The for loop iteration variable must have a signed integer type.

Only a single schedule clause can appear on a for directive.

Only a single ordered clause can appear on a for directive.

Only a single nowait clause can appear on a for directive.

It's unspecified if or how often any side effects within the chunk_size, lb, b, or incr expressions occur.

The value of the chunk_size expression must be the same for all threads in the team.

private , firstprivate , lastprivate , and reduction clauses (section 2.7.2)
OMP_SCHEDULE environment variable
ordered construct
schedule clause

The sections directive identifies a noniterative work-sharing construct that specifies a set of constructs that are to
be divided among threads in a team. Each section is executed once by a thread in the team. The syntax of the
sections directive is as follows:

The clause is one of the following:

private(variable-list)

firstprivate(variable-list)

lastprivate(variable-list)

reduction(operator : variable-list)

nowait

Each section is preceded by a section directive, although the section directive is optional for the first section.
The section directives must appear within the lexical extent of the sections directive. There's an implicit barrier
at the end of a sections construct, unless a nowait is specified.

Restrictions to the sections directive are as follows:

A section directive must not appear outside the lexical extent of the sections directive.

Cross-references

2.4.3 single construct

#pragma omp single [clause[[,] clause] ...] new-linestructured-block

Cross-references

2.5 Combined parallel work-sharing constructs

2.5.1 parallel for construct

#pragma omp parallel for [clause[[,] clause] ...] new-linefor-loop

Cross-references

2.5.2 parallel sections construct

Only a single nowait clause can appear on a sections directive.

private , firstprivate , lastprivate , and reduction clauses (section 2.7.2)

The single directive identifies a construct that specifies that the associated structured block is executed by only
one thread in the team (not necessarily the master thread). The syntax of the single directive is as follows:

The clause is one of the following:

private(variable-list)

firstprivate(variable-list)

copyprivate(variable-list)

nowait

There's an implicit barrier after the single construct unless a nowait clause is specified.

Restrictions to the single directive are as follows:

Only a single nowait clause can appear on a single directive.
The copyprivate clause must not be used with the nowait clause.

private , firstprivate , and copyprivate clauses (section 2.7.2)

Combined parallel work-sharing constructs are shortcuts for specifying a parallel region that has only one work-
sharing construct. The semantics of these directives are the same as explicitly specifying a parallel directive
followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing constructs:

parallel for directive
parallel sections directive

The parallel for directive is a shortcut for a parallel region that contains only a single for directive. The
syntax of the parallel for directive is as follows:

This directive allows all the clauses of the parallel directive and the for directive, except the nowait clause, with
identical meanings and restrictions. The semantics are the same as explicitly specifying a parallel directive
immediately followed by a for directive.

parallel directive
for directive
Data attribute clauses

#pragma omp parallel sections [clause[[,] clause] ...] new-line
 {
 [#pragma omp section new-line]
 structured-block
 [#pragma omp section new-linestructured-block]
 ...
}

Cross-references

2.6 Master and synchronization directives

2.6.1 master construct

#pragma omp master new-linestructured-block

2.6.2 critical construct

#pragma omp critical [(name)] new-linestructured-block

2.6.3 barrier directive

The parallel sections directive provides a shortcut form for specifying a parallel region that has only a single
sections directive. The semantics are the same as explicitly specifying a parallel directive immediately followed

by a sections directive. The syntax of the parallel sections directive is as follows:

The clause can be one of the clauses accepted by the parallel and sections directives, except the nowait clause.

parallel directive
sections directive

The following sections describe:

master construct
critical construct
barrier directive
atomic construct
flush directive
ordered construct

The master directive identifies a construct that specifies a structured block that's executed by the master thread of
the team. The syntax of the master directive is as follows:

Other threads in the team don't execute the associated structured block. There's no implied barrier either on entry
to or exit from the master construct.

The critical directive identifies a construct that restricts execution of the associated structured block to a single
thread at a time. The syntax of the critical directive is as follows:

An optional name may be used to identify the critical region. Identifiers used to identify a critical region have
external linkage and are in a name space that is separate from the name spaces used by labels, tags, members, and
ordinary identifiers.

A thread waits at the beginning of a critical region until no other thread is executing a critical region (anywhere in
the program) with the same name. All unnamed critical directives map to the same unspecified name.

The barrier directive synchronizes all the threads in a team. When encountered, each thread in the team waits

#pragma omp barrier new-line

/* ERROR - The barrier directive cannot be the immediate
* substatement of an if statement
*/
if (x!=0)
 #pragma omp barrier
...

/* OK - The barrier directive is enclosed in a
* compound statement.
*/
if (x!=0) {
 #pragma omp barrier
}

2.6.4 atomic construct

#pragma omp atomic new-lineexpression-stmt

until all of the others have reached this point. The syntax of the barrier directive is as follows:

After all threads in the team have encountered the barrier, each thread in the team begins executing the statements
after the barrier directive in parallel. Because the barrier directive doesn't have a C language statement as part of
its syntax, there are some restrictions on its placement within a program. For more information about the formal
grammar, see appendix C. The example below illustrates these restrictions.

The atomic directive ensures that a specific memory location is updated atomically, rather than exposing it to the
possibility of multiple, simultaneous writing threads. The syntax of the atomic directive is as follows:

The expression statement must have one of the following forms:

x binop = expr

x ++

++ x
x --

-- x

In the preceding expressions:

x is an lvalue expression with scalar type.

expr is an expression with scalar type, and it doesn't reference the object designated by x.

binop isn't an overloaded operator and is one of + , * , - , / , & , ^ , | , << , or >> .

Although it's implementation-defined whether an implementation replaces all atomic directives with critical

directives that have the same unique name, the atomic directive permits better optimization. Often hardware
instructions are available that can perform the atomic update with the least overhead.

Only the load and store of the object designated by x are atomic; the evaluation of expr isn't atomic. To avoid race
conditions, all updates of the location in parallel should be protected with the atomic directive, except those that
are known to be free of race conditions.

Restrictions to the atomic directive are as follows:

All atomic references to the storage location x throughout the program are required to have a compatible type.

Examples

extern float a[], *p = a, b;
/* Protect against races among multiple updates. */
#pragma omp atomic
a[index[i]] += b;
/* Protect against races with updates through a. */
#pragma omp atomic
p[i] -= 1.0f;

extern union {int n; float x;} u;
/* ERROR - References through incompatible types. */
#pragma omp atomic
u.n++;
#pragma omp atomic
u.x -= 1.0f;

2.6.5 flush directive

#pragma omp flush [(variable-list)] new-line

The flush directive, whether explicit or implied, specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all threads in a team have a consistent view of certain objects (specified
below) in memory. This means that previous evaluations of expressions that reference those objects are complete
and subsequent evaluations haven't yet begun. For example, compilers must restore the values of the objects from
registers to memory, and hardware may need to flush write buffers to memory and reload the values of the objects
from memory.

The syntax of the flush directive is as follows:

If the objects that require synchronization can all be designated by variables, then those variables can be specified
in the optional variable-list. If a pointer is present in the variable-list, the pointer itself is flushed, not the object the
pointer refers to.

A flush directive without a variable-list synchronizes all shared objects except inaccessible objects with automatic
storage duration. (This is likely to have more overhead than a flush with a variable-list.) A flush directive
without a variable-list is implied for the following directives:

barrier

At entry to and exit from critical

At entry to and exit from ordered

At entry to and exit from parallel

At exit from for

At exit from sections

At exit from single

At entry to and exit from parallel for

At entry to and exit from parallel sections

The directive isn't implied if a nowait clause is present. It should be noted that the flush directive isn't implied for
any of the following:

At entry to for

At entry to or exit from master

At entry to sections

At entry to single

/* ERROR - The flush directive cannot be the immediate
* substatement of an if statement.
*/
if (x!=0)
 #pragma omp flush (x)
...

/* OK - The flush directive is enclosed in a
* compound statement
*/
if (x!=0) {
 #pragma omp flush (x)
}

2.6.6 ordered construct

#pragma omp ordered new-linestructured-block

2.7 Data environment

2.7.1 threadprivate directive

A reference that accesses the value of an object with a volatile-qualified type behaves as if there were a flush

directive specifying that object at the previous sequence point. A reference that modifies the value of an object with
a volatile-qualified type behaves as if there were a flush directive specifying that object at the subsequent
sequence point.

Because the flush directive doesn't have a C language statement as part of its syntax, there are some restrictions
on its placement within a program. For more information about the formal grammar, see appendix C. The example
below illustrates these restrictions.

Restrictions to the flush directive are as follows:

A variable specified in a flush directive must not have a reference type.

The structured block following an ordered directive is executed in the order in which iterations would be executed
in a sequential loop. The syntax of the ordered directive is as follows:

An ordered directive must be within the dynamic extent of a for or parallel for construct. The for or
parallel for directive to which the ordered construct binds must have an ordered clause specified as described

in section 2.4.1. In the execution of a for or parallel for construct with an ordered clause, ordered constructs
are executed strictly in the order in which they would be executed in a sequential execution of the loop.

Restrictions to the ordered directive are as follows:

An iteration of a loop with a for construct must not execute the same ordered directive more than once, and it
must not execute more than one ordered directive.

This section presents a directive and several clauses for controlling the data environment during the execution of
parallel regions, as follows:

A threadprivate directive is provided to make file- scope, namespace-scope, or static block-scope variables
local to a thread.

Clauses that may be specified on the directives to control the sharing attributes of variables for the duration
of the parallel or work-sharing constructs are described in section 2.7.2.

The threadprivate directive makes the named file-scope, namespace-scope, or static block-scope variables
specified in the variable-list private to a thread. variable-list is a comma-separated list of variables that don't have

#pragma omp threadprivate(variable-list) new-line

an incomplete type. The syntax of the threadprivate directive is as follows:

Each copy of a threadprivate variable is initialized once, at an unspecified point in the program prior to the first
reference to that copy, and in the usual manner (i.e., as the master copy would be initialized in a serial execution of
the program). Note that if an object is referenced in an explicit initializer of a threadprivate variable, and the value
of the object is modified prior to the first reference to a copy of the variable, then the behavior is unspecified.

As with any private variable, a thread must not reference another thread's copy of a threadprivate object. During
serial regions and master regions of the program, references will be to the master thread's copy of the object.

After the first parallel region executes, the data in the threadprivate objects is guaranteed to persist only if the
dynamic threads mechanism has been disabled and if the number of threads remains unchanged for all parallel
regions.

The restrictions to the threadprivate directive are as follows:

A threadprivate directive for file-scope or namespace-scope variables must appear outside any definition
or declaration, and must lexically precede all references to any of the variables in its list.

Each variable in the variable-list of a threadprivate directive at file or namespace scope must refer to a
variable declaration at file or namespace scope that lexically precedes the directive.

A threadprivate directive for static block-scope variables must appear in the scope of the variable and not
in a nested scope. The directive must lexically precede all references to any of the variables in its list.

Each variable in the variable-list of a threadprivate directive in block scope must refer to a variable
declaration in the same scope that lexically precedes the directive. The variable declaration must use the
static storage-class specifier.

If a variable is specified in a threadprivate directive in one translation unit, it must be specified in a
threadprivate directive in every translation unit in which it's declared.

A threadprivate variable must not appear in any clause except the copyin , copyprivate , schedule ,
num_threads , or the if clause.

The address of a threadprivate variable isn't an address constant.

A threadprivate variable must not have an incomplete type or a reference type.

A threadprivate variable with non-POD class type must have an accessible, unambiguous copy constructor
if it's declared with an explicit initializer.

The following example illustrates how modifying a variable that appears in an initializer can cause unspecified
behavior, and also how to avoid this problem by using an auxiliary object and a copy-constructor.

int x = 1;
T a(x);
const T b_aux(x); /* Capture value of x = 1 */
T b(b_aux);
#pragma omp threadprivate(a, b)

void f(int n) {
 x++;
 #pragma omp parallel for
 /* In each thread:
 * Object a is constructed from x (with value 1 or 2?)
 * Object b is copy-constructed from b_aux
 */
 for (int i=0; i<n; i++) {
 g(a, b); /* Value of a is unspecified. */
 }
}

Cross-references

2.7.2 Data-sharing attribute clauses

2.7.2.1 private

dynamic threads
OMP_DYNAMIC environment variable

Several directives accept clauses that allow a user to control the sharing attributes of variables for the duration of
the region. Sharing attribute clauses apply only to variables in the lexical extent of the directive on which the clause
appears. Not all of the following clauses are allowed on all directives. The list of clauses that are valid on a
particular directive are described with the directive.

If a variable is visible when a parallel or work-sharing construct is encountered, and the variable isn't specified in a
sharing attribute clause or threadprivate directive, then the variable is shared. Static variables declared within the
dynamic extent of a parallel region are shared. Heap allocated memory (for example, using malloc() in C or C++
or the new operator in C++) is shared. (The pointer to this memory, however, can be either private or shared.)
Variables with automatic storage duration declared within the dynamic extent of a parallel region are private.

Most of the clauses accept a variable-list argument, which is a comma-separated list of variables that are visible. If
a variable referenced in a data-sharing attribute clause has a type derived from a template, and there are no other
references to that variable in the program, the behavior is undefined.

All variables that appear within directive clauses must be visible. Clauses may be repeated as needed, but no
variable may be specified in more than one clause, except that a variable can be specified in both a firstprivate

and a lastprivate clause.

The following sections describe the data-sharing attribute clauses:

private
firstprivate
lastprivate
shared
default
reduction
copyin
copyprivate

The private clause declares the variables in variable-list to be private to each thread in a team. The syntax of the
private clause is as follows:

private(variable-list)

2.7.2.2 firstprivate

firstprivate(variable-list)

2.7.2.3 lastprivate

The behavior of a variable specified in a private clause is as follows. A new object with automatic storage
duration is allocated for the construct. The size and alignment of the new object are determined by the type of the
variable. This allocation occurs once for each thread in the team, and a default constructor is invoked for a class
object if necessary; otherwise the initial value is indeterminate. The original object referenced by the variable has
an indeterminate value upon entry to the construct, must not be modified within the dynamic extent of the
construct, and has an indeterminate value upon exit from the construct.

In the lexical extent of the directive construct, the variable references the new private object allocated by the thread.

The restrictions to the private clause are as follows:

A variable with a class type that's specified in a private clause must have an accessible, unambiguous
default constructor.

A variable specified in a private clause must not have a const -qualified type unless it has a class type with
a mutable member.

A variable specified in a private clause must not have an incomplete type or a reference type.

Variables that appear in the reduction clause of a parallel directive can't be specified in a private clause
on a work-sharing directive that binds to the parallel construct.

The firstprivate clause provides a superset of the functionality provided by the private clause. The syntax of
the firstprivate clause is as follows:

Variables specified in variable-list have private clause semantics, as described in section 2.7.2.1. The initialization
or construction happens as if it were done once per thread, prior to the thread's execution of the construct. For a
firstprivate clause on a parallel construct, the initial value of the new private object is the value of the original

object that exists immediately prior to the parallel construct for the thread that encounters it. For a firstprivate

clause on a work-sharing construct, the initial value of the new private object for each thread that executes the
work-sharing construct is the value of the original object that exists prior to the point in time that the same thread
encounters the work-sharing construct. In addition, for C++ objects, the new private object for each thread is copy
constructed from the original object.

The restrictions to the firstprivate clause are as follows:

A variable specified in a firstprivate clause must not have an incomplete type or a reference type.

A variable with a class type that's specified as firstprivate must have an accessible, unambiguous copy
constructor.

Variables that are private within a parallel region or that appear in the reduction clause of a parallel

directive can't be specified in a firstprivate clause on a work-sharing directive that binds to the parallel
construct.

The lastprivate clause provides a superset of the functionality provided by the private clause. The syntax of the
lastprivate clause is as follows:

lastprivate(variable-list)

2.7.2.4 shared

shared(variable-list)

2.7.2.5 default

default(shared | none)

Variables specified in the variable-list have private clause semantics. When a lastprivate clause appears on the
directive that identifies a work-sharing construct, the value of each lastprivate variable from the sequentially last
iteration of the associated loop, or the lexically last section directive, is assigned to the variable's original object.
Variables that aren't assigned a value by the last iteration of the for or parallel for , or by the lexically last
section of the sections or parallel sections directive, have indeterminate values after the construct. Unassigned
subobjects also have an indeterminate value after the construct.

The restrictions to the lastprivate clause are as follows:

All restrictions for private apply.

A variable with a class type that's specified as lastprivate must have an accessible, unambiguous copy
assignment operator.

Variables that are private within a parallel region or that appear in the reduction clause of a parallel

directive can't be specified in a lastprivate clause on a work-sharing directive that binds to the parallel
construct.

This clause shares variables that appear in the variable-list among all the threads in a team. All threads within a
team access the same storage area for shared variables.

The syntax of the shared clause is as follows:

The default clause allows the user to affect the data-sharing attributes of variables. The syntax of the default

clause is as follows:

Specifying default(shared) is equivalent to explicitly listing each currently visible variable in a shared clause,
unless it's threadprivate or const -qualified. In the absence of an explicit default clause, the default behavior is
the same as if default(shared) were specified.

Specifying default(none) requires that at least one of the following must be true for every reference to a variable
in the lexical extent of the parallel construct:

The variable is explicitly listed in a data-sharing attribute clause of a construct that contains the reference.

The variable is declared within the parallel construct.

The variable is threadprivate .

The variable has a const -qualified type.

The variable is the loop control variable for a for loop that immediately follows a for or parallel for

directive, and the variable reference appears inside the loop.

Specifying a variable on a firstprivate , lastprivate , or reduction clause of an enclosed directive causes an
implicit reference to the variable in the enclosing context. Such implicit references are also subject to the
requirements listed above.

#pragma omp parallel for default(shared) firstprivate(i)\
 private(x) private(r) lastprivate(i)

2.7.2.6 reduction

#pragma omp parallel for reduction(+: a, y) reduction(||: am)
for (i=0; i<n; i++) {
 a += b[i];
 y = sum(y, c[i]);
 am = am || b[i] == c[i];
}

Only a single default clause may be specified on a parallel directive.

A variable's default data-sharing attribute can be overridden by using the private , firstprivate , lastprivate ,
reduction , and shared clauses, as demonstrated by the following example:

This clause performs a reduction on the scalar variables that appear in variable-list, with the operator op. The
syntax of the reduction clause is as follows:

reduction(op : variable-list)

A reduction is typically specified for a statement with one of the following forms:

x = x op expr

x binop = expr

x = expr op x (except for subtraction)
x ++

++ x
x --

-- x

where:

x
One of the reduction variables specified in the list.

variable-list
A comma-separated list of scalar reduction variables.

expr
An expression with scalar type that doesn't reference x.

op
Not an overloaded operator but one of + , * , - , & , ^ , | , && , or || .

binop
Not an overloaded operator but one of + , * , - , & , ^ , or | .

The following is an example of the reduction clause:

As shown in the example, an operator may be hidden inside a function call. The user should be careful that the
operator specified in the reduction clause matches the reduction operation.

Although the right operand of the || operator has no side effects in this example, they're permitted, but should be
used with care. In this context, a side effect that's guaranteed not to occur during sequential execution of the loop
may occur during parallel execution. This difference can occur because the order of execution of the iterations is

OPERATOR INITIALIZATION

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

indeterminate.

The operator is used to determine the initial value of any private variables used by the compiler for the reduction
and to determine the finalization operator. Specifying the operator explicitly allows the reduction statement to be
outside the lexical extent of the construct. Any number of reduction clauses may be specified on the directive, but
a variable may appear in at most one reduction clause for that directive.

A private copy of each variable in variable-list is created, one for each thread, as if the private clause had been
used. The private copy is initialized according to the operator (see the following table).

At the end of the region for which the reduction clause was specified, the original object is updated to reflect the
result of combining its original value with the final value of each of the private copies using the operator specified.
The reduction operators are all associative (except for subtraction), and the compiler may freely reassociate the
computation of the final value. (The partial results of a subtraction reduction are added to form the final value.)

The value of the original object becomes indeterminate when the first thread reaches the containing clause and
remains so until the reduction computation is complete. Normally, the computation will be complete at the end of
the construct; however, if the reduction clause is used on a construct to which nowait is also applied, the value of
the original object remains indeterminate until a barrier synchronization has been performed to ensure that all
threads have completed the reduction clause.

The following table lists the operators that are valid and their canonical initialization values. The actual initialization
value will be consistent with the data type of the reduction variable.

The restrictions to the reduction clause are as follows:

The type of the variables in the reduction clause must be valid for the reduction operator except that
pointer types and reference types are never permitted.

A variable that's specified in the reduction clause must not be const -qualified.

Variables that are private within a parallel region or that appear in the reduction clause of a parallel

directive can't be specified in a reduction clause on a work-sharing directive that binds to the parallel
construct.

2.7.2.7 copyin

copyin(
variable-list
)

2.7.2.8 copyprivate

copyprivate(
variable-list
)

#pragma omp parallel private(y)
{ /* ERROR - private variable y cannot be specified
 in a reduction clause */
 #pragma omp for reduction(+: y)
 for (i=0; i<n; i++)
 y += b[i];
}

/* ERROR - variable x cannot be specified in both
 a shared and a reduction clause */
#pragma omp parallel for shared(x) reduction(+: x)

The copyin clause provides a mechanism to assign the same value to threadprivate variables for each thread in
the team executing the parallel region. For each variable specified in a copyin clause, the value of the variable in
the master thread of the team is copied, as if by assignment, to the thread-private copies at the beginning of the
parallel region. The syntax of the copyin clause is as follows:

The restrictions to the copyin clause are as follows:

A variable that's specified in the copyin clause must have an accessible, unambiguous copy assignment
operator.

A variable that's specified in the copyin clause must be a threadprivate variable.

The copyprivate clause provides a mechanism to use a private variable to broadcast a value from one member of
a team to the other members. It's an alternative to using a shared variable for the value when providing such a
shared variable would be difficult (for example, in a recursion requiring a different variable at each level). The
copyprivate clause can only appear on the single directive.

The syntax of the copyprivate clause is as follows:

The effect of the copyprivate clause on the variables in its variable-list occurs after the execution of the structured
block associated with the single construct, and before any of the threads in the team have left the barrier at the
end of the construct. Then, in all other threads in the team, for each variable in the variable-list, that variable
becomes defined (as if by assignment) with the value of the corresponding variable in the thread that executed the
construct's structured block.

Restrictions to the copyprivate clause are as follows:

A variable that's specified in the copyprivate clause must not appear in a private or firstprivate clause
for the same single directive.

If a single directive with a copyprivate clause is encountered in the dynamic extent of a parallel region, all
variables specified in the copyprivate clause must be private in the enclosing context.

2.8 Directive binding

2.9 Directive nesting

A variable that's specified in the copyprivate clause must have an accessible unambiguous copy
assignment operator.

Dynamic binding of directives must adhere to the following rules:

The for , sections , single , master , and barrier directives bind to the dynamically enclosing parallel ,
if one exists, regardless of the value of any if clause that may be present on that directive. If no parallel
region is currently being executed, the directives are executed by a team composed of only the master
thread.

The ordered directive binds to the dynamically enclosing for .

The atomic directive enforces exclusive access with respect to atomic directives in all threads, not just the
current team.

The critical directive enforces exclusive access with respect to critical directives in all threads, not just
the current team.

A directive can never bind to any directive outside the closest dynamically enclosing parallel .

Dynamic nesting of directives must adhere to the following rules:

A parallel directive dynamically inside another parallel logically establishes a new team, which is
composed of only the current thread, unless nested parallelism is enabled.

for , sections , and single directives that bind to the same parallel aren't allowed to be nested inside
each other.

critical directives with the same name aren't allowed to be nested inside each other. Note that this
restriction isn't sufficient to prevent deadlock.

for , sections , and single directives aren't permitted in the dynamic extent of critical , ordered , and
master regions if the directives bind to the same parallel as the regions.

barrier directives aren't permitted in the dynamic extent of for , ordered , sections , single , master ,
and critical regions if the directives bind to the same parallel as the regions.

master directives aren't permitted in the dynamic extent of for , sections , and single directives if the
master directives bind to the same parallel as the work-sharing directives.

ordered directives aren't allowed in the dynamic extent of critical regions if the directives bind to the
same parallel as the regions.

Any directive that's permitted when executed dynamically inside a parallel region is also permitted when
executed outside a parallel region. When executed dynamically outside a user-specified parallel region, the
directive is executed by a team composed of only the master thread.

3. Run-time library functions
5/14/2019 • 11 minutes to read • Edit Online

3.1 Execution environment functions

3.1.1 omp_set_num_threads function

#include <omp.h>
void omp_set_num_threads(int num_threads);

This section describes the OpenMP C and C++ run-time library functions. The header <omp.h> declares two
types, several functions that can be used to control and query the parallel execution environment, and lock
functions that can be used to synchronize access to data.

The type omp_lock_t is an object type capable of representing that a lock is available, or that a thread owns a lock.
These locks are referred to as simple locks.

The type omp_nest_lock_t is an object type capable of representing either that a lock is available, or both the
identity of the thread that owns the lock and a nesting count (described below). These locks are referred to as
nestable locks.

The library functions are external functions with "C" linkage.

The descriptions in this chapter are divided into the following topics:

Execution environment functions
Lock functions
Timing routines

The functions described in this section affect and monitor threads, processors, and the parallel environment:

omp_set_num_threads
omp_get_num_threads
omp_get_max_threads
omp_get_thread_num
omp_get_num_procs
omp_in_parallel
omp_set_dynamic
omp_get_dynamic
omp_set_nested
omp_get_nested

The omp_set_num_threads function sets the default number of threads to use for later parallel regions that don't
specify a num_threads clause. The format is as follows:

The value of the parameter num_threads must be a positive integer. Its effect depends upon whether dynamic
adjustment of the number of threads is enabled. For a comprehensive set of rules about the interaction between
the omp_set_num_threads function and dynamic adjustment of threads, see section 2.3.

This function has the effects described above when called from a portion of the program where the
omp_in_parallel function returns zero. If it's called from a portion of the program where the omp_in_parallel

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/3-run-time-library-functions.md

Cross-references

3.1.2 omp_get_num_threads function

#include <omp.h>
int omp_get_num_threads(void);

Cross-references

3.1.3 omp_get_max_threads function

#include <omp.h>
int omp_get_max_threads(void);

threads-used-for-next-team
<= omp_get_max_threads

function returns a nonzero value, the behavior of this function is undefined.

This call has precedence over the OMP_NUM_THREADS environment variable. The default value for the number of
threads, which may be established by calling omp_set_num_threads or by setting the OMP_NUM_THREADS environment
variable, can be explicitly overridden on a single parallel directive by specifying the num_threads clause.

For more information, see omp_set_dynamic.

omp_set_dynamic function
omp_get_dynamic function
OMP_NUM_THREADS environment variable
num_threads clause

The omp_get_num_threads function returns the number of threads currently in the team executing the parallel
region from which it's called. The format is as follows:

The num_threads clause, the omp_set_num_threads function, and the OMP_NUM_THREADS environment variable control
the number of threads in a team.

If the number of threads hasn't been explicitly set by the user, the default is implementation-defined. This function
binds to the closest enclosing parallel directive. If called from a serial portion of a program, or from a nested
parallel region that's serialized, this function returns 1.

For more information, see omp_set_dynamic.

OMP_NUM_THREADS
num_threads
parallel

The omp_get_max_threads function returns an integer that's guaranteed to be at least as large as the number of
threads that would be used to form a team if a parallel region without a num_threads clause were to be seen at
that point in the code. The format is as follows:

The following expresses a lower bound on the value of omp_get_max_threads :

Note that if another parallel region uses the num_threads clause to request a specific number of threads, the
guarantee on the lower bound of the result of omp_get_max_threads no long holds.

The omp_get_max_threads function's return value can be used to dynamically allocate sufficient storage for all
threads in the team formed at the next parallel region.

Cross-references

3.1.4 omp_get_thread_num function

#include <omp.h>
int omp_get_thread_num(void);

Cross-references

3.1.5 omp_get_num_procs function

#include <omp.h>
int omp_get_num_procs(void);

3.1.6 omp_in_parallel function

#include <omp.h>
int omp_in_parallel(void);

3.1.7 omp_set_dynamic function

#include <omp.h>
void omp_set_dynamic(int dynamic_threads);

omp_get_num_threads
omp_set_num_threads
omp_set_dynamic
num_threads

The omp_get_thread_num function returns the thread number, within its team, of the thread executing the function.
The thread number lies between 0 and omp_get_num_threads() -1, inclusive. The master thread of the team is thread
0.

The format is as follows:

If called from a serial region, omp_get_thread_num returns 0. If called from within a nested parallel region that's
serialized, this function returns 0.

omp_get_num_threads function

The omp_get_num_procs function returns the number of processors that are available to the program at the time the
function is called. The format is as follows:

The omp_in_parallel function returns a nonzero value if it's called within the dynamic extent of a parallel region
executing in parallel; otherwise, it returns 0. The format is as follows:

This function returns a nonzero value when called from within a region executing in parallel, including nested
regions that are serialized.

The omp_set_dynamic function enables or disables dynamic adjustment of the number of threads available for
execution of parallel regions. The format is as follows:

If dynamic_threads evaluates to a nonzero value, the number of threads that are used for executing upcoming
parallel regions may be adjusted automatically by the run-time environment to best use system resources. As a
consequence, the number of threads specified by the user is the maximum thread count. The number of threads in
the team executing a parallel region stays fixed for the duration of that parallel region and is reported by the
omp_get_num_threads function.

If dynamic_threads evaluates to 0, dynamic adjustment is disabled.

Microsoft specific

Cross-references

3.1.8 omp_get_dynamic function

#include <omp.h>
int omp_get_dynamic(void);

Cross-references

3.1.9 omp_set_nested function

#include <omp.h>
void omp_set_nested(int nested);

This function has the effects described above when called from a portion of the program where the
omp_in_parallel function returns zero. If it's called from a portion of the program where the omp_in_parallel

function returns a nonzero value, the behavior of this function is undefined.

A call to omp_set_dynamic has precedence over the OMP_DYNAMIC environment variable.

The default for the dynamic adjustment of threads is implementation-defined. As a result, user codes that depend
on a specific number of threads for correct execution should explicitly disable dynamic threads. Implementations
aren't required to provide the ability to dynamically adjust the number of threads, but they're required to provide
the interface to support portability across all platforms.

The current support of omp_get_dynamic and omp_set_dynamic is as follows:

The input parameter to omp_set_dynamic does not affect the threading policy and does not change the number of
threads. omp_get_num_threads always returns either the user-defined number, if that is set, or the default thread
number. In the current Microsoft implementation, omp_set_dynamic(0) turns off dynamic threading so that the
existing set of threads can be reused for the following parallel region. omp_set_dynamic(1) turns on dynamic
threading by discarding the existing set of threads and creating a new set for the upcoming parallel region. The
number of threads in the new set is the same as the old set, and is based on the return value of
omp_get_num_threads . Therefore, for best performance, use omp_set_dynamic(0) to reuse the existing threads.

omp_get_num_threads
OMP_DYNAMIC
omp_in_parallel

The omp_get_dynamic function returns a nonzero value if dynamic adjustment of threads is enabled, and returns 0
otherwise. The format is as follows:

If the implementation doesn't implement dynamic adjustment of the number of threads, this function always
returns 0. For more information, see omp_set_dynamic.

For a description of dynamic thread adjustment, see omp_set_dynamic.

The omp_set_nested function enables or disables nested parallelism. The format is as follows:

If nested evaluates to 0, nested parallelism is disabled, which is the default, and nested parallel regions are
serialized and executed by the current thread. Otherwise, nested parallelism is enabled, and parallel regions that
are nested may deploy additional threads to form nested teams.

This function has the effects described above when called from a portion of the program where the
omp_in_parallel function returns zero. If it's called from a portion of the program where the omp_in_parallel

function returns a nonzero value, the behavior of this function is undefined.

This call has precedence over the OMP_NESTED environment variable.

Cross-references

3.1.10 omp_get_nested function

#include <omp.h>
int omp_get_nested(void);

3.2 Lock functions

3.2.1 omp_init_lock and omp_init_nest_lock functions

#include <omp.h>
void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

When nested parallelism is enabled, the number of threads used to execute nested parallel regions is
implementation-defined. As a result, OpenMP-compliant implementations are allowed to serialize nested parallel
regions even when nested parallelism is enabled.

OMP_NESTED
omp_in_parallel

The omp_get_nested function returns a nonzero value if nested parallelism is enabled and 0 if it's disabled. For
more information on nested parallelism, see omp_set_nested. The format is as follows:

If an implementation doesn't implement nested parallelism, this function always returns 0.

The functions described in this section manipulate locks used for synchronization.

For the following functions, the lock variable must have type omp_lock_t . This variable must only be accessed
through these functions. All lock functions require an argument that has a pointer to omp_lock_t type.

The omp_init_lock function initializes a simple lock.
The omp_destroy_lock function removes a simple lock.
The omp_set_lock function waits until a simple lock is available.
The omp_unset_lock function releases a simple lock.
The omp_test_lock function tests a simple lock.

For the following functions, the lock variable must have type omp_nest_lock_t . This variable must only be accessed
through these functions. All nestable lock functions require an argument that has a pointer to omp_nest_lock_t

type.

The omp_init_nest_lock function initializes a nestable lock.
The omp_destroy_nest_lock function removes a nestable lock.
The omp_set_nest_lock function waits until a nestable lock is available.
The omp_unset_nest_lock function releases a nestable lock.
The omp_test_nest_lock function tests a nestable lock.

The OpenMP lock functions access the lock variable in such a way that they always read and update the most
current value of the lock variable. Therefore, it isn't necessary for an OpenMP program to include explicit flush

directives to make sure that the lock variable's value is consistent among different threads. (There may be a need
for flush directives to make the values of other variables consistent.)

These functions provide the only means of initializing a lock. Each function initializes the lock associated with the
parameter lock for use in upcoming calls. The format is as follows:

The initial state is unlocked (that is, no thread owns the lock). For a nestable lock, the initial nesting count is zero.

3.2.2 omp_destroy_lock and omp_destroy_nest_lock functions

#include <omp.h>
void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

3.2.3 omp_set_lock and omp_set_nest_lock functions

#include <omp.h>
void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

3.2.4 omp_unset_lock and omp_unset_nest_lock functions

#include <omp.h>
void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

3.2.5 omp_test_lock and omp_test_nest_lock functions

#include <omp.h>
int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

It's noncompliant to call either of these routines with a lock variable that has already been initialized.

These functions make sure that the pointed to lock variable lock is uninitialized. The format is as follows:

It's noncompliant to call either of these routines with a lock variable that's uninitialized or unlocked.

Each of these functions blocks the thread executing the function until the specified lock is available and then sets
the lock. A simple lock is available if it's unlocked. A nestable lock is available if it's unlocked or if it's already
owned by the thread executing the function. The format is as follows:

For a simple lock, the argument to the omp_set_lock function must point to an initialized lock variable. Ownership
of the lock is granted to the thread executing the function.

For a nestable lock, the argument to the omp_set_nest_lock function must point to an initialized lock variable. The
nesting count is incremented, and the thread is granted, or keeps, ownership of the lock.

These functions provide the means of releasing ownership of a lock. The format is as follows:

The argument to each of these functions must point to an initialized lock variable owned by the thread executing
the function. The behavior is undefined if the thread doesn't own that lock.

For a simple lock, the omp_unset_lock function releases the thread executing the function from ownership of the
lock.

For a nestable lock, the omp_unset_nest_lock function decrements the nesting count, and releases the thread
executing the function from ownership of the lock if the resulting count is zero.

These functions attempt to set a lock but don't block execution of the thread. The format is as follows:

The argument must point to an initialized lock variable. These functions attempt to set a lock in the same manner
as omp_set_lock and omp_set_nest_lock , except that they don't block execution of the thread.

For a simple lock, the omp_test_lock function returns a nonzero value if the lock is successfully set; otherwise, it
returns zero.

3.3 Timing routines

3.3.1 omp_get_wtime function

#include <omp.h>
double omp_get_wtime(void);

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf_s("Work took %f sec. time.\n", end-start);

3.3.2 omp_get_wtick function

#include <omp.h>
double omp_get_wtick(void);

For a nestable lock, the omp_test_nest_lock function returns the new nesting count if the lock is successfully set;
otherwise, it returns zero.

The functions described in this section support a portable wall-clock timer:

The omp_get_wtime function returns elapsed wall-clock time.
The omp_get_wtick function returns seconds between successive clock ticks.

The omp_get_wtime function returns a double-precision floating point value equal to the elapsed wall clock time in
seconds since some "time in the past". The actual "time in the past" is arbitrary, but it's guaranteed not to change
during the execution of the application program. The format is as follows:

It's anticipated that the function will be used to measure elapsed times as shown in the following example:

The times returned are "per-thread times" by which is meant they aren't required to be globally consistent across
all the threads participating in an application.

The omp_get_wtick function returns a double-precision floating point value equal to the number of seconds
between successive clock ticks. The format is as follows:

4. Environment variables
2/11/2019 • 2 minutes to read • Edit Online

4.1 OMP_SCHEDULE

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"

Cross-references

4.2 OMP_NUM_THREADS

This chapter describes the OpenMP C and C++ API environment variables (or similar platform-specific
mechanisms) that control the execution of parallel code. The names of environment variables must be uppercase.
The values assigned to them are case insensitive and may have leading and trailing white space. Modifications to
the values after the program has started are ignored.

The environment variables are as follows:

OMP_SCHEDULE sets the run-time schedule type and chunk size.
OMP_NUM_THREADS sets the number of threads to use during execution.
OMP_DYNAMIC enables or disables the dynamic adjustment of the number of threads.
OMP_NESTED enables or disables nested parallelism.

The examples in this chapter only demonstrate how these variables might be set in Unix C shell (csh)
environments. In the Korn shell and DOS environments, the actions are similar:

csh:
setenv OMP_SCHEDULE "dynamic"

ksh:
export OMP_SCHEDULE="dynamic"

DOS:
set OMP_SCHEDULE="dynamic"

OMP_SCHEDULE applies only to for and parallel for directives that have the schedule type runtime . The
schedule type and chunk size for all such loops can be set at run time. Set this environment variable to any
recognized schedule type and to an optional chunk_size.

For for and parallel for directives that have a schedule type other than runtime , OMP_SCHEDULE is ignored. The
default value for this environment variable is implementation-defined. If the optional chunk_size is set, the value
must be positive. If chunk_size isn't set, a value of 1 is assumed, except when the schedule is static . For a static

schedule, the default chunk size is set to the loop iteration space divided by the number of threads applied to the
loop.

Example:

for directive
parallel for directive

The OMP_NUM_THREADS environment variable sets the default number of threads to use during execution.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/4-environment-variables.md

setenv OMP_NUM_THREADS 16

Cross-references

4.3 OMP_DYNAMIC

setenv OMP_DYNAMIC TRUE

Cross-references

4.4 OMP_NESTED

setenv OMP_NESTED TRUE

Cross-reference

OMP_NUM_THREADS is ignored if that number is explicitly changed by calling the omp_set_num_threads library routine.
It's also ignored if there's an explicit num_threads clause on a parallel directive.

The value of the OMP_NUM_THREADS environment variable must be a positive integer. Its effect depends upon
whether dynamic adjustment of the number of threads is enabled. For a comprehensive set of rules about the
interaction between the OMP_NUM_THREADS environment variable and dynamic adjustment of threads, see section
2.3.

The number of threads to use is implementation-defined if:

the OMP_NUM_THREADS environment variable isn't specified,
the value specified isn't a positive integer, or
the value is greater than the maximum number of threads that the system can support.

Example:

num_threads clause
omp_set_num_threads function
omp_set_dynamic function

The OMP_DYNAMIC environment variable enables or disables dynamic adjustment of the number of threads
available for the execution of parallel regions. OMP_DYNAMIC is ignored when dynamic adjustment is explicitly
enabled or disabled by calling the omp_set_dynamic library routine. Its value must be TRUE or FALSE .

If OMP_DYNAMIC is set to TRUE , the number of threads that are used for executing parallel regions may be adjusted
by the runtime environment to best use system resources. If OMP_DYNAMIC is set to FALSE , dynamic adjustment is
disabled. The default condition is implementation-defined.

Example:

Parallel regions
omp_set_dynamic function

The OMP_NESTED environment variable enables or disables nested parallelism unless nested parallelism is enabled
or disabled by calling the omp_set_nested library routine. If OMP_NESTED is set to TRUE , nested parallelism is
enabled. If OMP_NESTED is set to FALSE , nested parallelism is disabled. The default value is FALSE .

Example:

omp_set_nested function

A. Examples
1/28/2019 • 17 minutes to read • Edit Online

A.1 A simple loop in parallel

#pragma omp parallel for
 for (i=1; i<n; i++)
 b[i] = (a[i] + a[i-1]) / 2.0;

A.2 Conditional compilation

ifdef _OPENMP
 printf_s("Compiled by an OpenMP-compliant implementation.\n");
endif

if defined(_OPENMP) && defined(VERBOSE)
 printf_s("Compiled by an OpenMP-compliant implementation.\n");
endif

A.3 Parallel regions

#pragma omp parallel shared(x, npoints) private(iam, np, ipoints)
{
 iam = omp_get_thread_num();
 np = omp_get_num_threads();
 ipoints = npoints / np;
 subdomain(x, iam, ipoints);
}

A.4 The nowait clause

The following are examples of the constructs defined in this document. A statement following a directive is
compound only when necessary, and a non-compound statement is indented from a directive preceding it.

The following example demonstrates how to parallelize a loop using the parallel for directive. The loop iteration
variable is private by default, so it isn't necessary to specify it explicitly in a private clause.

The following examples illustrate the use of conditional compilation using the OpenMP macro _OPENMP. With
OpenMP compilation, the _OPENMP macro becomes defined.

The defined preprocessor operator allows more than one macro to be tested in a single directive.

The parallel directive can be used in coarse-grain parallel programs. In the following example, each thread in the
parallel region decides what part of the global array x to work on, based on the thread number:

If there are many independent loops within a parallel region, you can use the nowait clause to avoid the implied
barrier at the end of the for directive, as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/a-examples.md

#pragma omp parallel
{
 #pragma omp for nowait
 for (i=1; i<n; i++)
 b[i] = (a[i] + a[i-1]) / 2.0;
 #pragma omp for nowait
 for (i=0; i<m; i++)
 y[i] = sqrt(z[i]);
}

A.5 The critical directive

#pragma omp parallel shared(x, y) private(x_next, y_next)
{
 #pragma omp critical (xaxis)
 x_next = dequeue(x);
 work(x_next);
 #pragma omp critical (yaxis)
 y_next = dequeue(y);
 work(y_next);
}

A.6 The lastprivate clause

#pragma omp parallel
{
 #pragma omp for lastprivate(i)
 for (i=0; i<n-1; i++)
 a[i] = b[i] + b[i+1];
}
a[i]=b[i];

A.7 The reduction clause

#pragma omp parallel for private(i) shared(x, y, n) \
 reduction(+: a, b)
 for (i=0; i<n; i++) {
 a = a + x[i];
 b = b + y[i];
 }

A.8 Parallel sections

The following example includes several critical directives. The example illustrates a queuing model in which a task
is dequeued and worked on. To guard against many threads dequeuing the same task, the dequeuing operation
must be in a critical section. Because the two queues in this example are independent, they're protected by
critical directives with different names, xaxis and yaxis.

Correct execution sometimes depends on the value that the last iteration of a loop assigns to a variable. Such
programs must list all such variables as arguments to a lastprivate clause so that the values of the variables are the
same as when the loop is executed sequentially.

In the preceding example, the value of i at the end of the parallel region will equal n-1 , as in the sequential case.

The following example demonstrates the reduction clause:

#pragma omp parallel sections
{
 #pragma omp section
 xaxis();
 #pragma omp section
 yaxis();
 #pragma omp section
 zaxis();
}

A.9 Single directives

#pragma omp parallel
{
 #pragma omp single
 printf_s("Beginning work1.\n");
 work1();
 #pragma omp single
 printf_s("Finishing work1.\n");
 #pragma omp single nowait
 printf_s("Finished work1 and beginning work2.\n");
 work2();
}

A.10 Sequential ordering

#pragma omp for ordered schedule(dynamic)
 for (i=lb; i<ub; i+=st)
 work(i);
void work(int k)
{
 #pragma omp ordered
 printf_s(" %d", k);
}

A.11 A fixed number of threads

In the following example (for section 2.4.2), functions xaxis, yaxis, and zaxis can be executed concurrently. The first
section directive is optional. All section directives need to appear in the lexical extent of the parallel sections

construct.

The following example demonstrates the single directive. In the example, only one thread (usually the first thread
that encounters the single directive) prints the progress message. The user must not make any assumptions as to
which thread will execute the single section. All other threads will skip the single section and stop at the barrier
at the end of the single construct. If other threads can proceed without waiting for the thread executing the
single section, a nowait clause can be specified on the single directive.

Ordered sections are useful for sequentially ordering the output from work that's done in parallel. The following
program prints out the indexes in sequential order :

Some programs rely on a fixed, prespecified number of threads to execute correctly. Because the default setting for
the dynamic adjustment of the number of threads is implementation-defined, such programs can choose to turn
off the dynamic threads capability and set the number of threads explicitly to keep portability. The following
example shows how to do this using omp_set_dynamic, and omp_set_num_threads:

omp_set_dynamic(0);
omp_set_num_threads(16);
#pragma omp parallel shared(x, npoints) private(iam, ipoints)
{
 if (omp_get_num_threads() != 16)
 abort();
 iam = omp_get_thread_num();
 ipoints = npoints/16;
 do_by_16(x, iam, ipoints);
}

A.12 The atomic directive

#pragma omp parallel for shared(x, y, index, n)
 for (i=0; i<n; i++)
 {
 #pragma omp atomic
 x[index[i]] += work1(i);
 y[i] += work2(i);
 }

A.13 A flush directive with a list

In this example, the program executes correctly only if it's executed by 16 threads. If the implementation isn't
capable of supporting 16 threads, the behavior of this example is implementation-defined.

The number of threads executing a parallel region stays constant during a parallel region, regardless of the
dynamic threads setting. The dynamic threads mechanism determines the number of threads to use at the start of
the parallel region and keeps it constant for the duration of the region.

The following example avoids race conditions (simultaneous updates of an element of x by many threads) by using
the atomic directive:

The advantage of using the atomic directive in this example is that it allows updates of two different elements of x
to occur in parallel. If a critical directive is used instead, then all updates to elements of x are executed serially
(though not in any guaranteed order).

The atomic directive applies only to the C or C++ statement immediately following it. As a result, elements of y
aren't updated atomically in this example.

The following example uses the flush directive for point-to-point synchronization of specific objects between
pairs of threads:

int sync[NUMBER_OF_THREADS];
float work[NUMBER_OF_THREADS];
#pragma omp parallel private(iam,neighbor) shared(work,sync)
{
 iam = omp_get_thread_num();
 sync[iam] = 0;
 #pragma omp barrier

 // Do computation into my portion of work array
 work[iam] = ...;

 // Announce that I am done with my work
 // The first flush ensures that my work is
 // made visible before sync.
 // The second flush ensures that sync is made visible.
 #pragma omp flush(work)
 sync[iam] = 1;
 #pragma omp flush(sync)

 // Wait for neighbor
 neighbor = (iam>0 ? iam : omp_get_num_threads()) - 1;
 while (sync[neighbor]==0)
 {
 #pragma omp flush(sync)
 }

 // Read neighbor's values of work array
 ... = work[neighbor];
}

A.14 A flush directive without a list
The following example (for section 2.6.5) distinguishes the shared objects affected by a flush directive with no list
from the shared objects that aren't affected:

// omp_flush_without_list.c
#include <omp.h>

int x, *p = &x;

void f1(int *q)
{
 *q = 1;
 #pragma omp flush
 // x, p, and *q are flushed
 // because they are shared and accessible
 // q is not flushed because it is not shared.
}

void f2(int *q)
{
 #pragma omp barrier
 *q = 2;

 #pragma omp barrier
 // a barrier implies a flush
 // x, p, and *q are flushed
 // because they are shared and accessible
 // q is not flushed because it is not shared.
}

int g(int n)
{
 int i = 1, j, sum = 0;
 *p = 1;

 #pragma omp parallel reduction(+: sum) num_threads(10)
 {
 f1(&j);
 // i, n and sum were not flushed
 // because they were not accessible in f1
 // j was flushed because it was accessible
 sum += j;
 f2(&j);
 // i, n, and sum were not flushed
 // because they were not accessible in f2
 // j was flushed because it was accessible
 sum += i + j + *p + n;
 }
 return sum;
}

int main()
{
}

A.15 The number of threads used

np = omp_get_num_threads(); // misplaced
#pragma omp parallel for schedule(static)
 for (i=0; i<np; i++)
 work(i);

Consider the following incorrect example (for section 3.1.2):

The omp_get_num_threads() call returns 1 in the serial section of the code, so np will always be equal to 1 in the
preceding example. To determine the number of threads that will be deployed for the parallel region, the call
should be inside the parallel region.

#pragma omp parallel private(i)
{
 i = omp_get_thread_num();
 work(i);
}

A.16 Locks

// omp_using_locks.c
// compile with: /openmp /c
#include <stdio.h>
#include <omp.h>

void work(int);
void skip(int);

int main() {
 omp_lock_t lck;
 int id;

 omp_init_lock(&lck);
 #pragma omp parallel shared(lck) private(id)
 {
 id = omp_get_thread_num();

 omp_set_lock(&lck);
 printf_s("My thread id is %d.\n", id);

 // only one thread at a time can execute this printf
 omp_unset_lock(&lck);

 while (! omp_test_lock(&lck)) {
 skip(id); // we do not yet have the lock,
 // so we must do something else
 }
 work(id); // we now have the lock
 // and can do the work
 omp_unset_lock(&lck);
 }
 omp_destroy_lock(&lck);
}

A.17 Nestable locks

The following example shows how to rewrite this program without including a query for the number of threads:

In the following example (for section 3.2), the argument to the lock functions should have type omp_lock_t , and
that there's no need to flush it. The lock functions cause the threads to be idle while waiting for entry to the first
critical section, but to do other work while waiting for entry to the second. The omp_set_lock function blocks, but
the omp_test_lock function doesn't, allowing the work in skip() to be done.

The following example (for section 3.2) demonstrates how a nestable lock can be used to synchronize updates both
to a whole structure and to one of its members.

#include <omp.h>
typedef struct {int a,b; omp_nest_lock_t lck;} pair;

void incr_a(pair *p, int a)
{
 // Called only from incr_pair, no need to lock.
 p->a += a;
}

void incr_b(pair *p, int b)
{
 // Called both from incr_pair and elsewhere,
 // so need a nestable lock.

 omp_set_nest_lock(&p->lck);
 p->b += b;
 omp_unset_nest_lock(&p->lck);
}

void incr_pair(pair *p, int a, int b)
{
 omp_set_nest_lock(&p->lck);
 incr_a(p, a);
 incr_b(p, b);
 omp_unset_nest_lock(&p->lck);
}

void f(pair *p)
{
 extern int work1(), work2(), work3();
 #pragma omp parallel sections
 {
 #pragma omp section
 incr_pair(p, work1(), work2());
 #pragma omp section
 incr_b(p, work3());
 }
}

A.18 Nested for directives

#pragma omp parallel default(shared)
{
 #pragma omp for
 for (i=0; i<n; i++)
 {
 #pragma omp parallel shared(i, n)
 {
 #pragma omp for
 for (j=0; j<n; j++)
 work(i, j);
 }
 }
}

The following example of for directive nesting is compliant because the inner and outer for directives bind to
different parallel regions:

A following variation of the preceding example is also compliant:

#pragma omp parallel default(shared)
{
 #pragma omp for
 for (i=0; i<n; i++)
 work1(i, n);
}

void work1(int i, int n)
{
 int j;
 #pragma omp parallel default(shared)
 {
 #pragma omp for
 for (j=0; j<n; j++)
 work2(i, j);
 }
 return;
}

A.19 Examples showing incorrect nesting of work-sharing directives

void wrong1(int n)
{
 #pragma omp parallel default(shared)
 {
 int i, j;
 #pragma omp for
 for (i=0; i<n; i++) {
 #pragma omp for
 for (j=0; j<n; j++)
 work(i, j);
 }
 }
}

void wrong2(int n)
{
 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++)
 work1(i, n);
 }
}

void work1(int i, int n)
{
 int j;
 #pragma omp for
 for (j=0; j<n; j++)
 work2(i, j);
}

The examples in this section illustrate the directive nesting rules.

The following example is noncompliant because the inner and outer for directives are nested and bind to the
same parallel directive:

The following dynamically nested version of the preceding example is also noncompliant:

void wrong3(int n)
{
 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++) {
 #pragma omp single
 work(i);
 }
 }
}

void wrong4(int n)
{
 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++) {
 work1(i);
 #pragma omp barrier
 work2(i);
 }
 }
}

void wrong5()
{
 #pragma omp parallel
 {
 #pragma omp critical
 {
 work1();
 #pragma omp barrier
 work2();
 }
 }
}

The following example is noncompliant because the for and single directives are nested, and they bind to the
same parallel region:

The following example is noncompliant because a barrier directive inside a for can result in deadlock:

The following example is noncompliant because the barrier results in deadlock due to the fact that only one
thread at a time can enter the critical section:

The following example is noncompliant because the barrier results in deadlock due to the fact that only one
thread executes the single section:

void wrong6()
{
 #pragma omp parallel
 {
 setup();
 #pragma omp single
 {
 work1();
 #pragma omp barrier
 work2();
 }
 finish();
 }
}

A.20 Bind barrier directives

int main()
{
 sub1(2);
 sub2(2);
 sub3(2);
}

void sub1(int n)
{
 int i;
 #pragma omp parallel private(i) shared(n)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 sub2(i);
 }
}

void sub2(int k)
{
 #pragma omp parallel shared(k)
 sub3(k);
}

void sub3(int n)
{
 work(n);
 #pragma omp barrier
 work(n);
}

A.21 Scope variables with the private clause

The directive binding rules call for a barrier directive to bind to the closest enclosing parallel directive. For
more information on directive binding, see section 2.8.

In the following example, the call from main to sub2 is compliant because the barrier (in sub3) binds to the
parallel region in sub2. The call from main to sub1 is compliant because the barrier binds to the parallel region in
subroutine sub2. The call from main to sub3 is compliant because the barrier doesn't bind to any parallel region
and is ignored. Also, the barrier only synchronizes the team of threads in the enclosing parallel region and not all
the threads created in sub1.

The values of i and j in the following example are undefined on exit from the parallel region:

int i, j;
i = 1;
j = 2;
#pragma omp parallel private(i) firstprivate(j)
{
 i = 3;
 j = j + 2;
}
printf_s("%d %d\n", i, j);

A.22 The default(none) clause

// openmp_using_clausedefault.c
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int x, y, z[1000];
#pragma omp threadprivate(x)

void fun(int a) {
 const int c = 1;
 int i = 0;

 #pragma omp parallel default(none) private(a) shared(z)
 {
 int j = omp_get_num_thread();
 //O.K. - j is declared within parallel region
 a = z[j]; // O.K. - a is listed in private clause
 // - z is listed in shared clause
 x = c; // O.K. - x is threadprivate
 // - c has const-qualified type
 z[i] = y; // C3052 error - cannot reference i or y here

 #pragma omp for firstprivate(y)
 for (i=0; i<10 ; i++) {
 z[i] = y; // O.K. - i is the loop control variable
 // - y is listed in firstprivate clause
 }
 z[i] = y; // Error - cannot reference i or y here
 }
}

A.23 Examples of the ordered directive

For more information on the private clause, see section 2.7.2.1.

The following example distinguishes the variables that are affected by the default(none) clause from the variables
that aren't:

For more information on the default clause, see section 2.7.2.5.

It's possible to have many ordered sections with a for specified with the ordered clause. The first example is
noncompliant because the API specifies the following rule:

"An iteration of a loop with a for construct must not execute the same ordered directive more than once, and it
must not execute more than one ordered directive." (See section 2.6.6.)

In this noncompliant example, all iterations execute two ordered sections:

#pragma omp for ordered
for (i=0; i<n; i++)
{
 ...
 #pragma omp ordered
 { ... }
 ...
 #pragma omp ordered
 { ... }
 ...
}

#pragma omp for ordered
for (i=0; i<n; i++)
{
 ...
 if (i <= 10)
 {
 ...
 #pragma omp ordered
 { ... }
 }
 ...
 (i > 10)
 {
 ...
 #pragma omp ordered
 { ... }
 }
 ...
}

A.24 Example of the private clause

int a;

void f(int n)
{
 a = 0;

 #pragma omp parallel for private(a)
 for (int i=1; i<n; i++)
 {
 a = i;
 g(i, n);
 d(a); // Private copy of "a"
 ...
 }
 ...

void g(int k, int n)
{
 h(k,a); // The global "a", not the private "a" in f
}

The following compliant example shows a for with more than one ordered section:

The private clause of a parallel region is only in effect for the lexical extent of the region, not for the dynamic extent
of the region. Therefore, in the example that follows, any uses of the variable a within the for loop in the routine f
refers to a private copy of a, while a usage in routine g refers to the global a.

A.25 Examples of the copyprivate data attribute clause

float x, y;
#pragma omp threadprivate(x, y)

void init()
{
 float a;
 float b;

 #pragma omp single copyprivate(a,b,x,y)
 {
 get_values(a,b,x,y);
 }

 use_values(a, b, x, y);
}

float read_next()
{
 float * tmp;
 float return_val;

 #pragma omp single copyprivate(tmp)
 {
 tmp = (float *) malloc(sizeof(float));
 }

 #pragma omp master
 {
 get_float(tmp);
 }

 #pragma omp barrier
 return_val = *tmp;
 #pragma omp barrier

 #pragma omp single
 {
 free(tmp);
 }

 return return_val;
}

Example 1: The copyprivate clause can be used to broadcast values acquired by a single thread directly to all
instances of the private variables in the other threads.

If routine init is called from a serial region, its behavior isn't affected by the presence of the directives. After the call
to the get_values routine has been executed by one thread, no thread leaves the construct until the private objects
designated by a, b, x, and y in all threads have become defined with the values read.

Example 2: In contrast to the previous example, suppose the read must be performed by a particular thread, say
the master thread. In this case, the copyprivate clause can't be used to do the broadcast directly, but it can be used
to provide access to a temporary shared object.

Example 3: Suppose that the number of lock objects required within a parallel region can't easily be determined
prior to entering it. The copyprivate clause can be used to provide access to shared lock objects that are allocated
within that parallel region.

#include <omp.h>

omp_lock_t *new_lock()
{
 omp_lock_t *lock_ptr;

 #pragma omp single copyprivate(lock_ptr)
 {
 lock_ptr = (omp_lock_t *) malloc(sizeof(omp_lock_t));
 omp_init_lock(lock_ptr);
 }

 return lock_ptr;
}

A.26 The threadprivate directive

Example 1

int counter = 0;
#pragma omp threadprivate(counter)

int sub()
{
 counter++;
 return(counter);
}

Example 2

int sub()
{
 static int counter = 0;
 #pragma omp threadprivate(counter)
 counter++;
 return(counter);
}

A.27 C99 variable length arrays

NOTE

void f(int m, int C[m][m])
{
 double v1[m];
 ...
 #pragma omp parallel firstprivate(C, v1)
 ...
}

The following examples demonstrate how to use the threadprivate directive to give each thread a separate counter.

The following example demonstrates how to use C99 Variable Length Arrays (VLAs) in a firstprivate directive.

Variable length arrays aren't currently supported in Visual C++.

A.28 The num_threads clause

#include <omp.h>
main()
{
 omp_set_dynamic(1);
 ...
 #pragma omp parallel num_threads(10)
 {
 ... parallel region ...
 }
}

A.29 Work-sharing constructs inside a critical construct

void f()
{
 int i = 1;
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 #pragma omp critical (name)
 {
 #pragma omp parallel
 {
 #pragma omp single
 {
 i++;
 }
 }
 }
 }
 }
}

A.30 Reprivatization

int i, a;
...
#pragma omp parallel private(a)
{
 ...
 #pragma omp parallel for private(a)
 for (i=0; i<10; i++)
 {
 ...
 }
}

The following example demonstrates the num_threads clause. The parallel region is executed with a maximum of
10 threads.

The following example demonstrates using a work-sharing construct inside a critical construct. This example is
compliant because the work-sharing construct and the critical construct don't bind to the same parallel region.

The following example demonstrates the reprivatization of variables. Private variables can be marked private

again in a nested directive. You don't need to share those variables in the enclosing parallel region.

A.31 Thread-safe lock functions

// A_13_omp_init_lock.cpp
// compile with: /openmp
#include <omp.h>

omp_lock_t *new_locks() {
 int i;
 omp_lock_t *lock = new omp_lock_t[1000];
 #pragma omp parallel for private(i)
 for (i = 0 ; i < 1000 ; i++)
 omp_init_lock(&lock[i]);

 return lock;
}

int main () {}

The following C++ example demonstrates how to initialize an array of locks in a parallel region by using
omp_init_lock.

B. Stubs for run-time library functions
1/28/2019 • 2 minutes to read • Edit Online

NOTE

Code
#include <stdio.h>
#include <stdlib.h>
#include "omp.h"
#ifdef __cplusplus
extern "C" {
#endif

void omp_set_num_threads(int num_threads)
{
}
int omp_get_num_threads(void)
{
 return 1;
}
int omp_get_max_threads(void)
{
 return 1;
}
int omp_get_thread_num(void)
{
 return 0;
}
int omp_get_num_procs(void)
{
 return 1;
}
void omp_set_dynamic(int dynamic_threads)
{
}
int omp_get_dynamic(void)
{
 return 0;
}
int omp_in_parallel(void)
{
 return 0;
}
void omp_set_nested(int nested)
{
}
int omp_get_nested(void)
{

This section provides stubs for the run-time library functions defined in the OpenMP C and C++ API. The stubs
are provided to enable portability to platforms that don't support the OpenMP C and C++ API. On these
platforms, OpenMP programs must be linked with a library containing these stub functions. The stub functions
assume that the directives in the OpenMP program are ignored. As such, they emulate serial semantics.

The lock variable that appears in the lock functions must be accessed exclusively through these functions. It should not be
initialized or otherwise modified in the user program. Users should not make assumptions about mechanisms used by
OpenMP C and C++ implementations to implement locks based on the scheme used by the stub functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/b-stubs-for-run-time-library-functions.md

 return 0;
}
enum {UNLOCKED = -1, INIT, LOCKED};
void omp_init_lock(omp_lock_t *lock)
{
 *lock = UNLOCKED;
}
void omp_destroy_lock(omp_lock_t *lock)
{
 *lock = INIT;
}
void omp_set_lock(omp_lock_t *lock)
{
 if (*lock == UNLOCKED)
 {
 *lock = LOCKED;
 }
 else
 if (*lock == LOCKED)
 {
 fprintf_s(stderr, "error: deadlock in using lock variable\n");
 exit(1);
 } else {
 fprintf_s(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

void omp_unset_lock(omp_lock_t *lock)
{
 if (*lock == LOCKED)
 {
 *lock = UNLOCKED;
 }
 else
 if (*lock == UNLOCKED)
 {
 fprintf_s(stderr, "error: lock not set\n");
 exit(1);
 } else {
 fprintf_s(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

int omp_test_lock(omp_lock_t *lock)
{
 if (*lock == UNLOCKED)
 {
 *lock = LOCKED;
 return 1;
 } else if (*lock == LOCKED) {
 return 0;
 } else {
 fprintf_s(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

#ifndef OMP_NEST_LOCK_T
typedef struct { // This really belongs in omp.h
 int owner;
 int count;
} omp_nest_lock_t;
#endif
enum {MASTER = 0};
void omp_init_nest_lock(omp_nest_lock_t *lock)
{
 lock->owner = UNLOCKED;

 lock->owner = UNLOCKED;
 lock->count = 0;
}
void omp_destroy_nest_lock(omp_nest_lock_t *lock)
{
 lock->owner = UNLOCKED;
 lock->count = UNLOCKED;
}

void omp_set_nest_lock(omp_nest_lock_t *lock)
{
 if (lock->owner == MASTER && lock->count >= 1)
 {
 lock->count++;
 } else
 if (lock->owner == UNLOCKED && lock->count == 0)
 {
 lock->owner = MASTER;
 lock->count = 1;
 } else
 {
 fprintf_s(stderr, "error: lock corrupted or not initialized\n");
 exit(1);
 }
}

void omp_unset_nest_lock(omp_nest_lock_t *lock)
{
 if (lock->owner == MASTER && lock->count >= 1)
 {
 lock->count--;
 if (lock->count == 0)
 {
 lock->owner = UNLOCKED;
 }
 } else
 if (lock->owner == UNLOCKED && lock->count == 0)
 {
 fprintf_s(stderr, "error: lock not set\n");
 exit(1);
 } else
 {
 fprintf_s(stderr, "error: lock corrupted or not initialized\n");
 exit(1);
 }
}

int omp_test_nest_lock(omp_nest_lock_t *lock)
{
 omp_set_nest_lock(lock);
 return lock->count;
}

double omp_get_wtime(void)
{
 // This function does not provide a working
 // wallclock timer. Replace it with a version
 // customized for the target machine.
 return 0.0;
}

double omp_get_wtick(void)
{
 // This function does not provide a working
 // clock tick function. Replace it with
 // a version customized for the target machine.
 return 365. * 86400.;
}

#ifdef __cplusplus

#ifdef __cplusplus
}
#endif

C. OpenMP C and C++ grammar
1/18/2019 • 2 minutes to read • Edit Online

C.1 Notation

C.2 Rules

C.1 Notation
C.2 Rules

The grammar rules consist of the name for a non-terminal, followed by a colon, followed by replacement
alternatives on separate lines.

The syntactic expression term indicates that the term is optional within the replacement.opt

The syntactic expression term is equivalent to term-seq with the following additional rules:optseq opt

term-seq:
 term
 term-seq term
 term-seq , term

The notation is described in section 6.1 of the C standard. This grammar appendix shows the extensions to the
base language grammar for the OpenMP C and C++ directives.

/* in C++ (ISO/IEC 14882:1998) */

statement-seq:
 statement
 openmp-directive
 statement-seq statement
 statement-seq openmp-directive

/* in C90 (ISO/IEC 9899:1990) */

statement-list:
 statement
 openmp-directive
 statement-list statement
 statement-list openmp-directive

/* in C99 (ISO/IEC 9899:1999) */

block-item:
 declaration
 statement
 openmp-directive

/* standard statements */

statement:
 openmp-construct

openmp-construct:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/c-openmp-c-and-cpp-grammar.md

 parallel-construct
 for-construct
 sections-construct
 single-construct
 parallel-for-construct
 parallel-sections-construct
 master-construct
 critical-construct
 atomic-construct
 ordered-construct

openmp-directive:
 barrier-directive
 flush-directive

structured-block:
 statement

parallel-construct:
 parallel-directive structured-block

parallel-directive:
 # pragma omp parallel parallel-clause new-lineoptseq

parallel-clause:
 unique-parallel-clause
 data-clause

unique-parallel-clause:
 if (expression)

 num_threads (expression)

for-construct:
 for-directive iteration-statement

for-directive:
 # pragma omp for for-clause new-lineoptseq

for-clause:
 unique-for-clause
 data-clause
 nowait

unique-for-clause:
 ordered

 schedule (schedule-kind)

 schedule (schedule-kind , expression)

schedule-kind:
 static

 dynamic

 guided

 runtime

sections-construct:
 sections-directive section-scope

sections-directive:
 # pragma omp sections sections-clause new-lineoptseq

sections-clause:
 data-clause
 nowait

section-scope:
 { section-sequence }

section-sequence:
 section-directive structured-block
 section-sequence section-directive structured-block

opt

section-directive:
 # pragma omp section new-line

single-construct:
 single-directive structured-block

single-directive:
 # pragma omp single single-clause new-lineoptseq

single-clause:
 data-clause
 nowait

parallel-for-construct:
 parallel-for-directive iteration-statement

parallel-for-directive:
 # pragma omp parallel for parallel-for-clause new-lineoptseq

parallel-for-clause:
 unique-parallel-clause
 unique-for-clause
 data-clause

parallel-sections-construct:
 parallel-sections-directive section-scope

parallel-sections-directive:
 # pragma omp parallel sections parallel-sections-clause new-lineoptseq

parallel-sections-clause:
 unique-parallel-clause
 data-clause

master-construct:
 master-directive structured-block

master-directive:
 # pragma omp master new-line

critical-construct:
 critical-directive structured-block

critical-directive:
 # pragma omp critical region-phrase new-lineopt

region-phrase:
 (identifier)

barrier-directive:
 # pragma omp barrier new-line

atomic-construct:
 atomic-directive expression-statement

atomic-directive:
 # pragma omp atomic new-line

flush-directive:
 # pragma omp flush flush-vars new-lineopt

flush-vars:
 (variable-list)

ordered-construct:
 ordered-directive structured-block

ordered-directive:
 # pragma omp ordered new-line

/* standard declarations */

declaration:
 threadprivate-directive

threadprivate-directive:
 # pragma omp threadprivate (variable-list) new-line

data-clause:
 private (variable-list)

 copyprivate (variable-list)

 firstprivate (variable-list)

 lastprivate (variable-list)

 shared (variable-list)

 default (shared)

 default (none)

 reduction (reduction-operator : variable-list)

 copyin (variable-list)

reduction-operator:
 One of: + * - & ^ | && ||

/* in C */

variable-list:
 identifier
 variable-list , identifier

/* in C++ */

variable-list:
 id-expression
 variable-list , id-expression

D. The schedule clause
1/28/2019 • 5 minutes to read • Edit Online

#pragma omp parallel
{
#pragma omp for schedule(static)
 for(i=0; i<n; i++)
 a[i] = work1(i);
#pragma omp for schedule(static)
 for(i=0; i<n; i++)
 if(i>=k) a[i] += work2(i);
}

#pragma omp parallel for schedule(static)
for(i=0; i<n; i++) {
 invariant_amount_of_work(i);
}

A parallel region has at least one barrier, at its end, and may have additional barriers within it. At each barrier, the
other members of the team must wait for the last thread to arrive. To minimize this wait time, shared work should
be distributed so that all threads arrive at the barrier at about the same time. If some of that shared work is
contained in for constructs, the schedule clause can be used for this purpose.

When there are repeated references to the same objects, the choice of schedule for a for construct may be
determined primarily by characteristics of the memory system, such as the presence and size of caches and
whether memory access times are uniform or nonuniform. Such considerations may make it preferable to have
each thread consistently refer to the same set of elements of an array in a series of loops, even if some threads are
assigned relatively less work in some of the loops. This setup can be done by using the static schedule with the
same bounds for all the loops. In the following example, zero is used as the lower bound in the second loop, even
though k would be more natural if the schedule were not important.

In the remaining examples, it's assumed that memory access isn't the dominant consideration. Unless otherwise
stated, that all threads receive comparable computational resources. In these cases, the choice of schedule for a
for construct depends on all the shared work that's to be performed between the nearest preceding barrier and

either the implied closing barrier or the nearest upcoming barrier, if there's a nowait clause. For each kind of
schedule, a short example shows how that schedule kind is likely to be the best choice. A brief discussion follows
each example.

The static schedule is also appropriate for the simplest case, a parallel region containing a single for construct,
with each iteration requiring the same amount of work.

The static schedule is characterized by the properties that each thread gets approximately the same number of
iterations as any other thread, and each thread can independently determine the iterations assigned to it. Thus no
synchronization is required to distribute the work, and, under the assumption that each iteration requires the same
amount of work, all threads should finish at about the same time.

For a team of p threads, let ceiling(n/p) be the integer q, which satisfies n = p*q - r with 0 <= r < p. One
implementation of the static schedule for this example would assign q iterations to the first p-1 threads, and q-r
iterations to the last thread. Another acceptable implementation would assign q iterations to the first p-r threads,
and q-1 iterations to the remaining r threads. This example illustrates why a program shouldn't rely on the details
of a particular implementation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/d-using-the-schedule-clause.md

#pragma omp parallel for schedule(dynamic)
 for(i=0; i<n; i++) {
 unpredictable_amount_of_work(i);
}

#pragma omp parallel
{
 #pragma omp sections nowait
 {
 // ...
 }
 #pragma omp for schedule(guided)
 for(i=0; i<n; i++) {
 invariant_amount_of_work(i);
 }
}

The dynamic schedule is appropriate for the case of a for construct with the iterations requiring varying, or even
unpredictable, amounts of work.

The dynamic schedule is characterized by the property that no thread waits at the barrier for longer than it takes
another thread to execute its final iteration. This requirement means iterations must be assigned one at a time to
threads as they become available, with synchronization for each assignment. The synchronization overhead can be
reduced by specifying a minimum chunk size k greater than 1, so that threads are assigned k at a time until fewer
than k remain. This guarantees that no thread waits at the barrier longer than it takes another thread to execute its
final chunk of (at most) k iterations.

The dynamic schedule can be useful if the threads receive varying computational resources, which has much the
same effect as varying amounts of work for each iteration. Similarly, the dynamic schedule can also be useful if the
threads arrive at the for construct at varying times, though in some of these cases the guided schedule may be
preferable.

The guided schedule is appropriate for the case in which the threads may arrive at varying times at a for

construct with each iteration requiring about the same amount of work. This situation can happen if, for example,
the for construct is preceded by one or more sections or for constructs with nowait clauses.

Like dynamic , the guided schedule guarantees that no thread waits at the barrier longer than it takes another
thread to execute its final iteration, or final k iterations if a chunk size of k is specified. Among such schedules, the
guided schedule is characterized by the property that it requires the fewest synchronizations. For chunk size k, a

typical implementation will assign q = ceiling(n/p) iterations to the first available thread, set n to the larger of n-q
and p*k, and repeat until all iterations are assigned.

When the choice of the optimum schedule isn't as clear as it is for these examples, the runtime schedule is
convenient for experimenting with different schedules and chunk sizes without having to modify and recompile
the program. It can also be useful when the optimum schedule depends (in some predictable way) on the input
data to which the program is applied.

To see an example of the trade-offs between different schedules, consider sharing 1000 iterations among eight
threads. Suppose there's an invariant amount of work in each iteration, and use that as the unit of time.

If all threads start at the same time, the static schedule will cause the construct to execute in 125 units, with no
synchronization. But suppose that one thread is 100 units late in arriving. Then the remaining seven threads wait
for 100 units at the barrier, and the execution time for the whole construct increases to 225.

Because both the dynamic and guided schedules make sure that no thread waits for more than one unit at the
barrier, the delayed thread causes their execution times for the construct to increase only to 138 units, possibly

increased by delays from synchronization. If such delays aren't negligible, it becomes important that the number of
synchronizations is 1000 for dynamic but only 41 for guided , assuming the default chunk size of one. With a
chunk size of 25, dynamic and guided both finish in 150 units, plus any delays from the required
synchronizations, which now number only 40 and 20, respectively.

E. Implementation-defined behaviors in OpenMP
C/C++
1/28/2019 • 2 minutes to read • Edit Online

Remarks

This appendix summarizes the behaviors that are described as "implementation-defined" in this API. Each
behavior is cross-referenced back to its description in the main specification.

An implementation is required to define and document its behavior in these cases, but this list may be incomplete.

Number of threads: If a parallel region is encountered while dynamic adjustment of the number of
threads is disabled, and the number of threads requested for the parallel region is more than the number
that the run-time system can supply, the behavior of the program is implementation-defined (see page 9).

In Visual C++, for a non-nested parallel region, 64 threads (the maximum) will be provided.

Number of processors: The number of physical processors actually hosting the threads at any given time
is implementation-defined (see page 10).

In Visual C++, this number isn't constant, and is controlled by the operating system.

Creating teams of threads: The number of threads in a team that execute a nested parallel region is
implementation-defined (see page 10).

In Visual C++, this number is determined by the operating system.

schedule(runtime): The decision about scheduling is deferred until run time. The schedule type and chunk
size can be chosen at run time by setting the OMP_SCHEDULE environment variable. If this environment
variable isn't set, the resulting schedule is implementation-defined (see page 13).

In Visual C++, schedule type is static with no chunk size.

Default scheduling: In the absence of the schedule clause, the default schedule is implementation-defined
(see page 13).

In Visual C++, the default schedule type is static with no chunk size.

ATOMIC: It's implementation-defined whether an implementation replaces all atomic directives with
critical directives that have the same unique name (see page 20).

In Visual C++, if data modified by atomic isn't on a natural alignment or if it's one or two bytes long, all
atomic operations that satisfy that property will use one critical section. Otherwise, critical sections won't be
used.

omp_get_num_threads: If the number of threads hasn't been explicitly set by the user, the default is
implementation-defined (see page 9).

In Visual C++, the default number of threads is equal to the number of processors.

omp_set_dynamic: The default for dynamic thread adjustment is implementation-defined.

In Visual C++, the default is FALSE .

omp_set_nested: When nested parallelism is enabled, the number of threads used to execute nested

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/e-implementation-defined-behaviors-in-openmp-c-cpp.md

parallel regions is implementation-defined.

In Visual C++, the number of threads is determined by the operating system.

OMP_SCHEDULE environment variable: The default value for this environment variable is
implementation-defined.

In Visual C++, schedule type is static with no chunk size.

OMP_NUM_THREADS environment variable: If no value is specified for the OMP_NUM_THREADS environment
variable, or if the value specified isn't a positive integer, or if the value is greater than the maximum number
of threads the system can support, the number of threads to use is implementation-defined.

In Visual C++, if value specified is zero or less, the number of threads is equal to the number of processors.
If value is greater than 64, the number of threads is 64.

OMP_DYNAMIC environment variable: The default value is implementation-defined.

In Visual C++, the default is FALSE .

F. New features and clarifications in version 2.0
1/28/2019 • 2 minutes to read • Edit Online

This appendix summarizes the key changes made to the OpenMP C/C++ specification in moving from version 1.0
to version 2.0. The following items are new features added to the specification:

Commas are allowed in OpenMP directives.

Addition of the num_threads clause. This clause allows a user to request a specific number of threads for a
parallel construct.

The threadprivate directive has been extended to accept static block-scope variables.

C99 Variable Length Arrays are complete types and can be specified anywhere complete types are allowed,
such as in the lists of private , firstprivate , and lastprivate clauses (see section 2.7.2).

A private variable in a parallel region can be marked private again in a nested directive.

The copyprivate clause has been added. It provides a mechanism to use a private variable to broadcast a
value from one member of a team to the other members. It's an alternative to using a shared variable for
the value when providing such a shared variable would be difficult (for example, in a recursion requiring a
different variable at each level). The copyprivate clause can only appear on the single directive.

Addition of timing routines omp_get_wtick and omp_get_wtime similar to the MPI routines. These
functions are necessary to do wall clock timings.

An appendix with a list of implementation-defined behaviors in OpenMP C/C++ has been added. An
implementation is required to define and document its behavior in these cases.

The following changes serve to clarify or correct features in the previous OpenMP API specification for
C/C++:

Clarified that the behavior of omp_set_nested and omp_set_dynamic when omp_in_parallel returns
nonzero is undefined.

Clarified directive nesting when nested parallel is used.

The lock initialization and lock destruction functions can be called in a parallel region.

New examples have been added to appendix A.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/f-new-features-and-clarifications-in-version-2-0.md

OpenMP Library Reference
4/22/2019 • 2 minutes to read • Edit Online

CONSTRUCT DESCRIPTION

Directives Provides links to directives used in the OpenMP API.

Clauses Provides links to clauses used in the OpenMP API.

Functions Provides links to functions used in the OpenMP API.

Environment Variables Provides links to environment variables used in the OpenMP
API.

OPENMP RUN-TIME LIBRARY CHARACTERISTICS

VCOMP.LIB Multithreaded, dynamic link (import library for VCOMP.LIB).

VCOMPD.LIB Multithreaded, dynamic link (import library for VCOMPD.LID)
(debug)

See also

Provides links to constructs used in the OpenMP API.

The Visual C++ implementation of the OpenMP standard includes the following constructs.

The Visual C++ OpenMP run-time library functions are contained in the following libraries.

If _DEBUG is defined in a compilation and if #include omp.h is in source code, VCOMPD.LIB will be the default lib,
otherwise, VCOMP.LIB will be used.

You can use /NODEFAULTLIB (ignore libraries) to remove the default lib and explicitly link with the lib of your
choice.

The OpenMP DLLs are in the Visual C++ redistributable directory and need to be distributed with applications
that use OpenMP.

OpenMP

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/reference/openmp-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/nodefaultlib-ignore-libraries

OpenMP Directives
4/22/2019 • 10 minutes to read • Edit Online

DIRECTIVE DESCRIPTION

parallel Defines a parallel region, which is code that will be executed
by multiple threads in parallel.

for Causes the work done in a for loop inside a parallel region
to be divided among threads.

sections Identifies code sections to be divided among all threads.

single Lets you specify that a section of code should be executed on
a single thread, not necessarily the master thread.

DIRECTIVE DESCRIPTION

master Specifies that only the master thread should execute a section
of the program.

critical Specifies that code is only executed on one thread at a time.

barrier Synchronizes all threads in a team; all threads pause at the
barrier, until all threads execute the barrier.

atomic Specifies that a memory location that will be updated
atomically.

flush Specifies that all threads have the same view of memory for all
shared objects.

ordered Specifies that code under a parallelized for loop should be
executed like a sequential loop.

DIRECTIVE DESCRIPTION

threadprivate Specifies that a variable is private to a thread.

atomic

Provides links to directives used in the OpenMP API.

Visual C++ supports the following OpenMP directives.

For parallel work-sharing:

For master and synchronization:

For data environment:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/reference/openmp-directives.md

#pragma omp atomic
 expression

Parameters

Remarks

Example

// omp_atomic.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

#define MAX 10

int main() {
 int count = 0;
 #pragma omp parallel num_threads(MAX)
 {
 #pragma omp atomic
 count++;
 }
 printf_s("Number of threads: %d\n", count);
}

Number of threads: 10

barrier

#pragma omp barrier

Remarks

Example

critical

Specifies that a memory location that will be updated atomically.

expression
The statement that has the lvalue, whose memory location you want to protect against more than one write.

The atomic directive supports no clauses.

For more information, see 2.6.4 atomic construct.

Synchronizes all threads in a team; all threads pause at the barrier, until all threads execute the barrier.

The barrier directive supports no clauses.

For more information, see 2.6.3 barrier directive.

For a sample of how to use barrier , see master.

Specifies that code is only be executed on one thread at a time.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-4-atomic-construct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-3-barrier-directive

#pragma omp critical [(name)]
{
 code_block
}

Parameters

Remarks

Example

// omp_critical.cpp
// compile with: /openmp
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

#define SIZE 10

int main()
{
 int i;
 int max;
 int a[SIZE];

 for (i = 0; i < SIZE; i++)
 {
 a[i] = rand();
 printf_s("%d\n", a[i]);
 }

 max = a[0];
 #pragma omp parallel for num_threads(4)
 for (i = 1; i < SIZE; i++)
 {
 if (a[i] > max)
 {
 #pragma omp critical
 {
 // compare a[i] and max again because max
 // could have been changed by another thread after
 // the comparison outside the critical section
 if (a[i] > max)
 max = a[i];
 }
 }
 }

 printf_s("max = %d\n", max);
}

name
(Optional) A name to identify the critical code. The name must be enclosed in parentheses.

The critical directive supports no clauses.

For more information, see 2.6.2 critical construct.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-2-critical-construct

41
18467
6334
26500
19169
15724
11478
29358
26962
24464
max = 29358

flush

#pragma omp flush [(var)]

Parameters

Remarks

Example

Specifies that all threads have the same view of memory for all shared objects.

var
(Optional) A comma-separated list of variables that represent objects you want to synchronize. If var isn't
specified, all memory is flushed.

The flush directive supports no clauses.

For more information, see 2.6.5 flush directive.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-5-flush-directive

// omp_flush.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

void read(int *data) {
 printf_s("read data\n");
 *data = 1;
}

void process(int *data) {
 printf_s("process data\n");
 (*data)++;
}

int main() {
 int data;
 int flag;

 flag = 0;

 #pragma omp parallel sections num_threads(2)
 {
 #pragma omp section
 {
 printf_s("Thread %d: ", omp_get_thread_num());
 read(&data);
 #pragma omp flush(data)
 flag = 1;
 #pragma omp flush(flag)
 // Do more work.
 }

 #pragma omp section
 {
 while (!flag) {
 #pragma omp flush(flag)
 }
 #pragma omp flush(data)

 printf_s("Thread %d: ", omp_get_thread_num());
 process(&data);
 printf_s("data = %d\n", data);
 }
 }
}

Thread 0: read data
Thread 1: process data
data = 2

for

#pragma omp [parallel] for [clauses]
 for_statement

Parameters

Causes the work done in a for loop inside a parallel region to be divided among threads.

clauses
(Optional) Zero or more clauses, see the Remarks section.

Remarks

Example

for_statement
A for loop. Undefined behavior will result if user code in the for loop changes the index variable.

The for directive supports the following clauses:

private
firstprivate
lastprivate
reduction
ordered
schedule
nowait

If parallel is also specified, clauses can be any clause accepted by the parallel or for directives, except
nowait .

For more information, see 2.4.1 for construct.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-1-for-construct

// omp_for.cpp
// compile with: /openmp
#include <stdio.h>
#include <math.h>
#include <omp.h>

#define NUM_THREADS 4
#define NUM_START 1
#define NUM_END 10

int main() {
 int i, nRet = 0, nSum = 0, nStart = NUM_START, nEnd = NUM_END;
 int nThreads = 0, nTmp = nStart + nEnd;
 unsigned uTmp = (unsigned((abs(nStart - nEnd) + 1)) *
 unsigned(abs(nTmp))) / 2;
 int nSumCalc = uTmp;

 if (nTmp < 0)
 nSumCalc = -nSumCalc;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel default(none) private(i) shared(nSum, nThreads, nStart, nEnd)
 {
 #pragma omp master
 nThreads = omp_get_num_threads();

 #pragma omp for
 for (i=nStart; i<=nEnd; ++i) {
 #pragma omp atomic
 nSum += i;
 }
 }

 if (nThreads == NUM_THREADS) {
 printf_s("%d OpenMP threads were used.\n", NUM_THREADS);
 nRet = 0;
 }
 else {
 printf_s("Expected %d OpenMP threads, but %d were used.\n",
 NUM_THREADS, nThreads);
 nRet = 1;
 }

 if (nSum != nSumCalc) {
 printf_s("The sum of %d through %d should be %d, "
 "but %d was reported!\n",
 NUM_START, NUM_END, nSumCalc, nSum);
 nRet = 1;
 }
 else
 printf_s("The sum of %d through %d is %d\n",
 NUM_START, NUM_END, nSum);
}

4 OpenMP threads were used.
The sum of 1 through 10 is 55

master
Specifies that only the master thread should execute a section of the program.

#pragma omp master
{
 code_block
}

Remarks

Example

// omp_master.cpp
// compile with: /openmp
#include <omp.h>
#include <stdio.h>

int main()
{
 int a[5], i;

 #pragma omp parallel
 {
 // Perform some computation.
 #pragma omp for
 for (i = 0; i < 5; i++)
 a[i] = i * i;

 // Print intermediate results.
 #pragma omp master
 for (i = 0; i < 5; i++)
 printf_s("a[%d] = %d\n", i, a[i]);

 // Wait.
 #pragma omp barrier

 // Continue with the computation.
 #pragma omp for
 for (i = 0; i < 5; i++)
 a[i] += i;
 }
}

a[0] = 0
a[1] = 1
a[2] = 4
a[3] = 9
a[4] = 16

ordered

#pragma omp ordered
 structured-block

The master directive supports no clauses.

The single directive lets you specify that a section of code should be executed on a single thread, not necessarily
the master thread.

For more information, see 2.6.1 master construct.

Specifies that code under a parallelized for loop should be executed like a sequential loop.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-1-master-construct

Remarks

Example

// omp_ordered.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

static float a[1000], b[1000], c[1000];

void test(int first, int last)
{
 #pragma omp for schedule(static) ordered
 for (int i = first; i <= last; ++i) {
 // Do something here.
 if (i % 2)
 {
 #pragma omp ordered
 printf_s("test() iteration %d\n", i);
 }
 }
}

void test2(int iter)
{
 #pragma omp ordered
 printf_s("test2() iteration %d\n", iter);
}

int main()
{
 int i;
 #pragma omp parallel
 {
 test(1, 8);
 #pragma omp for ordered
 for (i = 0 ; i < 5 ; i++)
 test2(i);
 }
}

test() iteration 1
test() iteration 3
test() iteration 5
test() iteration 7
test2() iteration 0
test2() iteration 1
test2() iteration 2
test2() iteration 3
test2() iteration 4

parallel

The ordered directive must be within the dynamic extent of a for or parallel for construct with an ordered

clause.

The ordered directive supports no clauses.

For more information, see 2.6.6 ordered construct.

Defines a parallel region, which is code that will be executed by multiple threads in parallel.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-6-6-ordered-construct

#pragma omp parallel [clauses]
{
 code_block
}

Parameters

Remarks

Example

// omp_parallel.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main() {
 #pragma omp parallel num_threads(4)
 {
 int i = omp_get_thread_num();
 printf_s("Hello from thread %d\n", i);
 }
}

Hello from thread 0
Hello from thread 1
Hello from thread 2
Hello from thread 3

sections

clauses
(Optional) Zero or more clauses, see the Remarks section.

The parallel directive supports the following clauses:

if
private
firstprivate
default
shared
copyin
reduction
num_threads

parallel can also be used with the for and sections directives.

For more information, see 2.3 parallel construct.

The following sample shows how to set the number of threads and define a parallel region. The number of threads
is equal by default to the number of logical processors on the machine. For example, if you have a machine with
one physical processor that has hyperthreading enabled, it will have two logical processors and two threads. The
order of output can vary on different machines.

Identifies code sections to be divided among all threads.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-3-parallel-construct

#pragma omp [parallel] sections [clauses]
{
 #pragma omp section
 {
 code_block
 }
}

Parameters

Remarks

Example

// omp_sections.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main() {
 #pragma omp parallel sections num_threads(4)
 {
 printf_s("Hello from thread %d\n", omp_get_thread_num());
 #pragma omp section
 printf_s("Hello from thread %d\n", omp_get_thread_num());
 }
}

Hello from thread 0
Hello from thread 0

single

#pragma omp single [clauses]
{
 code_block
}

clauses
(Optional) Zero or more clauses, see the Remarks section.

The sections directive can contain zero or more section directives.

The sections directive supports the following clauses:

private
firstprivate
lastprivate
reduction
nowait

If parallel is also specified, clauses can be any clause accepted by the parallel or sections directives, except
nowait .

For more information, see 2.4.2 sections construct.

Lets you specify that a section of code should be executed on a single thread, not necessarily the master thread.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-2-sections-construct

Parameters

Remarks

Example

// omp_single.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main() {
 #pragma omp parallel num_threads(2)
 {
 #pragma omp single
 // Only a single thread can read the input.
 printf_s("read input\n");

 // Multiple threads in the team compute the results.
 printf_s("compute results\n");

 #pragma omp single
 // Only a single thread can write the output.
 printf_s("write output\n");
 }
}

read input
compute results
compute results
write output

threadprivate

#pragma omp threadprivate(var)

Parameters

Remarks

clauses
(Optional) Zero or more clauses, see the Remarks section.

The single directive supports the following clauses:

private
firstprivate
copyprivate
nowait

The master directive lets you specify that a section of code should be executed only on the master thread.

For more information, see 2.4.3 single construct.

Specifies that a variable is private to a thread.

var
A comma-separated list of variables that you want to make private to a thread. var must be either a global- or
namespace-scoped variable or a local static variable.

The threadprivate directive supports no clauses.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-3-single-construct

struct MyType
{
 ~MyType();
};

MyType threaded_var;
#pragma omp threadprivate(threaded_var)
int main()
{
 #pragma omp parallel
 {}
}

Example

The threadprivate directive is based on the thread attribute using the __declspec keyword; limits on
__declspec(thread) apply to threadprivate . For example, a threadprivate variable will exist in any thread started

in the process, not just those threads that are part of a thread team spawned by a parallel region. Be aware of this
implementation detail; you may notice that constructors for a threadprivate user-defined type are called more
often then expected.

You can use threadprivate in a DLL that is statically loaded at process startup, however you can't use
threadprivate in any DLL that will be loaded via LoadLibrary such as DLLs that are loaded with /DELAYLOAD

(delay load import), which also uses LoadLibrary .

A threadprivate variable of a destructible type isn't guaranteed to have its destructor called. For example:

Users have no control as to when the threads constituting the parallel region will terminate. If those threads exist
when the process exits, the threads won't be notified about the process exit, and the destructor won't be called for
threaded_var on any thread except the one that exits (here, the primary thread). So code shouldn't count on

proper destruction of threadprivate variables.

For more information, see 2.7.1 threadprivate directive.

For a sample of using threadprivate , see private.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/thread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/declspec
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/delayload-delay-load-import
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-1-threadprivate-directive

OpenMP Clauses
4/22/2019 • 14 minutes to read • Edit Online

CLAUSE DESCRIPTION

if Specifies whether a loop should be executed in parallel or in
serial.

num_threads Sets the number of threads in a thread team.

ordered Required on a parallel for statement if an ordered directive is
to be used in the loop.

schedule Applies to the for directive.

nowait Overrides the barrier implicit in a directive.

CLAUSE DESCRIPTION

private Specifies that each thread should have its own instance of a
variable.

firstprivate Specifies that each thread should have its own instance of a
variable, and that the variable should be initialized with the
value of the variable, because it exists before the parallel
construct.

lastprivate Specifies that the enclosing context's version of the variable is
set equal to the private version of whichever thread executes
the final iteration (for-loop construct) or last section (#pragma
sections).

shared Specifies that one or more variables should be shared among
all threads.

default Specifies the behavior of unscoped variables in a parallel
region.

reduction Specifies that one or more variables that are private to each
thread are the subject of a reduction operation at the end of
the parallel region.

copyin Allows threads to access the master thread's value, for a
threadprivate variable.

Provides links to clauses used in the OpenMP API.

Visual C++ supports the following OpenMP clauses.

For general attributes:

For data-sharing attributes:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/reference/openmp-clauses.md

copyprivate Specifies that one or more variables should be shared among
all threads.

CLAUSE DESCRIPTION

copyin

copyin(var)

Parameters

Remarks

Example

copyprivate

copyprivate(var)

Parameters

Remarks

Example

Allows threads to access the master thread's value, for a threadprivate variable.

var
The threadprivate variable that will be initialized with the variable's value in the master thread, as it exists before
the parallel construct.

copyin applies to the following directives:

parallel
for
sections

For more information, see 2.7.2.7 copyin.

See threadprivate for an example of using copyin .

Specifies that one or more variables should be shared among all threads.

var
One or more variables to share. If more than one variable is specified, separate variable names with a comma.

copyprivate applies to the single directive.

For more information, see 2.7.2.8 copyprivate.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-7-copyin
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-8-copyprivate

// omp_copyprivate.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

float x, y, fGlobal = 1.0;
#pragma omp threadprivate(x, y)

float get_float() {
 fGlobal += 0.001;
 return fGlobal;
}

void use_float(float f, int t) {
 printf_s("Value = %f, thread = %d\n", f, t);
}

void CopyPrivate(float a, float b) {
 #pragma omp single copyprivate(a, b, x, y)
 {
 a = get_float();
 b = get_float();
 x = get_float();
 y = get_float();
 }

 use_float(a, omp_get_thread_num());
 use_float(b, omp_get_thread_num());
 use_float(x, omp_get_thread_num());
 use_float(y, omp_get_thread_num());
}

int main() {
 float a = 9.99, b = 123.456;

 printf_s("call CopyPrivate from a single thread\n");
 CopyPrivate(9.99, 123.456);

 printf_s("call CopyPrivate from a parallel region\n");
 #pragma omp parallel
 {
 CopyPrivate(a, b);
 }
}

call CopyPrivate from a single thread
Value = 1.001000, thread = 0
Value = 1.002000, thread = 0
Value = 1.003000, thread = 0
Value = 1.004000, thread = 0
call CopyPrivate from a parallel region
Value = 1.005000, thread = 0
Value = 1.005000, thread = 1
Value = 1.006000, thread = 0
Value = 1.006000, thread = 1
Value = 1.007000, thread = 0
Value = 1.007000, thread = 1
Value = 1.008000, thread = 0
Value = 1.008000, thread = 1

default
Specifies the behavior of unscoped variables in a parallel region.

default(shared | none)

Remarks

Example

firstprivate

firstprivate(var)

Parameters

Remarks

Example

if (OpenMP)

if(expression)

Parameters

shared , which is in effect if the default clause is unspecified, means that any variable in a parallel region will be
treated as if it were specified with the shared clause. none means that any variables used in a parallel region that
aren't scoped with the private, shared, reduction, firstprivate, or lastprivate clause will cause a compiler error.

default applies to the following directives:

parallel
for
sections

For more information, see 2.7.2.5 default.

See private for an example of using default .

Specifies that each thread should have its own instance of a variable, and that the variable should be initialized with
the value of the variable, because it exists before the parallel construct.

var
The variable to have instances in each thread and that will be initialized with the variable's value, because it exists
before the parallel construct. If more than one variable is specified, separate variable names with a comma.

firstprivate applies to the following directives:

for
parallel
sections
single

For more information, see 2.7.2.2 firstprivate.

For an example of using firstprivate , see the example in private.

Specifies whether a loop should be executed in parallel or in serial.

expression
An integral expression that, if it evaluates to true (nonzero), causes the code in the parallel region to execute in

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-5-default
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-2-firstprivate

Remarks

Example

// omp_if.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

void test(int val)
{
 #pragma omp parallel if (val)
 if (omp_in_parallel())
 {
 #pragma omp single
 printf_s("val = %d, parallelized with %d threads\n",
 val, omp_get_num_threads());
 }
 else
 {
 printf_s("val = %d, serialized\n", val);
 }
}

int main()
{
 omp_set_num_threads(2);
 test(0);
 test(2);
}

val = 0, serialized
val = 2, parallelized with 2 threads

lastprivate

lastprivate(var)

Parameters

Remarks

parallel. If the expression evaluates to false (zero), the parallel region is executed in serial (by a single thread).

if applies to the following directives:

parallel
for
sections

For more information, see 2.3 parallel construct.

Specifies that the enclosing context's version of the variable is set equal to the private version of whichever thread
executes the final iteration (for-loop construct) or last section (#pragma sections).

var
The variable that is set equal to the private version of whichever thread executes the final iteration (for-loop
construct) or last section (#pragma sections).

lastprivate applies to the following directives:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-3-parallel-construct

Example

nowait

nowait

Remarks

Example

// omp_nowait.cpp
// compile with: /openmp /c
#include <stdio.h>

#define SIZE 5

void test(int *a, int *b, int *c, int size)
{
 int i;
 #pragma omp parallel
 {
 #pragma omp for nowait
 for (i = 0; i < size; i++)
 b[i] = a[i] * a[i];

 #pragma omp for nowait
 for (i = 0; i < size; i++)
 c[i] = a[i]/2;
 }
}

int main()
{
 int a[SIZE], b[SIZE], c[SIZE];
 int i;

 for (i=0; i<SIZE; i++)
 a[i] = i;

 test(a,b,c, SIZE);

 for (i=0; i<SIZE; i++)
 printf_s("%d, %d, %d\n", a[i], b[i], c[i]);
}

for
sections

For more information, see 2.7.2.3 lastprivate.

See schedule for an example of using lastprivate clause.

Overrides the barrier implicit in a directive.

nowait applies to the following directives:

for
sections
single

For more information, see 2.4.1 for construct, 2.4.2 sections construct, and 2.4.3 single construct.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-3-lastprivate
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-1-for-construct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-2-sections-construct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-3-single-construct

0, 0, 0
1, 1, 0
2, 4, 1
3, 9, 1
4, 16, 2

num_threads

num_threads(num)

Parameters

Remarks

Example

ordered

ordered

Remarks

Example

private

private(var)

Parameters

Sets the number of threads in a thread team.

num
The number of threads

The num_threads clause has the same functionality as the omp_set_num_threads function.

num_threads applies to the following directives:

parallel
for
sections

For more information, see 2.3 parallel construct.

See parallel for an example of using num_threads clause.

Required on a parallel for statement if an ordered directive is to be used in the loop.

ordered applies to the for directive.

For more information, see 2.4.1 for construct.

See ordered for an example of using ordered clause.

Specifies that each thread should have its own instance of a variable.

var

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-3-parallel-construct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-1-for-construct

Remarks

Example

// openmp_private.c
// compile with: /openmp
#include <windows.h>
#include <assert.h>
#include <stdio.h>
#include <omp.h>

#define NUM_THREADS 4
#define SLEEP_THREAD 1
#define NUM_LOOPS 2

enum Types {
 ThreadPrivate,
 Private,
 FirstPrivate,
 LastPrivate,
 Shared,
 MAX_TYPES
};

int nSave[NUM_THREADS][MAX_TYPES][NUM_LOOPS] = {{0}};
int nThreadPrivate;

#pragma omp threadprivate(nThreadPrivate)
#pragma warning(disable:4700)

int main() {
 int nPrivate = NUM_THREADS;
 int nFirstPrivate = NUM_THREADS;
 int nLastPrivate = NUM_THREADS;
 int nShared = NUM_THREADS;
 int nRet = 0;
 int i;
 int j;
 int nLoop = 0;

 nThreadPrivate = NUM_THREADS;
 printf_s("These are the variables before entry "
 "into the parallel region.\n");
 printf_s("nThreadPrivate = %d\n", nThreadPrivate);
 printf_s(" nPrivate = %d\n", nPrivate);
 printf_s(" nFirstPrivate = %d\n", nFirstPrivate);
 printf_s(" nLastPrivate = %d\n", nLastPrivate);
 printf_s(" nShared = %d\n\n", nShared);
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel copyin(nThreadPrivate) private(nPrivate) shared(nShared) firstprivate(nFirstPrivate)
 {
 #pragma omp for schedule(static) lastprivate(nLastPrivate)
 for (i = 0 ; i < NUM_THREADS ; ++i) {
 for (j = 0 ; j < NUM_LOOPS ; ++j) {
 int nThread = omp_get_thread_num();

The variable to have instances in each thread.

private applies to the following directives:

for
parallel
sections
single

For more information, see 2.7.2.1 private.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-1-private

 int nThread = omp_get_thread_num();
 assert(nThread < NUM_THREADS);

 if (nThread == SLEEP_THREAD)
 Sleep(100);
 nSave[nThread][ThreadPrivate][j] = nThreadPrivate;
 nSave[nThread][Private][j] = nPrivate;
 nSave[nThread][Shared][j] = nShared;
 nSave[nThread][FirstPrivate][j] = nFirstPrivate;
 nSave[nThread][LastPrivate][j] = nLastPrivate;
 nThreadPrivate = nThread;
 nPrivate = nThread;
 nShared = nThread;
 nLastPrivate = nThread;
 --nFirstPrivate;
 }
 }
 }

 for (i = 0 ; i < NUM_LOOPS ; ++i) {
 for (j = 0 ; j < NUM_THREADS ; ++j) {
 printf_s("These are the variables at entry of "
 "loop %d of thread %d.\n", i + 1, j);
 printf_s("nThreadPrivate = %d\n",
 nSave[j][ThreadPrivate][i]);
 printf_s(" nPrivate = %d\n",
 nSave[j][Private][i]);
 printf_s(" nFirstPrivate = %d\n",
 nSave[j][FirstPrivate][i]);
 printf_s(" nLastPrivate = %d\n",
 nSave[j][LastPrivate][i]);
 printf_s(" nShared = %d\n\n",
 nSave[j][Shared][i]);
 }
 }

 printf_s("These are the variables after exit from "
 "the parallel region.\n");
 printf_s("nThreadPrivate = %d (The last value in the "
 "master thread)\n", nThreadPrivate);
 printf_s(" nPrivate = %d (The value prior to "
 "entering parallel region)\n", nPrivate);
 printf_s(" nFirstPrivate = %d (The value prior to "
 "entering parallel region)\n", nFirstPrivate);
 printf_s(" nLastPrivate = %d (The value from the "
 "last iteration of the loop)\n", nLastPrivate);
 printf_s(" nShared = %d (The value assigned, "
 "from the delayed thread, %d)\n\n",
 nShared, SLEEP_THREAD);
}

These are the variables before entry into the parallel region.
nThreadPrivate = 4
 nPrivate = 4
nFirstPrivate = 4
 nLastPrivate = 4
 nShared = 4

These are the variables at entry of loop 1 of thread 0.
nThreadPrivate = 4
 nPrivate = 1310720
nFirstPrivate = 4
 nLastPrivate = 1245104
 nShared = 3

These are the variables at entry of loop 1 of thread 1.
nThreadPrivate = 4
 nPrivate = 4488

 nPrivate = 4488
nFirstPrivate = 4
 nLastPrivate = 19748
 nShared = 0

These are the variables at entry of loop 1 of thread 2.
nThreadPrivate = 4
 nPrivate = -132514848
nFirstPrivate = 4
 nLastPrivate = -513199792
 nShared = 4

These are the variables at entry of loop 1 of thread 3.
nThreadPrivate = 4
 nPrivate = 1206
nFirstPrivate = 4
 nLastPrivate = 1204
 nShared = 2

These are the variables at entry of loop 2 of thread 0.
nThreadPrivate = 0
 nPrivate = 0
nFirstPrivate = 3
 nLastPrivate = 0
 nShared = 0

These are the variables at entry of loop 2 of thread 1.
nThreadPrivate = 1
 nPrivate = 1
nFirstPrivate = 3
 nLastPrivate = 1
 nShared = 1

These are the variables at entry of loop 2 of thread 2.
nThreadPrivate = 2
 nPrivate = 2
nFirstPrivate = 3
 nLastPrivate = 2
 nShared = 2

These are the variables at entry of loop 2 of thread 3.
nThreadPrivate = 3
 nPrivate = 3
nFirstPrivate = 3
 nLastPrivate = 3
 nShared = 3

These are the variables after exit from the parallel region.
nThreadPrivate = 0 (The last value in the master thread)
 nPrivate = 4 (The value prior to entering parallel region)
nFirstPrivate = 4 (The value prior to entering parallel region)
 nLastPrivate = 3 (The value from the last iteration of the loop)
 nShared = 1 (The value assigned, from the delayed thread, 1)

reduction

reduction(operation:var)

Parameters

Specifies that one or more variables that are private to each thread are the subject of a reduction operation at the
end of the parallel region.

operation
The operator for the operation to do on the variables var at the end of the parallel region.

Remarks

Example

// omp_reduction.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

#define NUM_THREADS 4
#define SUM_START 1
#define SUM_END 10
#define FUNC_RETS {1, 1, 1, 1, 1}

int bRets[5] = FUNC_RETS;
int nSumCalc = ((SUM_START + SUM_END) * (SUM_END - SUM_START + 1)) / 2;

int func1() {return bRets[0];}
int func2() {return bRets[1];}
int func3() {return bRets[2];}
int func4() {return bRets[3];}
int func5() {return bRets[4];}

int main()
{
 int nRet = 0,
 nCount = 0,
 nSum = 0,
 i,
 bSucceed = 1;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel reduction(+ : nCount)
 {
 nCount += 1;

 #pragma omp for reduction(+ : nSum)
 for (i = SUM_START ; i <= SUM_END ; ++i)
 nSum += i;

 #pragma omp sections reduction(&& : bSucceed)
 {
 #pragma omp section
 {
 bSucceed = bSucceed && func1();
 }

 #pragma omp section
 {
 bSucceed = bSucceed && func2();
 }

 #pragma omp section
 {

var
One or more variables on which to do scalar reduction. If more than one variable is specified, separate variable
names with a comma.

reduction applies to the following directives:

parallel
for
sections

For more information, see 2.7.2.6 reduction.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-6-reduction

 {
 bSucceed = bSucceed && func3();
 }

 #pragma omp section
 {
 bSucceed = bSucceed && func4();
 }

 #pragma omp section
 {
 bSucceed = bSucceed && func5();
 }
 }
 }

 printf_s("The parallel section was executed %d times "
 "in parallel.\n", nCount);
 printf_s("The sum of the consecutive integers from "
 "%d to %d, is %d\n", 1, 10, nSum);

 if (bSucceed)
 printf_s("All of the functions, func1 through "
 "func5 succeeded!\n");
 else
 printf_s("One or more of the functions, func1 "
 "through func5 failed!\n");

 if (nCount != NUM_THREADS)
 {
 printf_s("ERROR: For %d threads, %d were counted!\n",
 NUM_THREADS, nCount);
 nRet |= 0x1;
 }

 if (nSum != nSumCalc)
 {
 printf_s("ERROR: The sum of %d through %d should be %d, "
 "but %d was reported!\n",
 SUM_START, SUM_END, nSumCalc, nSum);
 nRet |= 0x10;
 }

 if (bSucceed != (bRets[0] && bRets[1] &&
 bRets[2] && bRets[3] && bRets[4]))
 {
 printf_s("ERROR: The sum of %d through %d should be %d, "
 "but %d was reported!\n",
 SUM_START, SUM_END, nSumCalc, nSum);
 nRet |= 0x100;
 }
}

The parallel section was executed 4 times in parallel.
The sum of the consecutive integers from 1 to 10, is 55
All of the functions, func1 through func5 succeeded!

schedule

schedule(type[,size])

Applies to the for directive.

Parameters

Remarks

Example

// omp_schedule.cpp
// compile with: /openmp
#include <windows.h>
#include <stdio.h>
#include <omp.h>

#define NUM_THREADS 4
#define STATIC_CHUNK 5
#define DYNAMIC_CHUNK 5
#define NUM_LOOPS 20
#define SLEEP_EVERY_N 3

int main()
{
 int nStatic1[NUM_LOOPS],
 nStaticN[NUM_LOOPS];
 int nDynamic1[NUM_LOOPS],
 nDynamicN[NUM_LOOPS];
 int nGuided[NUM_LOOPS];

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 {
 #pragma omp for schedule(static, 1)
 for (int i = 0 ; i < NUM_LOOPS ; ++i)
 {
 if ((i % SLEEP_EVERY_N) == 0)
 Sleep(0);
 nStatic1[i] = omp_get_thread_num();
 }

 #pragma omp for schedule(static, STATIC_CHUNK)
 for (int i = 0 ; i < NUM_LOOPS ; ++i)
 {
 if ((i % SLEEP_EVERY_N) == 0)
 Sleep(0);
 nStaticN[i] = omp_get_thread_num();
 }

 #pragma omp for schedule(dynamic, 1)
 for (int i = 0 ; i < NUM_LOOPS ; ++i)
 {
 if ((i % SLEEP_EVERY_N) == 0)
 Sleep(0);
 nDynamic1[i] = omp_get_thread_num();
 }

 #pragma omp for schedule(dynamic, DYNAMIC_CHUNK)
 for (int i = 0 ; i < NUM_LOOPS ; ++i)
 {
 if ((i % SLEEP_EVERY_N) == 0)
 Sleep(0);
 nDynamicN[i] = omp_get_thread_num();

type
The kind of scheduling, either dynamic , guided , runtime , or static .

size
(Optional) Specifies the size of iterations. size must be an integer. Not valid when type is runtime .

For more information, see 2.4.1 for construct.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-4-1-for-construct

 }

 #pragma omp for schedule(guided)
 for (int i = 0 ; i < NUM_LOOPS ; ++i)
 {
 if ((i % SLEEP_EVERY_N) == 0)
 Sleep(0);
 nGuided[i] = omp_get_thread_num();
 }
 }

 printf_s("--\n");
 printf_s("| static | static | dynamic | dynamic | guided |\n");
 printf_s("| 1 | %d | 1 | %d | |\n",
 STATIC_CHUNK, DYNAMIC_CHUNK);
 printf_s("--\n");

 for (int i=0; i<NUM_LOOPS; ++i)
 {
 printf_s("| %d | %d | %d | %d |"
 " %d |\n",
 nStatic1[i], nStaticN[i],
 nDynamic1[i], nDynamicN[i], nGuided[i]);
 }

 printf_s("--\n");
}

--
| static | static | dynamic | dynamic | guided |
| 1 | 5 | 1 | 5 | |
--
0	0	0	2	1
1	0	3	2	1
2	0	3	2	1
3	0	3	2	1
0	0	2	2	1
1	1	2	3	3
2	1	2	3	3
3	1	0	3	3
0	1	0	3	3
1	1	0	3	2
2	2	1	0	2
3	2	1	0	2
0	2	1	0	3
1	2	2	0	3
2	2	2	0	0
3	3	2	1	0
0	3	3	1	1
1	3	3	1	1
2	3	3	1	1
3	3	0	1	3
--

shared

shared(var)

Parameters

Specifies that one or more variables should be shared among all threads.

var

Remarks

Example

One or more variables to share. If more than one variable is specified, separate variable names with a comma.

Another way to share variables among threads is with the copyprivate clause.

shared applies to the following directives:

parallel
for
sections

For more information, see 2.7.2.4 shared.

See private for an example of using shared .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/2-7-2-4-shared

OpenMP Functions
4/22/2019 • 13 minutes to read • Edit Online

FUNCTION DESCRIPTION

omp_set_num_threads Sets the number of threads in upcoming parallel regions,
unless overridden by a num_threads clause.

omp_get_num_threads Returns the number of threads in the parallel region.

omp_get_max_threads Returns an integer that is equal to or greater than the number
of threads that would be available if a parallel region without
num_threads were defined at that point in the code.

omp_get_thread_num Returns the thread number of the thread executing within its
thread team.

omp_get_num_procs Returns the number of processors that are available when the
function is called.

omp_in_parallel Returns nonzero if called from within a parallel region.

omp_set_dynamic Indicates that the number of threads available in upcoming
parallel regions can be adjusted by the run time.

omp_get_dynamic Returns a value that indicates if the number of threads
available in upcoming parallel regions can be adjusted by the
run time.

omp_set_nested Enables nested parallelism.

omp_get_nested Returns a value that indicates if nested parallelism is enabled.

FUNCTION DESCRIPTION

omp_init_lock Initializes a simple lock.

omp_init_nest_lock Initializes a lock.

omp_destroy_lock Uninitializes a lock.

omp_destroy_nest_lock Uninitializes a nestable lock.

Provides links to functions used in the OpenMP API.

The Visual C++ implementation of the OpenMP standard includes the following functions and data types.

For environment execution:

For lock:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/reference/openmp-functions.md

omp_set_lock Blocks thread execution until a lock is available.

omp_set_nest_lock Blocks thread execution until a lock is available.

omp_unset_lock Releases a lock.

omp_unset_nest_lock Releases a nestable lock.

omp_test_lock Attempts to set a lock but doesn't block thread execution.

omp_test_nest_lock Attempts to set a nestable lock but doesn't block thread
execution.

FUNCTION DESCRIPTION

DATA TYPE DESCRIPTION

omp_lock_t A type that holds the status of a lock, whether the lock is
available or if a thread owns a lock.

omp_nest_lock_t A type that holds one of the following pieces of information
about a lock: whether the lock is available, and the identity of
the thread that owns the lock and a nesting count.

FUNCTION DESCRIPTION

omp_get_wtime Returns a value in seconds of the time elapsed from some
point.

omp_get_wtick Returns the number of seconds between processor clock ticks.

omp_destroy_lock

void omp_destroy_lock(
 omp_lock_t *lock
);

Parameters

Remarks

Example

omp_destroy_nest_lock

For timing routines:

Uninitializes a lock.

lock
A variable of type omp_lock_t that was initialized with omp_init_lock.

For more information, see 3.2.2 omp_destroy_lock and omp_destroy_nest_lock functions.

See omp_init_lock for an example of using omp_destroy_lock .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-2-omp-destroy-lock-and-omp-destroy-nest-lock-functions

void omp_destroy_nest_lock(
 omp_nest_lock_t *lock
);

Parameters

Remarks

Example

omp_get_dynamic

int omp_get_dynamic();

Return value

Remarks

Example

omp_get_max_threads

int omp_get_max_threads()

Remarks

Example

Uninitializes a nestable lock.

lock
A variable of type omp_nest_lock_t that was initialized with omp_init_nest_lock.

For more information, see 3.2.2 omp_destroy_lock and omp_destroy_nest_lock functions.

See omp_init_nest_lock for an example of using omp_destroy_nest_lock .

Returns a value that indicates if the number of threads available in upcoming parallel regions can be adjusted by
the run time.

A nonzero value means threads will be dynamically adjusted.

Dynamic adjustment of threads is specified with omp_set_dynamic and OMP_DYNAMIC.

For more information, see 3.1.7 omp_set_dynamic function.

See omp_set_dynamic for an example of using omp_get_dynamic .

Returns an integer that is equal to or greater than the number of threads that would be available if a parallel region
without num_threads were defined at that point in the code.

For more information, see 3.1.3 omp_get_max_threads function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-2-omp-destroy-lock-and-omp-destroy-nest-lock-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-7-omp-set-dynamic-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-3-omp-get-max-threads-function

// omp_get_max_threads.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 omp_set_num_threads(8);
 printf_s("%d\n", omp_get_max_threads());
 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_get_max_threads());
 }

 printf_s("%d\n", omp_get_max_threads());

 #pragma omp parallel num_threads(3)
 #pragma omp master
 {
 printf_s("%d\n", omp_get_max_threads());
 }

 printf_s("%d\n", omp_get_max_threads());
}

8
8
8
8
8

omp_get_nested

int omp_get_nested();

Return value

Remarks

Example

omp_get_num_procs

int omp_get_num_procs();

Remarks

Returns a value that indicates if nested parallelism is enabled.

A nonzero value means nested parallelism is enabled.

Nested parallelism is specified with omp_set_nested and OMP_NESTED.

For more information, see 3.1.10 omp_get_nested function.

See omp_set_nested for an example of using omp_get_nested .

Returns the number of processors that are available when the function is called.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-10-omp-get-nested-function

Example

// omp_get_num_procs.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 printf_s("%d\n", omp_get_num_procs());
 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_get_num_procs());
 }
}

// Expect the following output when the example is run on a two-processor machine:
2
2

omp_get_num_threads

int omp_get_num_threads();

Remarks

Example

// omp_get_num_threads.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 omp_set_num_threads(4);
 printf_s("%d\n", omp_get_num_threads());
 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_get_num_threads());
 }

 printf_s("%d\n", omp_get_num_threads());

 #pragma omp parallel num_threads(3)
 #pragma omp master
 {
 printf_s("%d\n", omp_get_num_threads());
 }

 printf_s("%d\n", omp_get_num_threads());
}

For more information, see 3.1.5 omp_get_num_procs function.

Returns the number of threads in the parallel region.

For more information, see 3.1.2 omp_get_num_threads function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-5-omp-get-num-procs-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-2-omp-get-num-threads-function

1
4
1
3
1

omp_get_thread_num

int omp_get_thread_num();

Remarks

Example

omp_get_wtick

double omp_get_wtick();

Remarks

Example

omp_get_wtime

double omp_get_wtime();

Return value

Remarks

Example

Returns the thread number of the thread executing within its thread team.

For more information, see 3.1.4 omp_get_thread_num function.

See parallel for an example of using omp_get_thread_num .

Returns the number of seconds between processor clock ticks.

For more information, see 3.3.2 omp_get_wtick function.

See omp_get_wtime for an example of using omp_get_wtick .

Returns a value in seconds of the time elapsed from some point.

Returns a value in seconds of the time elapsed from some arbitrary, but consistent point.

That point will remain consistent during program execution, making upcoming comparisons possible.

For more information, see 3.3.1 omp_get_wtime function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-4-omp-get-thread-num-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-3-2-omp-get-wtick-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-3-1-omp-get-wtime-function

// omp_get_wtime.cpp
// compile with: /openmp
#include "omp.h"
#include <stdio.h>
#include <windows.h>

int main() {
 double start = omp_get_wtime();
 Sleep(1000);
 double end = omp_get_wtime();
 double wtick = omp_get_wtick();

 printf_s("start = %.16g\nend = %.16g\ndiff = %.16g\n",
 start, end, end - start);

 printf_s("wtick = %.16g\n1/wtick = %.16g\n",
 wtick, 1.0 / wtick);
}

start = 594255.3671159324
end = 594256.3664474116
diff = 0.9993314791936427
wtick = 2.793651148400146e-007
1/wtick = 3579545

omp_in_parallel

int omp_in_parallel();

Remarks

Example

// omp_in_parallel.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 omp_set_num_threads(4);
 printf_s("%d\n", omp_in_parallel());

 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_in_parallel());
 }
}

0
1

omp_init_lock

Returns nonzero if called from within a parallel region.

For more information, see 3.1.6 omp_in_parallel function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-6-omp-in-parallel-function

void omp_init_lock(
 omp_lock_t *lock
);

Parameters

Remarks

Example

// omp_init_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

omp_lock_t my_lock;

int main() {
 omp_init_lock(&my_lock);

 #pragma omp parallel num_threads(4)
 {
 int tid = omp_get_thread_num();
 int i, j;

 for (i = 0; i < 5; ++i) {
 omp_set_lock(&my_lock);
 printf_s("Thread %d - starting locked region\n", tid);
 printf_s("Thread %d - ending locked region\n", tid);
 omp_unset_lock(&my_lock);
 }
 }

 omp_destroy_lock(&my_lock);
}

Initializes a simple lock.

lock
A variable of type omp_lock_t .

For more information, see 3.2.1 omp_init_lock and omp_init_nest_lock functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-1-omp-init-lock-and-omp-init-nest-lock-functions

Thread 0 - starting locked region
Thread 0 - ending locked region
Thread 0 - starting locked region
Thread 0 - ending locked region
Thread 0 - starting locked region
Thread 0 - ending locked region
Thread 0 - starting locked region
Thread 0 - ending locked region
Thread 0 - starting locked region
Thread 0 - ending locked region
Thread 1 - starting locked region
Thread 1 - ending locked region
Thread 1 - starting locked region
Thread 1 - ending locked region
Thread 1 - starting locked region
Thread 1 - ending locked region
Thread 1 - starting locked region
Thread 1 - ending locked region
Thread 1 - starting locked region
Thread 1 - ending locked region
Thread 2 - starting locked region
Thread 2 - ending locked region
Thread 2 - starting locked region
Thread 2 - ending locked region
Thread 2 - starting locked region
Thread 2 - ending locked region
Thread 2 - starting locked region
Thread 2 - ending locked region
Thread 2 - starting locked region
Thread 2 - ending locked region
Thread 3 - starting locked region
Thread 3 - ending locked region
Thread 3 - starting locked region
Thread 3 - ending locked region
Thread 3 - starting locked region
Thread 3 - ending locked region
Thread 3 - starting locked region
Thread 3 - ending locked region
Thread 3 - starting locked region
Thread 3 - ending locked region

omp_init_nest_lock

void omp_init_nest_lock(
 omp_nest_lock_t *lock
);

Parameters

Remarks

Example

Initializes a lock.

lock
A variable of type omp_nest_lock_t .

The initial nesting count is zero.

For more information, see 3.2.1 omp_init_lock and omp_init_nest_lock functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-1-omp-init-lock-and-omp-init-nest-lock-functions

// omp_init_nest_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

omp_nest_lock_t my_lock;

void Test() {
 int tid = omp_get_thread_num();
 omp_set_nest_lock(&my_lock);
 printf_s("Thread %d - starting nested locked region\n", tid);
 printf_s("Thread %d - ending nested locked region\n", tid);
 omp_unset_nest_lock(&my_lock);
}

int main() {
 omp_init_nest_lock(&my_lock);

 #pragma omp parallel num_threads(4)
 {
 int i, j;

 for (i = 0; i < 5; ++i) {
 omp_set_nest_lock(&my_lock);
 if (i % 3)
 Test();
 omp_unset_nest_lock(&my_lock);
 }
 }

 omp_destroy_nest_lock(&my_lock);
}

Thread 0 - starting nested locked region
Thread 0 - ending nested locked region
Thread 0 - starting nested locked region
Thread 0 - ending nested locked region
Thread 3 - starting nested locked region
Thread 3 - ending nested locked region
Thread 3 - starting nested locked region
Thread 3 - ending nested locked region
Thread 3 - starting nested locked region
Thread 3 - ending nested locked region
Thread 2 - starting nested locked region
Thread 2 - ending nested locked region
Thread 2 - starting nested locked region
Thread 2 - ending nested locked region
Thread 2 - starting nested locked region
Thread 2 - ending nested locked region
Thread 1 - starting nested locked region
Thread 1 - ending nested locked region
Thread 1 - starting nested locked region
Thread 1 - ending nested locked region
Thread 1 - starting nested locked region
Thread 1 - ending nested locked region
Thread 0 - starting nested locked region
Thread 0 - ending nested locked region

omp_set_dynamic
Indicates that the number of threads available in upcoming parallel regions can be adjusted by the run time.

void omp_set_dynamic(
 int val
);

Parameters

Remarks

Example

// omp_set_dynamic.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 omp_set_dynamic(9);
 omp_set_num_threads(4);
 printf_s("%d\n", omp_get_dynamic());
 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_get_dynamic());
 }
}

1
1

omp_set_lock

void omp_set_lock(
 omp_lock_t *lock
);

Parameters

Remarks

val
A value that indicates if the number of threads available in upcoming parallel regions can be adjusted by the
runtime. If nonzero, the runtime can adjust the number of threads, if zero, the runtime won't dynamically adjust the
number of threads.

The number of threads will never exceed the value set by omp_set_num_threads or by OMP_NUM_THREADS.

Use omp_get_dynamic to display the current setting of omp_set_dynamic .

The setting for omp_set_dynamic will override the setting of the OMP_DYNAMIC environment variable.

For more information, see 3.1.7 omp_set_dynamic function.

Blocks thread execution until a lock is available.

lock
A variable of type omp_lock_t that was initialized with omp_init_lock.

For more information, see 3.2.3 omp_set_lock and omp_set_nest_lock functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-7-omp-set-dynamic-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-3-omp-set-lock-and-omp-set-nest-lock-functions

Examples

omp_set_nest_lock

void omp_set_nest_lock(
 omp_nest_lock_t *lock
);

Parameters

Remarks

Examples

omp_set_nested

void omp_set_nested(
 int val
);

Parameters

Remarks

Example

See omp_init_lock for an example of using omp_set_lock .

Blocks thread execution until a lock is available.

lock
A variable of type omp_nest_lock_t that was initialized with omp_init_nest_lock.

For more information, see 3.2.3 omp_set_lock and omp_set_nest_lock functions.

See omp_init_nest_lock for an example of using omp_set_nest_lock .

Enables nested parallelism.

val
A nonzero value enables nested parallelism, while zero disables nested parallelism.

OMP nested parallelism can be turned on with omp_set_nested , or by setting the OMP_NESTED environment
variable.

The setting for omp_set_nested will override the setting of the OMP_NESTED environment variable.

Enabling the environment variable can break an otherwise operational program, because the number of threads
increases exponentially when nesting parallel regions. For example, a function that recurses six times with the
number of OMP threads set to 4 requires 4,096 (4 to the power of 6) threads. Except with I/O-bound applications,
the performance of an application generally degrades if there are more threads than processors.

Use omp_get_nested to display the current setting of omp_set_nested .

For more information, see 3.1.9 omp_set_nested function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-3-omp-set-lock-and-omp-set-nest-lock-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-9-omp-set-nested-function

// omp_set_nested.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

int main()
{
 omp_set_nested(1);
 omp_set_num_threads(4);
 printf_s("%d\n", omp_get_nested());
 #pragma omp parallel
 #pragma omp master
 {
 printf_s("%d\n", omp_get_nested());
 }
}

1
1

omp_set_num_threads

void omp_set_num_threads(
 int num_threads
);

Parameters

Remarks

Example

omp_test_lock

int omp_test_lock(
 omp_lock_t *lock
);

Parameters

Remarks

Example

Sets the number of threads in upcoming parallel regions, unless overridden by a num_threads clause.

num_threads
The number of threads in the parallel region.

For more information, see 3.1.1 omp_set_num_threads function.

See omp_get_num_threads for an example of using omp_set_num_threads .

Attempts to set a lock but doesn't block thread execution.

lock
A variable of type omp_lock_t that was initialized with omp_init_lock.

For more information, see 3.2.5 omp_test_lock and omp_test_nest_lock functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-1-1-omp-set-num-threads-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-5-omp-test-lock-and-omp-test-nest-lock-functions

// omp_test_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

omp_lock_t simple_lock;

int main() {
 omp_init_lock(&simple_lock);

 #pragma omp parallel num_threads(4)
 {
 int tid = omp_get_thread_num();

 while (!omp_test_lock(&simple_lock))
 printf_s("Thread %d - failed to acquire simple_lock\n",
 tid);

 printf_s("Thread %d - acquired simple_lock\n", tid);

 printf_s("Thread %d - released simple_lock\n", tid);
 omp_unset_lock(&simple_lock);
 }

 omp_destroy_lock(&simple_lock);
}

Thread 1 - acquired simple_lock
Thread 1 - released simple_lock
Thread 0 - failed to acquire simple_lock
Thread 3 - failed to acquire simple_lock
Thread 0 - failed to acquire simple_lock
Thread 3 - failed to acquire simple_lock
Thread 2 - acquired simple_lock
Thread 0 - failed to acquire simple_lock
Thread 3 - failed to acquire simple_lock
Thread 0 - failed to acquire simple_lock
Thread 3 - failed to acquire simple_lock
Thread 2 - released simple_lock
Thread 0 - failed to acquire simple_lock
Thread 3 - failed to acquire simple_lock
Thread 0 - acquired simple_lock
Thread 3 - failed to acquire simple_lock
Thread 0 - released simple_lock
Thread 3 - failed to acquire simple_lock
Thread 3 - acquired simple_lock
Thread 3 - released simple_lock

omp_test_nest_lock

int omp_test_nest_lock(
 omp_nest_lock_t *lock
);

Parameters

Remarks

Attempts to set a nestable lock but doesn't block thread execution.

lock
A variable of type omp_nest_lock_t that was initialized with omp_init_nest_lock.

Example

// omp_test_nest_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>

omp_nest_lock_t nestable_lock;

int main() {
 omp_init_nest_lock(&nestable_lock);

 #pragma omp parallel num_threads(4)
 {
 int tid = omp_get_thread_num();
 while (!omp_test_nest_lock(&nestable_lock))
 printf_s("Thread %d - failed to acquire nestable_lock\n",
 tid);

 printf_s("Thread %d - acquired nestable_lock\n", tid);

 if (omp_test_nest_lock(&nestable_lock)) {
 printf_s("Thread %d - acquired nestable_lock again\n",
 tid);
 printf_s("Thread %d - released nestable_lock\n",
 tid);
 omp_unset_nest_lock(&nestable_lock);
 }

 printf_s("Thread %d - released nestable_lock\n", tid);
 omp_unset_nest_lock(&nestable_lock);
 }

 omp_destroy_nest_lock(&nestable_lock);
}

For more information, see 3.2.5 omp_test_lock and omp_test_nest_lock functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-5-omp-test-lock-and-omp-test-nest-lock-functions

Thread 1 - acquired nestable_lock
Thread 0 - failed to acquire nestable_lock
Thread 1 - acquired nestable_lock again
Thread 0 - failed to acquire nestable_lock
Thread 1 - released nestable_lock
Thread 0 - failed to acquire nestable_lock
Thread 1 - released nestable_lock
Thread 0 - failed to acquire nestable_lock
Thread 3 - acquired nestable_lock
Thread 0 - failed to acquire nestable_lock
Thread 3 - acquired nestable_lock again
Thread 0 - failed to acquire nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 3 - released nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 3 - released nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 0 - acquired nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 0 - acquired nestable_lock again
Thread 2 - failed to acquire nestable_lock
Thread 0 - released nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 0 - released nestable_lock
Thread 2 - failed to acquire nestable_lock
Thread 2 - acquired nestable_lock
Thread 2 - acquired nestable_lock again
Thread 2 - released nestable_lock
Thread 2 - released nestable_lock

omp_unset_lock

void omp_unset_lock(
 omp_lock_t *lock
);

Parameters

Remarks

Example

omp_unset_nest_lock

void omp_unset_nest_lock(
 omp_nest_lock_t *lock
);

Releases a lock.

lock
A variable of type omp_lock_t that was initialized with omp_init_lock, owned by the thread and executing in the
function.

For more information, see 3.2.4 omp_unset_lock and omp_unset_nest_lock functions.

See omp_init_lock for an example of using omp_unset_lock .

Releases a nestable lock.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-4-omp-unset-lock-and-omp-unset-nest-lock-functions

Parameters

Remarks

Example

lock
A variable of type omp_nest_lock_t that was initialized with omp_init_nest_lock, owned by the thread and executing
in the function.

For more information, see 3.2.4 omp_unset_lock and omp_unset_nest_lock functions.

See omp_init_nest_lock for an example of using omp_unset_nest_lock .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/3-2-4-omp-unset-lock-and-omp-unset-nest-lock-functions

OpenMP Environment Variables
4/22/2019 • 2 minutes to read • Edit Online

ENVIRONMENT VARIABLE DESCRIPTION

OMP_SCHEDULE Modifies the behavior of the schedule clause when
schedule(runtime) is specified in a for or parallel for

directive.

OMP_NUM_THREADS Sets the maximum number of threads in the parallel region,
unless overridden by omp_set_num_threads or num_threads.

OMP_DYNAMIC Specifies whether the OpenMP run time can adjust the
number of threads in a parallel region.

OMP_NESTED Specifies whether nested parallelism is enabled, unless nested
parallelism is enabled or disabled with omp_set_nested .

OMP_DYNAMIC

set OMP_DYNAMIC[=TRUE | =FALSE]

Remarks

Example

set OMP_DYNAMIC=TRUE

set OMP_DYNAMIC

OMP_NESTED

Provides links to environment variables used in the OpenMP API.

The Visual C++ implementation of the OpenMP standard includes the following environment variables. These
environment variables are read at program startup and modifications to their values are ignored at runtime (for
example, using _putenv, _wputenv).

Specifies whether the OpenMP run time can adjust the number of threads in a parallel region.

The OMP_DYNAMIC environment variable can be overridden by the omp_set_dynamic function.

The default value in the Visual C++ implementation of the OpenMP standard is OMP_DYNAMIC=FALSE .

For more information, see 4.3 OMP_DYNAMIC.

The following command sets the OMP_DYNAMIC environment variable to TRUE:

The following command displays the current setting of the OMP_DYNAMIC environment variable:

Specifies whether nested parallelism is enabled, unless nested parallelism is enabled or disabled with

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/reference/openmp-environment-variables.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/putenv-wputenv
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/4-3-omp-dynamic

set OMP_NESTED[=TRUE | =FALSE]

Remarks

Example

set OMP_NESTED=TRUE

set OMP_NESTED

OMP_NUM_THREADS

set OMP_NUM_THREADS[=num]

Parameters

Remarks

Example

set OMP_NUM_THREADS=16

set OMP_NUM_THREADS

OMP_SCHEDULE

omp_set_nested .

The OMP_NESTED environment variable can be overridden by the omp_set_nested function.

The default value in the Visual C++ implementation of the OpenMP standard is OMP_DYNAMIC=FALSE .

For more information, see 4.4 OMP_NESTED.

The following command sets the OMP_NESTED environment variable to TRUE:

The following command displays the current setting of the OMP_NESTED environment variable:

Sets the maximum number of threads in the parallel region, unless overridden by omp_set_num_threads or
num_threads.

num
The maximum number of threads you want in the parallel region, up to 64 in the Visual C++ implementation.

The OMP_NUM_THREADS environment variable can be overridden by the omp_set_num_threads function or by
num_threads.

The default value of num in the Visual C++ implementation of the OpenMP standard is the number of virtual
processors, including hyperthreading CPUs.

For more information, see 4.2 OMP_NUM_THREADS.

The following command sets the OMP_NUM_THREADS environment variable to 16 :

The following command displays the current setting of the OMP_NUM_THREADS environment variable:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/4-4-omp-nested
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/4-2-omp-num-threads

set OMP_SCHEDULE[=type[,size]]

Parameters

Remarks

Example

set OMP_SCHEDULE="guided,2"

set OMP_SCHEDULE

Modifies the behavior of the schedule clause when schedule(runtime) is specified in a for or parallel for

directive.

size
(Optional) Specifies the size of iterations. size must be a positive integer. The default is 1 , except when type is
static. Not valid when type is runtime .

type
The kind of scheduling, either dynamic , guided , runtime , or static .

The default value in the Visual C++ implementation of the OpenMP standard is OMP_SCHEDULE=static,0 .

For more information, see 4.1 OMP_SCHEDULE.

The following command sets the OMP_SCHEDULE environment variable:

The following command displays the current setting of the OMP_SCHEDULE environment variable:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/4-1-omp-schedule

Multithreading Support for Older Code (Visual C++)
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

Visual C++ allows you to have multiple concurrent threads of execution running simultaneously. With
multithreading, you can spin off background tasks, manage simultaneous streams of input, manage a user
interface, and much more.

Multithreading with C and Win32
Provides support for creating multithread applications with Microsoft Windows

Multithreading with C++ and MFC
Describes what processes and threads are and what the MFC approach to multithreading is.

Multithreading and Locales
Discusses issues that arise when using the locale functionality of both the C Runtime Library and the C++
Standard Library in a multithreaded application.

CWinThread
Represents a thread of execution within an application.

CSyncObject
Describes a pure virtual class that provides functionality common to the synchronization objects in Win32.

CSemaphore
Represents a semaphore, which is a synchronization object that allows a limited number of threads in one or more
processes to access a resource.

CMutex
Represents a mutex, which is a synchronization object that allows one thread mutually exclusive access to a
resource.

CCriticalSection
Represents a critical section, which is a synchronization object that allows one thread at a time to access a resource
or section of code.

CEvent
Represents an event, which is a synchronization object that allows one thread to notify another that an event has
occurred.

CMultiLock
Represents the access-control mechanism used in controlling access to resources in a multithreaded program.

CSingleLock
Represents the access-control mechanism used in controlling access to a resource in a multithreaded program.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-support-for-older-code-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csyncobject-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csemaphore-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cmutex-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/ccriticalsection-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cevent-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cmultilock-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csinglelock-class

Multithreading with C and Win32
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about?

See also

Microsoft Visual C++ provides support for creating multithread applications. You should consider using more
than one thread if your application needs to perform expensive operations that would cause the user-interface to
become unresponsive.

With Visual C++, there are two ways to program with multiple threads: use the Microsoft Foundation Class
(MFC) library or the C run-time library and the Win32 API. For information about creating multithread
applications with MFC, see Multithreading with C++ and MFC after reading the following topics about
multithreading in C.

These topics explain the features in Visual C++ that support the creation of multithread programs.

What multithreading is about

Library support for multithreading

Include files for multithreading

C Run-Time library functions for thread control

Sample multithread program in C

Writing a Multithread Win32 Program

Compiling and linking multithread programs

Avoiding problem areas with multithread programs

Thread local storage (TLS)

Multithreading Support for Older Code (Visual C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-with-c-and-win32.md

Multithread Programs
3/4/2019 • 2 minutes to read • Edit Online

See also

A thread is basically a path of execution through a program. It is also the smallest unit of execution that Win32
schedules. A thread consists of a stack, the state of the CPU registers, and an entry in the execution list of the
system scheduler. Each thread shares all the process's resources.

A process consists of one or more threads and the code, data, and other resources of a program in memory.
Typical program resources are open files, semaphores, and dynamically allocated memory. A program executes
when the system scheduler gives one of its threads execution control. The scheduler determines which threads
should run and when they should run. Threads of lower priority might have to wait while higher priority threads
complete their tasks. On multiprocessor machines, the scheduler can move individual threads to different
processors to balance the CPU load.

Each thread in a process operates independently. Unless you make them visible to each other, the threads execute
individually and are unaware of the other threads in a process. Threads sharing common resources, however, must
coordinate their work by using semaphores or another method of interprocess communication. For more
information about synchronizing threads, see Writing a Multithreaded Win32 Program.

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithread-programs.md

Library Support for Multithreading
3/4/2019 • 2 minutes to read • Edit Online

See also

All versions of the CRT now support multi threading with the exception of the non-locking versions of some
functions. See Multithreaded Libraries Performance for more information.

See CRT Library Features for more information on CRT versions.

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/library-support-for-multithreading.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/multithreaded-libraries-performance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features

Include Files for Multithreading
3/4/2019 • 2 minutes to read • Edit Online

See also

Standard include files declare C run-time library functions as they are implemented in the libraries. If you use the
Full Optimization (/Ox) or fastcall Calling Convention (/Gr) option, the compiler assumes that all functions should
be called using the register calling convention. The run-time library functions were compiled using the C calling
convention, and the declarations in the standard include files tell the compiler to generate correct external
references to these functions.

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/include-files-for-multithreading.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ox-full-optimization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gd-gr-gv-gz-calling-convention

C Run-Time Library Functions for Thread Control
3/4/2019 • 2 minutes to read • Edit Online

NOTE

The _beginthread and _beginthreadex Functions

The _endthread and _endthreadex Functions

See also

All Win32 programs have at least one thread. Any thread can create additional threads. A thread can complete its
work quickly and then terminate, or it can stay active for the life of the program.

The LIBCMT and MSVCRT C run-time libraries provide the following functions for thread creation and
termination: _beginthread, _beginthreadex and _endthread, _endthreadex.

The _beginthread and _beginthreadex functions create a new thread and return a thread identifier if the operation
is successful. The thread terminates automatically if it completes execution, or it can terminate itself with a call to
_endthread or _endthreadex .

If you are going to call C run-time routines from a program built with Libcmt.lib, you must start your threads with the
_beginthread or _beginthreadex function. Do not use the Win32 functions ExitThread and CreateThread . Using
SuspendThread can lead to a deadlock when more than one thread is blocked waiting for the suspended thread to

complete its access to a C run-time data structure.

The _beginthread and _beginthreadex functions create a new thread. A thread shares the code and data segments
of a process with other threads in the process but has its own unique register values, stack space, and current
instruction address. The system gives CPU time to each thread, so that all threads in a process can execute
concurrently.

_beginthread and _beginthreadex are similar to the CreateThread function in the Win32 API but has these
differences:

They initialize certain C run-time library variables. This is important only if you use the C run-time library in
your threads.

CreateThread helps provide control over security attributes. You can use this function to start a thread in a
suspended state.

_beginthread and _beginthreadex return a handle to the new thread if successful or an error code if there was an
error.

The _endthread function terminates a thread created by _beginthread (and similarly, _endthreadex terminates a
thread created by _beginthreadex). Threads terminate automatically when they finish. _endthread and
_endthreadex are useful for conditional termination from within a thread. A thread dedicated to communications

processing, for example, can quit if it is unable to get control of the communications port.

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/c-run-time-library-functions-for-thread-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/endthread-endthreadex
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/endthread-endthreadex

Sample Multithread C Program
3/4/2019 • 3 minutes to read • Edit Online

Example
Code

// sample_multithread_c_program.c
// compile with: /c
//
// Bounce - Creates a new thread each time the letter 'a' is typed.
// Each thread bounces a happy face of a different color around
// the screen. All threads are terminated when the letter 'Q' is
// entered.
//

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <process.h>

#define MAX_THREADS 32

// The function getrandom returns a random number between
// min and max, which must be in integer range.
#define getrandom(min, max) (SHORT)((rand() % (int)(((max) + 1) - \
 (min))) + (min))

int main(void); // Thread 1: main
void KbdFunc(void); // Keyboard input, thread dispatch
void BounceProc(void * MyID); // Threads 2 to n: display
void ClearScreen(void); // Screen clear
void ShutDown(void); // Program shutdown
void WriteTitle(int ThreadNum); // Display title bar information

HANDLE hConsoleOut; // Handle to the console
HANDLE hRunMutex; // "Keep Running" mutex
HANDLE hScreenMutex; // "Screen update" mutex
int ThreadNr; // Number of threads started
CONSOLE_SCREEN_BUFFER_INFO csbiInfo; // Console information

int main() // Thread One
{
 // Get display screen information & clear the screen.
 hConsoleOut = GetStdHandle(STD_OUTPUT_HANDLE);
 GetConsoleScreenBufferInfo(hConsoleOut, &csbiInfo);
 ClearScreen();
 WriteTitle(0);

 // Create the mutexes and reset thread count.
 hScreenMutex = CreateMutex(NULL, FALSE, NULL); // Cleared
 hRunMutex = CreateMutex(NULL, TRUE, NULL); // Set
 ThreadNr = 0;

Bounce.c is a sample multithread program that creates a new thread each time the letter a or A is typed. Each
thread bounces a happy face of a different color around the screen. Up to 32 threads can be created. The
program's normal termination occurs when q or Q is typed. For information about compiling and linking
Bounce.c, see Compiling and Linking Multithread Programs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/sample-multithread-c-program.md

 // Start waiting for keyboard input to dispatch threads or exit.
 KbdFunc();

 // All threads done. Clean up handles.
 CloseHandle(hScreenMutex);
 CloseHandle(hRunMutex);
 CloseHandle(hConsoleOut);
}

void ShutDown(void) // Shut down threads
{
 while (ThreadNr > 0)
 {
 // Tell thread to die and record its death.
 ReleaseMutex(hRunMutex);
 ThreadNr--;
 }

 // Clean up display when done
 WaitForSingleObject(hScreenMutex, INFINITE);
 ClearScreen();
}

void KbdFunc(void) // Dispatch and count threads.
{
 int KeyInfo;

 do
 {
 KeyInfo = _getch();
 if (tolower(KeyInfo) == 'a' &&
 ThreadNr < MAX_THREADS)
 {
 ThreadNr++;
 _beginthread(BounceProc, 0, &ThreadNr);
 WriteTitle(ThreadNr);
 }
 } while(tolower(KeyInfo) != 'q');

 ShutDown();
}

void BounceProc(void *pMyID)
{
 char MyCell, OldCell;
 WORD MyAttrib, OldAttrib;
 char BlankCell = 0x20;
 COORD Coords, Delta;
 COORD Old = {0,0};
 DWORD Dummy;
 char *MyID = (char*)pMyID;

 // Generate update increments and initial
 // display coordinates.
 srand((unsigned int) *MyID * 3);

 Coords.X = getrandom(0, csbiInfo.dwSize.X - 1);
 Coords.Y = getrandom(0, csbiInfo.dwSize.Y - 1);
 Delta.X = getrandom(-3, 3);
 Delta.Y = getrandom(-3, 3);

 // Set up "happy face" & generate color
 // attribute from thread number.
 if(*MyID > 16)
 MyCell = 0x01; // outline face
 else
 MyCell = 0x02; // solid face
 MyAttrib = *MyID & 0x0F; // force black background

 do
 {
 // Wait for display to be available, then lock it.
 WaitForSingleObject(hScreenMutex, INFINITE);

 // If we still occupy the old screen position, blank it out.
 ReadConsoleOutputCharacter(hConsoleOut, &OldCell, 1,
 Old, &Dummy);
 ReadConsoleOutputAttribute(hConsoleOut, &OldAttrib, 1,
 Old, &Dummy);
 if ((OldCell == MyCell) && (OldAttrib == MyAttrib))
 WriteConsoleOutputCharacter(hConsoleOut, &BlankCell, 1,
 Old, &Dummy);

 // Draw new face, then clear screen lock
 WriteConsoleOutputCharacter(hConsoleOut, &MyCell, 1,
 Coords, &Dummy);
 WriteConsoleOutputAttribute(hConsoleOut, &MyAttrib, 1,
 Coords, &Dummy);
 ReleaseMutex(hScreenMutex);

 // Increment the coordinates for next placement of the block.
 Old.X = Coords.X;
 Old.Y = Coords.Y;
 Coords.X += Delta.X;
 Coords.Y += Delta.Y;

 // If we are about to go off the screen, reverse direction
 if(Coords.X < 0 || Coords.X >= csbiInfo.dwSize.X)
 {
 Delta.X = -Delta.X;
 Beep(400, 50);
 }
 if(Coords.Y < 0 || Coords.Y > csbiInfo.dwSize.Y)
 {
 Delta.Y = -Delta.Y;
 Beep(600, 50);
 }
 }
 // Repeat while RunMutex is still taken.
 while (WaitForSingleObject(hRunMutex, 75L) == WAIT_TIMEOUT);
}

void WriteTitle(int ThreadNum)
{
 enum {
 sizeOfNThreadMsg = 80
 };
 char NThreadMsg[sizeOfNThreadMsg];

 sprintf_s(NThreadMsg, sizeOfNThreadMsg,
 "Threads running: %02d. Press 'A' "
 "to start a thread,'Q' to quit.", ThreadNum);
 SetConsoleTitle(NThreadMsg);
}

void ClearScreen(void)
{
 DWORD dummy;
 COORD Home = { 0, 0 };
 FillConsoleOutputCharacter(hConsoleOut, ' ',
 csbiInfo.dwSize.X * csbiInfo.dwSize.Y,
 Home, &dummy);
}

Input

a
q

See also
Multithreading with C and Win32

Writing a Multithreaded Win32 Program
3/4/2019 • 4 minutes to read • Edit Online

Sharing Common Resources Between Threads

NOTE

When you write a program with multiple threads, you must coordinate their behavior and use of the program's
resources. You must also make sure that each thread receives its own stack.

For a similar discussion from the MFC point of view, see Multithreading: Programming Tips and Multithreading: When to Use
the Synchronization Classes.

Each thread has its own stack and its own copy of the CPU registers. Other resources, such as files, static data, and
heap memory, are shared by all threads in the process. Threads using these common resources must be
synchronized. Win32 provides several ways to synchronize resources, including semaphores, critical sections,
events, and mutexes.

When multiple threads are accessing static data, your program must provide for possible resource conflicts.
Consider a program where one thread updates a static data structure containing x,y coordinates for items to be
displayed by another thread. If the update thread alters the x coordinate and is preempted before it can change the
y coordinate, the display thread might be scheduled before the y coordinate is updated. The item would be
displayed at the wrong location. You can avoid this problem by using semaphores to control access to the
structure.

A mutex (short for mutual exclusion) is a way of communicating among threads or processes that are executing
asynchronously of one another. This communication is usually used to coordinate the activities of multiple threads
or processes, typically by controlling access to a shared resource by locking and unlocking the resource. To solve
this x,y coordinate update problem, the update thread sets a mutex indicating that the data structure is in use
before performing the update. It would clear the mutex after both coordinates had been processed. The display
thread must wait for the mutex to be clear before updating the display. This process of waiting for a mutex is often
called blocking on a mutex because the process is blocked and cannot continue until the mutex clears.

The Bounce.c program shown in Sample Multithread C Program uses a mutex named ScreenMutex to coordinate
screen updates. Each time one of the display threads is ready to write to the screen, it calls WaitForSingleObject

with the handle to ScreenMutex and constant INFINITE to indicate that the WaitForSingleObject call should block
on the mutex and not time out. If ScreenMutex is clear, the wait function sets the mutex so other threads cannot
interfere with the display and continues executing the thread. Otherwise, the thread blocks until the mutex clears.
When the thread completes the display update, it releases the mutex by calling ReleaseMutex .

Screen displays and static data are only two of the resources requiring careful management. For example, your
program might have multiple threads accessing the same file. Because another thread might have moved the file
pointer, each thread must reset the file pointer before reading or writing. In addition, each thread must make sure
that it is not preempted between the time it positions the pointer and the time it accesses the file. These threads
should use a semaphore to coordinate access to the file by bracketing each file access with WaitForSingleObject

and ReleaseMutex calls. The following code example illustrates this technique:

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/writing-a-multithreaded-win32-program.md

HANDLE hIOMutex= CreateMutex (NULL, FALSE, NULL);

WaitForSingleObject(hIOMutex, INFINITE);
fseek(fp, desired_position, 0L);
fwrite(data, sizeof(data), 1, fp);
ReleaseMutex(hIOMutex);

Thread Stacks

See also

All of an application's default stack space is allocated to the first thread of execution, which is known as thread 1.
As a result, you must specify how much memory to allocate for a separate stack for each additional thread your
program needs. The operating system allocates additional stack space for the thread, if necessary, but you must
specify a default value.

The first argument in the _beginthread call is a pointer to the BounceProc function, which executes the threads.
The second argument specifies the default stack size for the thread. The last argument is an ID number that is
passed to BounceProc . BounceProc uses the ID number to seed the random number generator and to select the
thread's color attribute and display character.

Threads that make calls to the C run-time library or to the Win32 API must allow sufficient stack space for the
library and API functions they call. The C printf function requires more than 500 bytes of stack space, and you
should have 2K of stack space available when calling Win32 API routines.

Because each thread has its own stack, you can avoid potential collisions over data items by using as little static
data as possible. Design your program to use automatic stack variables for all data that can be private to a thread.
The only global variables in the Bounce.c program are either mutexes or variables that never change after they are
initialized.

Win32 also provides Thread-Local Storage (TLS) to store per-thread data. For more information, see Thread Local
Storage (TLS).

Multithreading with C and Win32

Compiling and Linking Multithread Programs
3/4/2019 • 2 minutes to read • Edit Online

To compile and link the multithread program Bounce.c from within the development environment

To compile and link the multithread program Bounce.c from the command line

See also

The Bounce.c program is introduced in Sample Multithread C Program.

Programs are compiled multithreaded by default.

1. On the File menu, click New, and then click Project.

2. In the Project Types pane, click Win32.

3. In the Templates pane, click Win32 Console Application, and then name the project.

4. Add the file containing the C source code to the project.

5. On the Build menu, build the project by clicking the Build command.

CL BOUNCE.C

1. Compile and link the program:

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/compiling-and-linking-multithread-programs.md

Avoiding Problem Areas with Multithread Programs
3/4/2019 • 2 minutes to read • Edit Online

PROBLEM PROBABLE CAUSE

You get a message box showing that your program caused a
protection violation.

Many Win32 programming errors cause protection violations.
A common cause of protection violations is the indirect
assignment of data to null pointers. Because this results in
your program trying to access memory that does not belong
to it, a protection violation is issued.

An easy way to detect the cause of a protection violation is to
compile your program with debugging information and then
run it through the debugger in the Visual C++ environment.
When the protection fault occurs, Windows transfers control
to the debugger and the cursor is positioned on the line that
caused the problem.

Your program generates numerous compile and link errors. You can eliminate many potential problems by setting the
compiler's warning level to one of its highest values and
heeding the warning messages. By using the level 3 or level 4
warning level options, you can detect unintentional data
conversions, missing function prototypes, and use of non-
ANSI features.

See also

There are several problems you might encounter in creating, linking, or executing a multithread C program. Some
of the more common problems are described in the following table. (For a similar discussion from the MFC point
of view, see Multithreading: Programming Tips.)

Multithreading with C and Win32

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/avoiding-problem-areas-with-multithread-programs.md

Thread Local Storage (TLS)
5/8/2019 • 4 minutes to read • Edit Online

Compiler Implementation for TLS

__declspec(thread) int tls_i = 1;

Rules and limitations

Thread Local Storage (TLS) is the method by which each thread in a given multithreaded process can allocate
locations in which to store thread-specific data. Dynamically bound (run-time) thread-specific data is supported by
way of the TLS API (TlsAlloc. Win32 and the Microsoft C++ compiler now support statically bound (load-time)
per-thread data in addition to the existing API implementation.

C++11: The thread_local storage class specifier is the recommended way to specify thread-local storage for
objects and class members. For more information, see Storage classes (C++).

Visual C++ also provides a Microsoft-specific attribute, thread, as extended storage class modifier. Use the
__declspec keyword to declare a thread variable. For example, the following code declares an integer thread local
variable and initializes it with a value:

The following guidelines must be observed when declaring statically bound thread local objects and variables.
These guidelines apply both to threadand for the most part also to thread_local:

__declspec(thread)void func(); // This will generate an error.

void func1()
{
 __declspec(thread)int tls_i; // This will generate an error.
}

int func2(__declspec(thread)int tls_i) // This will generate an error.
{
 return tls_i;
}

#define Thread __declspec(thread)
extern int tls_i; // This will generate an error, since the
int __declspec(thread)tls_i; // declaration and definition differ.

The thread attribute can be applied only to class and data declarations and definitions. It cannot be used on
function declarations or definitions. For example, the following code generates a compiler error:

The thread modifier might be specified only on data items with static extent. This includes global data
objects (both static and extern), local static objects, and static data members of C++ classes. Automatic
data objects cannot be declared with the thread attribute. The following code generates compiler errors:

The declarations and the definition of a thread local object must all specify the thread attribute. For
example, the following code generates an error :

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/thread-local-storage-tls.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-tlsalloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/storage-classes-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/thread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/thread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/storage-classes-cpp

char __declspec(thread) *ch; // Error

__declspec(thread) class B
{
// Code
} BObject; // OK--BObject is declared thread local.

class B
{
// Code
};
__declspec(thread) B BObject; // OK--BObject is declared thread local.

__declspec(thread)int tls_i;
int *p = &tls_i; //This will generate an error in C.

__declspec(thread)int tls_i = tls_i; // Error in C and C++
int j = j; // OK in C++, error in C
__declspec(thread)int tls_i = sizeof(tls_i) // Legal in C and C++

The thread attribute cannot be used as a type modifier. For example, the following code generates a
compiler error :

Because the declaration of C++ objects that use the thread attribute is permitted, the following two
examples are semantically equivalent:

The address of a thread local object is not considered constant, and any expression involving such an
address is not considered a constant expression. In standard C, the effect of this is to forbid the use of the
address of a thread local variable as an initializer for an object or pointer. For example, the following code is
flagged as an error by the C compiler:

This restriction does not apply in C++. Because C++ allows for dynamic initialization of all objects, you can
initialize an object by using an expression that uses the address of a thread local variable. This is
accomplished just like the construction of thread local objects. For example, the code shown earlier does not
generate an error when it is compiled as a C++ source file. Note that the address of a thread local variable
is valid only as long as the thread in which the address was taken still exists.

Standard C allows for the initialization of an object or variable with an expression involving a reference to
itself, but only for objects of nonstatic extent. Although C++ generally allows for such dynamic initialization
of objects with an expression involving a reference to itself, this kind of initialization is not permitted with
thread local objects. For example:

Note that a sizeof expression that includes the object being initialized does not represent a reference to
itself and is enabled in both C and C++.

C++ does not allow such dynamic initialization of thread data because of possible future enhancements to
the thread local storage facility.

On Windows operating systems before Windows Vista, __declspec (thread) has some limitations. If a DLL
declares any data or object as __declspec (thread), it can cause a protection fault if dynamically loaded.
After the DLL is loaded with LoadLibrary, it causes system failure whenever the code references the
__declspec (thread) data. Because the global variable space for a thread is allocated at run time, the size of

this space is based on a calculation of the requirements of the application plus the requirements of all the
DLLs that are statically linked. When you use LoadLibrary , you cannot extend this space to allow for the

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya

See also

thread local variables declared with __declspec (thread). Use the TLS APIs, such as TlsAlloc, in your DLL
to allocate TLS if the DLL might be loaded with LoadLibrary .

Multithreading with C and Win32

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-tlsalloc

Multithreading with C++ and MFC
3/4/2019 • 2 minutes to read • Edit Online

The Microsoft Foundation Class (MFC) library provides support for multithreaded applications. This topic
describes processes and threads and the MFC approach to multithreading.

A process is an executing instance of an application. For example, when you double-click the Notepad icon, you
start a process that runs Notepad.

A thread is a path of execution within a process. When you start Notepad, the operating system creates a process
and begins executing the primary thread of that process. When this thread terminates, so does the process. This
primary thread is supplied to the operating system by the startup code in the form of a function address. Usually,
it is the address of the main or WinMain function that is supplied.

You can create additional threads in your application if you want. You might want to do this to handle background
or maintenance tasks when you do not want the user to wait for them to complete. All threads in MFC
applications are represented by CWinThread objects. In most situations, you do not even have to explicitly create
these objects; instead call the framework helper function AfxBeginThread, which creates the CWinThread object
for you.

MFC distinguishes two types of threads: user-interface threads and worker threads. User-interface threads are
commonly used to handle user input and respond to events and messages generated by the user. Worker threads
are commonly used to complete tasks, such as recalculation, that do not require user input. The Win32 API does
not distinguish between types of threads; it just needs to know the thread's starting address so it can begin to
execute the thread. MFC handles user-interface threads specially by supplying a message pump for events in the
user interface. CWinApp is an example of a user-interface thread object, because it derives from CWinThread and
handles events and messages generated by the user.

Special attention should be given to situations where more than one thread might require access to the same
object. Multithreading: Programming Tips describes techniques that you can use to get around problems that
might arise in these situations. Multithreading: How to Use the Synchronization Classes describes how to use the
classes that are available to synchronize access from multiple threads to a single object.

Writing and debugging multithreaded programming is inherently a complicated and tricky undertaking, because
you must ensure that objects are not accessed by more than one thread at a time. The multithreading topics do
not teach the basics of multithreaded programming, only how to use MFC in your multithreaded program. The
multithreaded MFC samples included in Visual C++ illustrate a few multithreaded Adding Functionality and
Win32 APIs not encompassed by MFC; however, they are only intended to be a starting point.

For more information about how the operating system handles processes and threads, see Processes and
Threads in the Windows SDK.

For more information about MFC multithreading support, see the following topics:

Multithreading: Creating User-Interface Threads

Multithreading: Creating Worker Threads

Multithreading: How to Use the Synchronization Classes

Multithreading: Terminating Threads

Multithreading: Programming Tips

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-with-cpp-and-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/windows/desktop/ProcThread/processes-and-threads

See also

Multithreading: When to Use the Synchronization Classes

Multithreading Support for Older Code (Visual C++)

Multithreading: Creating MFC User-Interface Threads
3/4/2019 • 2 minutes to read • Edit Online

Functions to Override When Creating a User-Interface Thread

FUNCTION PURPOSE

ExitInstance Perform cleanup when thread terminates. Usually overridden.

InitInstance Perform thread instance initialization. Must be overridden.

OnIdle Perform thread-specific idle-time processing. Not usually
overridden.

PreTranslateMessage Filter messages before they are dispatched to
TranslateMessage and DispatchMessage . Not usually

overridden.

ProcessWndProcException Intercept unhandled exceptions thrown by the thread's
message and command handlers. Not usually overridden.

Run Controlling function for the thread. Contains the message
pump. Rarely overridden.

A user-interface thread is commonly used to handle user input and respond to user events independently of
threads executing other portions of the application. The main application thread (provided in your CWinApp -
derived class) is already created and started for you. This topic describes the steps necessary to create additional
user-interface threads.

The first thing you must do when creating a user-interface thread is derive a class from CWinThread. You must
declare and implement this class, using the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros. This
class must override some functions and can override others. These functions and what they should do are
presented in the following table.

MFC provides two versions of AfxBeginThread through parameter overloading: one that can only create worker
threads and one that can create user-interface threads or worker threads. To start your user-interface thread, call
the second overload of AfxBeginThread, providing the following information:

The RUNTIME_CLASS of the class you derived from CWinThread .

(Optional) The desired priority level. The default is normal priority. For more information about the
available priority levels, see SetThreadPriority in the Windows SDK.

(Optional) The desired stack size for the thread. The default is the same size stack as the creating thread.

(Optional) CREATE_SUSPENDED if you want the thread to be created in a suspended state. The default is
0, or start the thread normally.

(Optional) The desired security attributes. The default is the same access as the parent thread. For more
information about the format of this security information, see SECURITY_ATTRIBUTES in the Windows
SDK.

AfxBeginThread does most of the work for you. It creates a new object of your class, initializes it with the

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-creating-user-interface-threads.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/run-time-object-model-services
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/run-time-object-model-services
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/run-time-object-model-services
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
https://msdn.microsoft.com/library/windows/desktop/aa379560

What do you want to know more about?

See also

information you supply, and calls CWinThread::CreateThread to start executing the thread. Checks are made
throughout the procedure to make sure all objects are deallocated properly should any part of the creation fail.

Multithreading: Terminating Threads

Multithreading: Creating Worker Threads

Processes and Threads

Multithreading with C++ and MFC

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/windows/desktop/ProcThread/processes-and-threads

Multithreading: Creating Worker Threads in MFC
3/4/2019 • 3 minutes to read • Edit Online

Starting the Thread

Implementing the Controlling Function

UINT MyControllingFunction(LPVOID pParam);

A worker thread is commonly used to handle background tasks that the user should not have to wait for to
continue using your application. Tasks such as recalculation and background printing are good examples of worker
threads. This topic details the steps necessary to create a worker thread. Topics include:

Starting the thread

Implementing the controlling function

Example

Creating a worker thread is a relatively simple task. Only two steps are required to get your thread running:
implementing the controlling function and starting the thread. It is not necessary to derive a class from
CWinThread. You can derive a class if you need a special version of CWinThread , but it is not required for most
simple worker threads. You can use CWinThread without modification.

There are two overloaded versions of AfxBeginThread : one that can only create worker threads, and one that can
create both user-interface threads and worker threads. To begin execution of your worker thread using the first
overload, call AfxBeginThread, providing the following information:

The address of the controlling function.

The parameter to be passed to the controlling function.

(Optional) The desired priority of the thread. The default is normal priority. For more information about the
available priority levels, see SetThreadPriority in the Windows SDK.

(Optional) The desired stack size for the thread. The default is the same size stack as the creating thread.

(Optional) CREATE_SUSPENDED if you want the thread to be created in a suspended state. The default is
0, or start the thread normally.

(Optional) The desired security attributes. The default is the same access as the parent thread. For more
information about the format of this security information, see SECURITY_ATTRIBUTES in the Windows
SDK.

AfxBeginThread creates and initializes a CWinThread object for you, starts it, and returns its address so you can
refer to it later. Checks are made throughout the procedure to make sure all objects are deallocated properly
should any part of the creation fail.

The controlling function defines the thread. When this function is entered, the thread starts, and when it exits, the
thread terminates. This function should have the following prototype:

The parameter is a single value. The value the function receives in this parameter is the value that was passed to
the constructor when the thread object was created. The controlling function can interpret this value in any

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-creating-worker-threads.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
https://msdn.microsoft.com/library/windows/desktop/aa379560

 Controlling Function Example

UINT MyThreadProc(LPVOID pParam)
{
 CMyObject* pObject = (CMyObject*)pParam;

 if (pObject == NULL ||
 !pObject->IsKindOf(RUNTIME_CLASS(CMyObject)))
 return 1; // if pObject is not valid

 // do something with 'pObject'

 return 0; // thread completed successfully
}

// inside a different function in the program
.
.
.
pNewObject = new CMyObject;
AfxBeginThread(MyThreadProc, pNewObject);
.
.
.

What do you want to know more about?

See also

manner it chooses. It can be treated as a scalar value or a pointer to a structure containing multiple parameters, or
it can be ignored. If the parameter refers to a structure, the structure can be used not only to pass data from the
caller to the thread, but also to pass data back from the thread to the caller. If you use such a structure to pass data
back to the caller, the thread needs to notify the caller when the results are ready. For information about
communicating from the worker thread to the caller, see Multithreading: Programming Tips.

When the function terminates, it should return a UINT value indicating the reason for termination. Typically, this
exit code is 0 to indicate success with other values indicating different types of errors. This is purely
implementation dependent. Some threads might maintain usage counts of objects and return the current number
of uses of that object. To see how applications can retrieve this value, see Multithreading: Terminating Threads.

There are some restrictions on what you can do in a multithreaded program written with the MFC library. For
descriptions of these restrictions and other tips about using threads, see Multithreading: Programming Tips.

The following example shows how to define a controlling function and use it from another portion of the program.

Multithreading: Creating User-Interface Threads

Multithreading with C++ and MFC

Multithreading: When to Use the MFC
Synchronization Classes
3/4/2019 • 2 minutes to read • Edit Online

Example 1: Using Three Synchronization Classes

Example 2: Using Synchronization Access Classes

The multithreaded classes provided with MFC fall into two categories: synchronization objects (CSyncObject,
CSemaphore, CMutex, CCriticalSection, and CEvent) and synchronization access objects (CMultiLock and
CSingleLock).

Synchronization classes are used when access to a resource must be controlled to ensure integrity of the resource.
Synchronization access classes are used to gain access to these controlled resources. This topic describes when to
use each class.

To determine which synchronization class you should use, ask the following series of questions:

1. Does the application have to wait for something to happen before it can access the resource (for example,
data must be received from a communications port before it can be written to a file)?

If yes, use CEvent .

2. Can more than one thread within the same application access this resource at one time (for example, your
application allows up to five windows with views on the same document)?

If yes, use CSemaphore .

3. Can more than one application use this resource (for example, the resource is in a DLL)?

If yes, use CMutex .

If no, use CCriticalSection .

CSyncObject is never used directly. It is the base class for the other four synchronization classes.

As an example, take an application that maintains a linked list of accounts. This application allows up to three
accounts to be examined in separate windows, but only one can be updated at any particular time. When an
account is updated, the updated data is sent over the network to a data archive.

This example application uses all three types of synchronization classes. Because it allows up to three accounts to
be examined at one time, it uses CSemaphore to limit access to three view objects. When an attempt to view a
fourth account occurs, the application either waits until one of the first three windows closes or it fails. When an
account is updated, the application uses CCriticalSection to ensure that only one account is updated at a time.
After the update succeeds, it signals CEvent , which releases a thread waiting for the event to be signaled. This
thread sends the new data to the data archive.

Choosing which synchronization access class to use is even simpler. If your application is concerned with accessing
a single controlled resource only, use CSingleLock . If it needs access to any one of a number of controlled
resources, use CMultiLock . In example 1, CSingleLock would have been used, because in each case only one
resource is needed at any particular time.

For information about how the synchronization classes are used, see Multithreading: How to Use the

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-when-to-use-the-synchronization-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csyncobject-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csemaphore-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cmutex-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/ccriticalsection-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cevent-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cmultilock-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csinglelock-class

See also

Synchronization Classes. For information about synchronization, see Synchronization in the Windows SDK. For
information about multithreading support in MFC, see Multithreading with C++ and MFC.

Multithreading with C++ and MFC

https://docs.microsoft.com/windows/desktop/Sync/synchronization

Multithreading: How to Use the MFC
Synchronization Classes
3/4/2019 • 3 minutes to read • Edit Online

Designing a Thread-Safe Class

Synchronizing resource access between threads is a common problem when writing multithreaded applications.
Having two or more threads simultaneously access the same data can lead to undesirable and unpredictable
results. For example, one thread could be updating the contents of a structure while another thread is reading the
contents of the same structure. It is unknown what data the reading thread will receive: the old data, the newly
written data, or possibly a mixture of both. MFC provides a number of synchronization and synchronization access
classes to aid in solving this problem. This topic explains the classes available and how to use them to create
thread-safe classes in a typical multithreaded application.

A typical multithreaded application has a class that represents a resource to be shared among threads. A properly
designed, fully thread-safe class does not require you to call any synchronization functions. Everything is handled
internally to the class, allowing you to concentrate on how to best use the class, not about how it might get
corrupted. An effective technique for creating a fully thread-safe class is to merge the synchronization class into
the resource class. Merging the synchronization classes into the shared class is a straightforward process.

As an example, take an application that maintains a linked list of accounts. This application allows up to three
accounts to be examined in separate windows, but only one can be updated at any particular time. When an
account is updated, the updated data is sent over the network to a data archive.

This example application uses all three types of synchronization classes. Because it allows up to three accounts to
be examined at one time, it uses CSemaphore to limit access to three view objects. When an attempt to view a
fourth account occurs, the application either waits until one of the first three windows closes or it fails. When an
account is updated, the application uses CCriticalSection to ensure that only one account is updated at a time.
After the update succeeds, it signals CEvent, which releases a thread waiting for the event to be signaled. This
thread sends the new data to the data archive.

To make a class fully thread-safe, first add the appropriate synchronization class to the shared classes as a data
member. In the previous account-management example, a CSemaphore data member would be added to the view
class, a CCriticalSection data member would be added to the linked-list class, and a CEvent data member would
be added to the data storage class.

Next, add synchronization calls to all member functions that modify the data in the class or access a controlled
resource. In each function, you should create either a CSingleLock or CMultiLock object and call that object's
Lock function. When the lock object goes out of scope and is destroyed, the object's destructor calls Unlock for

you, releasing the resource. Of course, you can call Unlock directly if you want.

Designing your thread-safe class in this fashion allows it to be used in a multithreaded application as easily as a
non-thread-safe class, but with a higher level of safety. Encapsulating the synchronization object and
synchronization access object into the resource's class provides all the benefits of fully thread-safe programming
without the drawback of maintaining synchronization code.

The following code example demonstrates this method by using a data member, m_CritSection (of type
CCriticalSection), declared in the shared resource class and a CSingleLock object. The synchronization of the

shared resource (derived from CWinThread) is attempted by creating a CSingleLock object using the address of
the m_CritSection object. An attempt is made to lock the resource and, when obtained, work is done on the

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-how-to-use-the-synchronization-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csemaphore-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/ccriticalsection-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cevent-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/csinglelock-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cmultilock-class

CSingleLock singleLock(&m_CritSection);
singleLock.Lock();
// resource locked
//.usage of shared resource...

singleLock.Unlock();

NOTE

See also

shared object. When the work is finished, the resource is unlocked with a call to Unlock .

CCriticalSection , unlike other MFC synchronization classes, does not have the option of a timed lock request. The
waiting period for a thread to become free is infinite.

The drawbacks to this approach are that the class will be slightly slower than the same class without the
synchronization objects added. Also, if there is a chance that more than one thread might delete the object, the
merged approach might not always work. In this situation, it is better to maintain separate synchronization
objects.

For information about determining which synchronization class to use in different situations, see Multithreading:
When to Use the Synchronization Classes. For more information about synchronization, see Synchronization in
the Windows SDK. For more information about multithreading support in MFC, see Multithreading with C++ and
MFC.

Multithreading with C++ and MFC

https://docs.microsoft.com/windows/desktop/Sync/synchronization

Multithreading: Terminating Threads in MFC
3/4/2019 • 2 minutes to read • Edit Online

Normal Thread Termination

Premature Thread Termination

Retrieving the Exit Code of a Thread

Two normal situations cause a thread to terminate: the controlling function exits or the thread is not allowed to run
to completion. If a word processor used a thread for background printing, the controlling function would
terminate normally if printing completed successfully. If the user wants to cancel the printing, however, the
background printing thread has to be terminated prematurely. This topic explains both how to implement each
situation and how to get the exit code of a thread after it terminates.

Normal Thread Termination

Premature Thread Termination

Retrieving the Exit Code of a Thread

For a worker thread, normal thread termination is simple: Exit the controlling function and return a value that
signifies the reason for termination. You can use either the AfxEndThread function or a return statement. Typically,
0 signifies successful completion, but that is up to you.

For a user-interface thread, the process is just as simple: from within the user-interface thread, call
PostQuitMessage in the Windows SDK. The only parameter that PostQuitMessage takes is the exit code of the
thread. As for worker threads, 0 typically signifies successful completion.

Terminating a thread prematurely is almost as simple: Call AfxEndThread from within the thread. Pass the desired
exit code as the only parameter. This stops execution of the thread, deallocates the thread's stack, detaches all
DLLs attached to the thread, and deletes the thread object from memory.

AfxEndThread must be called from within the thread to be terminated. If you want to terminate a thread from
another thread, you must set up a communication method between the two threads.

To get the exit code of either the worker or the user-interface thread, call the GetExitCodeThread function. For
information about this function, see the Windows SDK. This function takes the handle to the thread (stored in the
m_hThread data member of CWinThread objects) and the address of a DWORD.

If the thread is still active, GetExitCodeThread places STILL_ACTIVE in the supplied DWORD address; otherwise,
the exit code is placed in this address.

Retrieving the exit code of CWinThread objects takes an extra step. By default, when a CWinThread thread
terminates, the thread object is deleted. This means you cannot access the m_hThread data member because the
CWinThread object no longer exists. To avoid this situation, do one of the following:

Set the m_bAutoDelete data member to FALSE. This allows the CWinThread object to survive after the
thread has been terminated. You can then access the m_hThread data member after the thread has been
terminated. If you use this technique, however, you are responsible for destroying the CWinThread object
because the framework will not automatically delete it for you. This is the preferred method.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-terminating-threads.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postquitmessage
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodethread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class

See also

Store the thread's handle separately. After the thread is created, copy its m_hThread data member (using
::DuplicateHandle) to another variable and access it through that variable. This way the object is deleted

automatically when termination occurs and you can still find out why the thread terminated. Be careful that
the thread does not terminate before you can duplicate the handle. The safest way to do this is to pass
CREATE_SUSPENDED to AfxBeginThread, store the handle, and then resume the thread by calling
ResumeThread.

Either method allows you to determine why a CWinThread object terminated.

Multithreading with C++ and MFC
_endthread, _endthreadex
_beginthread, _beginthreadex
ExitThread

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/application-information-and-management
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/endthread-endthreadex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-exitthread

Multithreading: MFC Programming Tips
3/4/2019 • 2 minutes to read • Edit Online

Accessing Objects from Multiple Threads

Accessing MFC Objects from Non-MFC Threads

Windows Handle Maps

Multithreaded applications require stricter care than single-threaded applications to ensure that operations occur
in the intended order, and any data that is accessed by multiple threads is not corrupted. This topic explains
techniques for avoiding potential problems when programming multithreaded applications with the Microsoft
Foundation Class (MFC) library.

Accessing Objects from Multiple Threads

Accessing MFC Objects from Non-MFC Threads

Windows Handle Maps

Communicating Between Threads

MFC objects are not thread-safe by themselves. Two separate threads cannot manipulate the same object unless
you use the MFC synchronization classes and/or the appropriate Win32 synchronization objects, such as critical
sections. For more information about critical sections and other related objects, see Synchronization in the
Windows SDK.

The class library uses critical sections internally to protect global data structures, such as those used by the debug
memory allocation.

If you have a multithreaded application that creates a thread in a way other than using a CWinThread object, you
cannot access other MFC objects from that thread. In other words, if you want to access any MFC object from a
secondary thread, you must create that thread with one of the methods described in Multithreading: Creating
User-Interface Threads or Multithreading: Creating Worker Threads. These methods are the only ones that allow
the class library to initialize the internal variables necessary to handle multithreaded applications.

As a general rule, a thread can access only MFC objects that it created. This is because temporary and permanent
Windows handle maps are kept in thread local storage to help maintain protection from simultaneous access
from multiple threads. For example, a worker thread cannot perform a calculation and then call a document's
UpdateAllViews member function to have the windows that contain views on the new data modified. This has no

effect at all, because the map from CWnd objects to HWNDs is local to the primary thread. This means that one
thread might have a mapping from a Windows handle to a C++ object, but another thread might map that same
handle to a different C++ object. Changes made in one thread would not be reflected in the other.

There are several ways around this problem. The first is to pass individual handles (such as an HWND) rather
than C++ objects to the worker thread. The worker thread then adds these objects to its temporary map by
calling the appropriate FromHandle member function. You could also add the object to the thread's permanent
map by calling Attach , but this should be done only if you are guaranteed that the object will exist longer than
the thread.

Another method is to create new user-defined messages corresponding to the different tasks your worker
threads will be performing and post these messages to the application's main window using ::PostMessage . This

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-programming-tips.md
https://docs.microsoft.com/windows/desktop/Sync/synchronization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/cwinthread-class

 Communicating Between Threads

See also

method of communication is similar to two different applications conversing except that both threads are
executing in the same address space.

For more information about handle maps, see Technical Note 3. For more information about thread local storage,
see Thread Local Storage and Using Thread Local Storage in the Windows SDK.

MFC provides a number of classes that allow threads to synchronize access to objects to maintain thread safety.
Usage of these classes is described in Multithreading: How to Use the Synchronization Classes and
Multithreading: When to Use the Synchronization Classes. For more information about these objects, see
Synchronization in the Windows SDK.

Multithreading with C++ and MFC

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/tn003-mapping-of-windows-handles-to-objects
https://docs.microsoft.com/windows/desktop/ProcThread/thread-local-storage
https://docs.microsoft.com/windows/desktop/ProcThread/using-thread-local-storage
https://docs.microsoft.com/windows/desktop/Sync/synchronization

Multithreading and Locales
3/4/2019 • 9 minutes to read • Edit Online

Remarks

NOTE

Example

// multithread_locale_1.cpp
// compile with: /EHsc /MD
#include <clocale>
#include <cstdio>
#include <locale>
#include <process.h>
#include <windows.h>

Both the C Runtime Library and the C++ Standard Library provide support for changing the locale of your
program. This topic discusses issues that arise when using the locale functionality of both libraries in a
multithreaded application.

With the C Runtime Library, you can create multithreaded applications using the _beginthread and
_beginthreadex functions. This topic only covers multithreaded applications created using these functions. For

more information, see _beginthread, _beginthreadex.

To change the locale using the C Runtime Library, use the setlocale function. In previous versions of Visual C++,
this function would always modify the locale throughout the entire application. There is now support for setting
the locale on a per-thread basis. This is done using the _configthreadlocale function. To specify that setlocale
should only change the locale in the current thread, call _configthreadlocale(_ENABLE_PER_THREAD_LOCALE) in that
thread. Conversely, calling _configthreadlocale(_DISABLE_PER_THREAD_LOCALE) will cause that thread to use the
global locale, and any call to setlocale in that thread will change the locale in all threads that have not explicitly
enabled per-thread locale.

To change the locale using the C++ Runtime Library, use the locale Class. By calling the locale::global method, you
change the locale in every thread that has not explicitly enabled per-thread locale. To change the locale in a single
thread or portion of an application, simply create an instance of a locale object in that thread or portion of code.

Calling locale::global changes the locale for both the C++ Standard Library and the C Runtime Library. However, calling
setlocale only changes the locale for the C Runtime Library; the C++ Standard Library is not affected.

The following examples show how to use the setlocale function, the locale Class, and the _configthreadlocale
function to change the locale of an application in several different scenarios.

In this example, the main thread spawns two child threads. The first thread, Thread A, enables per-thread locale by
calling _configthreadlocale(_ENABLE_PER_THREAD_LOCALE) . The second thread, Thread B, as well as the main thread,
do not enable per-thread locale. Thread A then proceeds to change the locale using the setlocale function of the C
Runtime Library.

Since Thread A has per-thread locale enabled, only the C Runtime Library functions in Thread A start using the
"french" locale. The C Runtime Library functions in Thread B and in the main thread continue to use the "C" locale.
Also, since setlocale does not affect the C++ Standard Library locale, all C++ Standard Library objects continue to
use the "C" locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/multithreading-and-locales.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/configthreadlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/configthreadlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale

#include <windows.h>

#define NUM_THREADS 2
using namespace std;

unsigned __stdcall RunThreadA(void *params);
unsigned __stdcall RunThreadB(void *params);

BOOL localeSet = FALSE;
HANDLE printMutex = CreateMutex(NULL, FALSE, NULL);

int main()
{
 HANDLE threads[NUM_THREADS];

 unsigned aID;
 threads[0] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadA, NULL, 0, &aID);

 unsigned bID;
 threads[1] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadB, NULL, 0, &bID);

 WaitForMultipleObjects(2, threads, TRUE, INFINITE);

 printf_s("[Thread main] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread main] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread main] locale::global is set to \"%s\"\n",
 locale().name().c_str());

 CloseHandle(threads[0]);
 CloseHandle(threads[1]);
 CloseHandle(printMutex);

 return 0;
}

unsigned __stdcall RunThreadA(void *params)
{
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
 setlocale(LC_ALL, "french");
 localeSet = TRUE;

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread A] Per-thread locale is enabled.\n");
 printf_s("[Thread A] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread A] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

unsigned __stdcall RunThreadB(void *params)
{
 while (!localeSet)
 Sleep(100);

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread B] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread B] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread B] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

}

[Thread A] Per-thread locale is enabled.
[Thread A] CRT locale is set to "French_France.1252"
[Thread A] locale::global is set to "C"

[Thread B] Per-thread locale is NOT enabled.
[Thread B] CRT locale is set to "C"
[Thread B] locale::global is set to "C"

[Thread main] Per-thread locale is NOT enabled.
[Thread main] CRT locale is set to "C"
[Thread main] locale::global is set to "C"

Example

// multithread_locale_2.cpp
// compile with: /EHsc /MD
#include <clocale>
#include <cstdio>
#include <locale>
#include <process.h>
#include <windows.h>

#define NUM_THREADS 2
using namespace std;

unsigned __stdcall RunThreadA(void *params);
unsigned __stdcall RunThreadB(void *params);

BOOL localeSet = FALSE;
HANDLE printMutex = CreateMutex(NULL, FALSE, NULL);

int main()
{
 HANDLE threads[NUM_THREADS];

 unsigned aID;
 threads[0] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadA, NULL, 0, &aID);

 unsigned bID;
 threads[1] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadB, NULL, 0, &bID);

 WaitForMultipleObjects(2, threads, TRUE, INFINITE);

 printf_s("[Thread main] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread main] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread main] locale::global is set to \"%s\"\n",
 locale().name().c_str());

In this example, the main thread spawns two child threads. The first thread, Thread A, enables per-thread locale by
calling _configthreadlocale(_ENABLE_PER_THREAD_LOCALE) . The second thread, Thread B, as well as the main thread,
do not enable per-thread locale. Thread A then proceeds to change the locale using the locale::global method of the
C++ Standard Library.

Since Thread A has per-thread locale enabled, only the C Runtime Library functions in Thread A start using the
"french" locale. The C Runtime Library functions in Thread B and in the main thread continue to use the "C" locale.
However, since the locale::global method changes the locale "globally", all C++ Standard Library objects in all
threads start using the "french" locale.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class

 CloseHandle(threads[0]);
 CloseHandle(threads[1]);
 CloseHandle(printMutex);

 return 0;
}

unsigned __stdcall RunThreadA(void *params)
{
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
 locale::global(locale("french"));
 localeSet = TRUE;

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread A] Per-thread locale is enabled.\n");
 printf_s("[Thread A] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread A] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

unsigned __stdcall RunThreadB(void *params)
{
 while (!localeSet)
 Sleep(100);

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread B] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread B] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread B] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

[Thread A] Per-thread locale is enabled.
[Thread A] CRT locale is set to "French_France.1252"
[Thread A] locale::global is set to "French_France.1252"

[Thread B] Per-thread locale is NOT enabled.
[Thread B] CRT locale is set to "C"
[Thread B] locale::global is set to "French_France.1252"

[Thread main] Per-thread locale is NOT enabled.
[Thread main] CRT locale is set to "C"
[Thread main] locale::global is set to "French_France.1252"

Example
In this example, the main thread spawns two child threads. The first thread, Thread A, enables per-thread locale by
calling _configthreadlocale(_ENABLE_PER_THREAD_LOCALE) . The second thread, Thread B, as well as the main thread,
do not enable per-thread locale. Thread B then proceeds to change the locale using the setlocale function of the C
Runtime Library.

Since Thread B does not have per-thread locale enabled, the C Runtime Library functions in Thread B and in the
main thread start using the "french" locale. The C Runtime Library functions in Thread A continue to use the "C"
locale because Thread A has per-thread locale enabled. Also, since setlocale does not affect the C++ Standard

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale

// multithread_locale_3.cpp
// compile with: /EHsc /MD
#include <clocale>
#include <cstdio>
#include <locale>
#include <process.h>
#include <windows.h>

#define NUM_THREADS 2
using namespace std;

unsigned __stdcall RunThreadA(void *params);
unsigned __stdcall RunThreadB(void *params);

BOOL localeSet = FALSE;
BOOL configThreadLocaleCalled = FALSE;
HANDLE printMutex = CreateMutex(NULL, FALSE, NULL);

int main()
{
 HANDLE threads[NUM_THREADS];

 unsigned aID;
 threads[0] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadA, NULL, 0, &aID);

 unsigned bID;
 threads[1] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadB, NULL, 0, &bID);

 WaitForMultipleObjects(2, threads, TRUE, INFINITE);

 printf_s("[Thread main] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread main] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread main] locale::global is set to \"%s\"\n",
 locale().name().c_str());

 CloseHandle(threads[0]);
 CloseHandle(threads[1]);
 CloseHandle(printMutex);

 return 0;
}

unsigned __stdcall RunThreadA(void *params)
{
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
 configThreadLocaleCalled = TRUE;
 while (!localeSet)
 Sleep(100);

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread A] Per-thread locale is enabled.\n");
 printf_s("[Thread A] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread A] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

unsigned __stdcall RunThreadB(void *params)
{
 while (!configThreadLocaleCalled)

Library locale, all C++ Standard Library objects continue to use the "C" locale.

 while (!configThreadLocaleCalled)
 Sleep(100);
 setlocale(LC_ALL, "french");
 localeSet = TRUE;

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread B] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread B] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread B] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

[Thread B] Per-thread locale is NOT enabled.
[Thread B] CRT locale is set to "French_France.1252"
[Thread B] locale::global is set to "C"

[Thread A] Per-thread locale is enabled.
[Thread A] CRT locale is set to "C"
[Thread A] locale::global is set to "C"

[Thread main] Per-thread locale is NOT enabled.
[Thread main] CRT locale is set to "French_France.1252"
[Thread main] locale::global is set to "C"

Example

// multithread_locale_4.cpp
// compile with: /EHsc /MD
#include <clocale>
#include <cstdio>
#include <locale>
#include <process.h>
#include <windows.h>

#define NUM_THREADS 2
using namespace std;

unsigned __stdcall RunThreadA(void *params);
unsigned __stdcall RunThreadB(void *params);

BOOL localeSet = FALSE;
BOOL configThreadLocaleCalled = FALSE;
HANDLE printMutex = CreateMutex(NULL, FALSE, NULL);

int main()
{
 HANDLE threads[NUM_THREADS];

 unsigned aID;

In this example, the main thread spawns two child threads. The first thread, Thread A, enables per-thread locale by
calling _configthreadlocale(_ENABLE_PER_THREAD_LOCALE) . The second thread, Thread B, as well as the main thread,
do not enable per-thread locale. Thread B then proceeds to change the locale using the locale::global method of the
C++ Standard Library.

Since Thread B does not have per-thread locale enabled, the C Runtime Library functions in Thread B and in the
main thread start using the "french" locale. The C Runtime Library functions in Thread A continue to use the "C"
locale because Thread A has per-thread locale enabled. However, since the locale::global method changes the
locale "globally", all C++ Standard Library objects in all threads start using the "french" locale.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class

 threads[0] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadA, NULL, 0, &aID);

 unsigned bID;
 threads[1] = (HANDLE)_beginthreadex(
 NULL, 0, RunThreadB, NULL, 0, &bID);

 WaitForMultipleObjects(2, threads, TRUE, INFINITE);

 printf_s("[Thread main] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread main] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread main] locale::global is set to \"%s\"\n",
 locale().name().c_str());

 CloseHandle(threads[0]);
 CloseHandle(threads[1]);
 CloseHandle(printMutex);

 return 0;
}

unsigned __stdcall RunThreadA(void *params)
{
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
 configThreadLocaleCalled = TRUE;
 while (!localeSet)
 Sleep(100);

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread A] Per-thread locale is enabled.\n");
 printf_s("[Thread A] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread A] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

unsigned __stdcall RunThreadB(void *params)
{
 while (!configThreadLocaleCalled)
 Sleep(100);
 locale::global(locale("french"));
 localeSet = TRUE;

 WaitForSingleObject(printMutex, INFINITE);
 printf_s("[Thread B] Per-thread locale is NOT enabled.\n");
 printf_s("[Thread B] CRT locale is set to \"%s\"\n",
 setlocale(LC_ALL, NULL));
 printf_s("[Thread B] locale::global is set to \"%s\"\n\n",
 locale().name().c_str());
 ReleaseMutex(printMutex);

 return 1;
}

[Thread B] Per-thread locale is NOT enabled.
[Thread B] CRT locale is set to "French_France.1252"
[Thread B] locale::global is set to "French_France.1252"

[Thread A] Per-thread locale is enabled.
[Thread A] CRT locale is set to "C"
[Thread A] locale::global is set to "French_France.1252"

[Thread main] Per-thread locale is NOT enabled.
[Thread main] CRT locale is set to "French_France.1252"
[Thread main] locale::global is set to "French_France.1252"

See also
Multithreading Support for Older Code (Visual C++)
_beginthread, _beginthreadex
_configthreadlocale
setlocale
Internationalization
Locale
<clocale>
<locale>
locale Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/configthreadlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/internationalization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/locale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/clocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/locale-class

	Cover Page
	Parallel Programming in Visual C++
	Auto-Parallelization and Auto-Vectorization
	Accelerated Multiprocessing (AMP)
	C++ AMP (C++ Accelerated Massive Parallelism)
	C++ AMP Overview
	Using Tiles
	Using C++ AMP in UWP Apps
	Walkthrough: Matrix Multiplication
	Walkthrough: Debugging a C++ AMP Application
	Using Lambdas, Function Objects, and Restricted Functions
	Graphics (C++ AMP)
	Using accelerator and accelerator_view Objects
	Reference
	Reference (C++ AMP)
	Concurrency Namespace (C++ AMP)
	Concurrency namespace functions (AMP)
	Concurrency namespace enums (AMP)
	Concurrency namespace operators (AMP)
	Concurrency namespace constants (AMP)
	accelerator Class
	accelerator_view Class
	accelerator_view_removed Class
	array Class
	array_view Class
	completion_future Class
	extent Class (C++ AMP)
	index Class
	invalid_compute_domain Class
	out_of_memory Class
	runtime_exception Class
	tile_barrier Class
	tiled_extent Class
	tiled_index Class
	uninitialized_object Class
	unsupported_feature Class

	Concurrency::direct3d Namespace
	Concurrency::direct3d namespace functions (AMP)
	adopt_d3d_access_lock_t Structure
	scoped_d3d_access_lock Class

	Concurrency::fast_math Namespace
	Concurrency::fast_math namespace functions

	Concurrency::graphics Namespace
	Concurrency::graphics::direct3d Namespace
	Concurrency::graphics::direct3d namespace functions

	Concurrency::graphics namespace functions
	Concurrency::graphics namespace enums
	double_2 Class
	double_3 Class
	double_4 Class
	float_2 Class
	float_3 Class
	float_4 Class
	int_2 Class
	int_3 Class
	int_4 Class
	norm Class
	norm_2 Class
	norm_3 Class
	norm_4 Class
	sampler Class
	short_vector Structure
	short_vector_traits Structure
	texture Class
	texture_view Class
	writeonly_texture_view Class
	uint_2 Class
	uint_3 Class
	uint_4 Class
	unorm Class
	unorm_2 Class
	unorm_3 Class
	unorm_4 Class

	Concurrency::precise_math Namespace
	Concurrency::precise_math namespace functions

	Concurrency Runtime (ConCRT)
	Concurrency Runtime
	Overview of the Concurrency Runtime
	Exception Handling in the Concurrency Runtime
	Parallel Diagnostic Tools (Concurrency Runtime)
	Creating Asynchronous Operations in C++ for UWP Apps
	Comparing the Concurrency Runtime to Other Concurrency Models
	Migrating from OpenMP to the Concurrency Runtime
	How to: Convert an OpenMP parallel for Loop to Use the Concurrency Runtime
	How to: Convert an OpenMP Loop that Uses Cancellation to Use the Concurrency Runtime
	How to: Convert an OpenMP Loop that Uses Exception Handling to Use the Concurrency Runtime
	How to: Convert an OpenMP Loop that Uses a Reduction Variable to Use the Concurrency Runtime

	Parallel Patterns Library (PPL)
	Task Parallelism (Concurrency Runtime)
	How to: Use parallel_invoke to Write a Parallel Sort Routine
	How to: Use parallel_invoke to Execute Parallel Operations
	How to: Create a Task that Completes After a Delay

	Parallel Algorithms
	How to: Write a parallel_for Loop
	How to: Write a parallel_for_each Loop
	How to: Perform Map and Reduce Operations in Parallel

	Parallel Containers and Objects
	How to: Use Parallel Containers to Increase Efficiency
	How to: Use combinable to Improve Performance
	How to: Use combinable to Combine Sets

	Cancellation in the PPL
	How to: Use Cancellation to Break from a Parallel Loop
	How to: Use Exception Handling to Break from a Parallel Loop

	Asynchronous Agents Library
	Asynchronous Agents
	Asynchronous Message Blocks
	Message Passing Functions
	How to: Implement Various Producer-Consumer Patterns
	How to: Provide Work Functions to the call and transformer Classes
	How to: Use transformer in a Data Pipeline
	How to: Select Among Completed Tasks
	How to: Send a Message at a Regular Interval
	How to: Use a Message Block Filter

	Synchronization Data Structures
	Comparing Synchronization Data Structures to the Windows API

	Task Scheduler (Concurrency Runtime)
	Scheduler Instances
	How to: Manage a Scheduler Instance

	Scheduler Policies
	How to: Specify Specific Scheduler Policies
	How to: Create Agents that Use Specific Scheduler Policies

	Schedule Groups
	How to: Use Schedule Groups to Influence Order of Execution

	Lightweight Tasks
	Contexts
	How to: Use the Context Class to Implement a Cooperative Semaphore
	How to: Use Oversubscription to Offset Latency

	Memory Management Functions
	How to: Use Alloc and Free to Improve Memory Performance

	Concurrency Runtime Walkthroughs
	Walkthrough: Connecting Using Tasks and XML HTTP Requests
	Walkthrough: Creating an Agent-Based Application
	Walkthrough: Creating a Dataflow Agent
	Walkthrough: Creating an Image-Processing Network
	Walkthrough: Implementing Futures
	Walkthrough: Using join to Prevent Deadlock
	Walkthrough: Removing Work from a User-Interface Thread
	Walkthrough: Using the Concurrency Runtime in a COM-Enabled Application
	Walkthrough: Adapting Existing Code to Use Lightweight Tasks
	Walkthrough: Creating a Custom Message Block

	Concurrency Runtime Best Practices
	Best Practices in the Parallel Patterns Library
	Best Practices in the Asynchronous Agents Library
	General Best Practices in the Concurrency Runtime

	Reference
	Reference (Concurrency Runtime)
	concurrency Namespace
	concurrency namespace functions
	concurrency namespace Operators
	concurrency namespace constants1
	concurrency namespace enums
	affinity_partitioner Class
	agent Class
	auto_partitioner Class
	bad_target Class
	call Class
	cancellation_token Class
	cancellation_token_registration Class
	cancellation_token_source Class
	choice Class
	combinable Class
	concurrent_priority_queue Class
	concurrent_queue Class
	concurrent_unordered_map Class
	concurrent_unordered_multimap Class
	concurrent_unordered_multiset Class
	concurrent_unordered_set Class
	concurrent_vector Class
	Context Class
	context_self_unblock Class
	context_unblock_unbalanced Class
	critical_section Class
	CurrentScheduler Class
	default_scheduler_exists Class
	DispatchState Structure
	event Class
	IExecutionContext Structure
	IExecutionResource Structure
	improper_lock Class
	improper_scheduler_attach Class
	improper_scheduler_detach Class
	improper_scheduler_reference Class
	invalid_link_target Class
	invalid_multiple_scheduling Class
	invalid_operation Class
	invalid_oversubscribe_operation Class
	invalid_scheduler_policy_key Class
	invalid_scheduler_policy_thread_specification Class
	invalid_scheduler_policy_value Class
	IResourceManager Structure
	IScheduler Structure
	ISchedulerProxy Structure
	ISource Class
	ITarget Class
	IThreadProxy Structure
	ITopologyExecutionResource Structure
	ITopologyNode Structure
	IUMSCompletionList Structure
	IUMSScheduler Structure
	IUMSThreadProxy Structure
	IUMSUnblockNotification Structure
	IVirtualProcessorRoot Structure
	join Class
	location Class
	message Class
	message_not_found Class
	message_processor Class
	missing_wait Class
	multi_link_registry Class
	multitype_join Class
	nested_scheduler_missing_detach Class
	network_link_registry Class
	operation_timed_out Class
	ordered_message_processor Class
	overwrite_buffer Class
	progress_reporter Class
	propagator_block Class
	reader_writer_lock Class
	ScheduleGroup Class
	Scheduler Class
	scheduler_interface Structure
	scheduler_not_attached Class
	scheduler_ptr Structure (Concurrency Runtime)
	scheduler_resource_allocation_error Class
	scheduler_worker_creation_error Class
	SchedulerPolicy Class
	simple_partitioner Class
	single_assignment Class
	single_link_registry Class
	source_block Class
	source_link_manager Class
	static_partitioner Class
	structured_task_group Class
	target_block Class
	task Class (Concurrency Runtime)
	task_canceled Class
	task_completion_event Class
	task_continuation_context Class
	task_group Class
	task_handle Class
	task_options Class (Concurrency Runtime)
	timer Class
	transformer Class
	unbounded_buffer Class
	unsupported_os Class

	std Namespace
	make_exception_ptr Function

	stdx Namespace
	declval Function

	OpenMP
	OpenMP in Visual C++
	SIMD Extension
	OpenMP C and C++ Application Program Interface
	Introduction
	Directives
	Run-time library functions
	Environment variables
	Appendices
	Examples
	Stubs for run-time library functions
	OpenMP C and C++ grammar
	The schedule clause
	Implementation-defined behaviors in OpenMP C/C++
	New features and clarifications in version 2.0

	OpenMP Library Reference
	Directives
	Clauses
	Functions
	Environment Variables

	Multithreading Support for Older Code (Visual C++)
	Multithreading with C and Win32
	Multithread Programs
	Library Support for Multithreading
	Include Files for Multithreading
	C Run-Time Library Functions for Thread Control
	Sample Multithread C Program
	Writing a Multithreaded Win32 Program
	Compiling and Linking Multithread Programs
	Avoiding Problem Areas with Multithread Programs
	Thread Local Storage (TLS)

	Multithreading with C++ and MFC
	Multithreading: Creating User-Interface Threads
	Multithreading: Creating Worker Threads
	Multithreading: When to Use the Synchronization Classes
	Multithreading: How to Use the Synchronization Classes
	Multithreading: Terminating Threads
	Multithreading: Programming Tips

	Multithreading and Locales

